# 3-DNS<sup>®</sup> Distributed Traffic Controller Administrator Guide

version 3.0

# Service and Support Information

### **Product Version**

This manual applies to version 3.0 of the 3-DNS® Controller.

# **Obtaining Technical Support**

 Web
 tech.f5.com

 Phone
 (206) 272-0888

 Fax
 (206) 272-0802

 Email (support issues)
 support@f5.com

 Email (suggestions)
 feedback@f5.com

# Contacting F5 Networks

 Web
 www.f5.com

 Toll-free phone
 (888) 88BIG-IP

 Corporate phone
 (206) 272-5555

 Fax
 (206) 272-5556

 Email
 sales@f5.com

Mailing Address 401 Elliott Avenue West

Seattle, Washington 98119

# Legal Notices

#### Copyright

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5 assumes no responsibility for the use of this information, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, copyright or other intellectual property right of F5 except as specifically described herein. F5 reserves the right to change specifications or documentation at any time without notice.

Copyright ©1999-2001, F5 Networks, Inc. All rights reserved.

#### **Trademarks**

F5, BIG-IP, and 3-DNS are registered trademarks of F5 Networks, Inc. SEE-IT, GLOBAL-SITE, EDGE-FX, and FireGuard are trademarks of F5 Networks, Inc. In Japan, F5 is trademark number 4386949 and SEE-IT is trademark number 4394516. All other product and company names are registered trademarks or trademarks of their respective holders.

#### **Export Regulation Notice**

The 3-DNS® Controller may include cryptographic software. Under the Export Administration Act, the United States government may consider it a criminal offense to export this 3-DNS® Controller from the United States.

#### **Export Warning**

This is a Class A product. In a domestic environment, this product may cause radio interference in which case the user may be required to take adequate measures.

#### FCC Compliance

This equipment generates, uses, and may emit radio frequency energy. The equipment has been type tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of FCC rules, which are designed to provide reasonable protection against such radio frequency interference.

Operation of this equipment in a residential area may cause interference in which case the user at his own expense will be required to take whatever measures may be required to correct the interference.

Any modifications to this device - unless expressly approved by the manufacturer - can void the user's authority to operate this equipment under part 15 of the FCC rules.

#### Canadian Regulatory Compliance

This class A digital apparatus complies with Canadian I CES-003.

#### Standards Compliance

The product conforms to ANSI/UL Std 1950 and Certified to CAN/CSA Std. C22.2 No. 950.

#### Acknowledgments

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed by the Computer Systems Engineering Group at the Lawrence Berkeley Laboratory.

This product includes software developed by the NetBSD Foundation, Inc. and its contributors.

This product includes software developed by Christopher G. Demetriou for the NetBSD Project.

This product includes software developed by Adam Glass.

This product includes software developed by Christian E. Hopps.

This product includes software developed by Dean Huxley.

This product includes software developed by John Kohl.

This product includes software developed by Paul Kranenburg.

This product includes software developed by Terrence R. Lambert.

This product includes software developed by Philip A. Nelson.

This product includes software developed by Herb Peyerl.

This product includes software developed by Jochen Pohl for the NetBSD Project.

This product includes software developed by Chris Provenzano.

This product includes software developed by Theo de Raadt.

This product includes software developed by David Muir Sharnoff.

This product includes software developed by SigmaSoft, Th. Lockert.

This product includes software developed for the NetBSD Project by Jason R. Thorpe.

This product includes software developed by Jason R. Thorpe for And Communications, http://www.and.com.

This product includes software developed for the NetBSD Project by Frank Van der Linden.

This product includes software developed for the NetBSD Project by John M. Vinopal.

This product includes software developed by Christos Zoulas.

This product includes software developed by Charles Hannum.

This product includes software developed by Charles Hannum, by the University of Vermont and Stage Agricultural College and Garrett A. Wollman, by William F. Jolitz, and by the University of California, Berkeley, Lawrence Berkeley Laboratory, and its contributors.

This product includes software developed by the University of Vermont and State Agricultural College and Garrett A. Wollman.

In the following statement, "This software" refers to the Mitsumi CD-ROM driver: This software was developed by Holger Veit and Brian Moore for use with "386BSD" and similar operating systems. "Similar operating systems" includes mainly non-profit oriented systems for research and education, including but not restricted to "NetBSD," "FreeBSD," "Mach" (by CMU).

In the following statement, "This software" refers to the parallel port driver: This software is a component of "386BSD" developed by William F. Jolitz, TeleMuse.

This product includes software developed by the Apache Group for use in the Apache HTTP server project

Administrator Guide iii

(http://www.apache.org/).

This product includes software developed by Darren Reed. (© 1993-1998 by Darren Reed).

This product includes software licensed from Richard H. Porter under the GNU Library General Public License (© 1998, Red Hat Software), www.gnu.org/copyleft/lgpl.html.

This product includes the standard version of Perl software licensed under the Perl Artistic License (© 1997, 1998 Tom Christiansen and Nathan Torkington). All rights reserved. You may find the most current standard version of Perl at http://www.perl.com.

This product includes software developed by Eric Young.

Portions of the material included in Appendix C came from the Internet Software Consortium. http://www.isc.org/.

Rsync was written by Andrew Tridgell and Paul Mackerras, and is available under the Gnu Public License.

This product includes Malloc library software developed by Mark Moraes. (© 1988, 1989, 1993, University of Toronto).

This product includes open SSL software developed by Eric Young (eay@cryptsoft.com), (© 1995-1998).

This product includes open SSH software developed by Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland (© 1995).

This product includes open SSH software developed by Niels Provos (© 1999).

This product includes SSH software developed by Mindbright Technology AB, Stockholm, Sweden, www.mindbright.se, info@mindbright.se (© 1998-1999).

This product includes free SSL software developed by Object Oriented Concepts, Inc., St. John's, NF, Canada / (© 2000).

This product includes software developed by Object Oriented Concepts, Inc., Billerica, MA, USA (© 2000).



# Table of Contents

# Introduction

| Getting started                                                | 1-1  |
|----------------------------------------------------------------|------|
| Choosing a configuration tool                                  | 1-1  |
| Browser support                                                | 1-3  |
| Using the Administrator Kit                                    |      |
| Stylistic conventions                                          | 1-4  |
| Finding help and technical support resources                   | I-6  |
| What is the 3-DNS Controller?                                  | 1-7  |
| Internet protocol and network management support               | I-7  |
| Security features                                              | I -8 |
| Configuration scalability                                      | 1-8  |
| System synchronization options                                 | 1-9  |
| Configuring data collection for server status and network path |      |
| data                                                           | 1-9  |
| Redundant system configurations                                | 1-10 |
| Managing traffic on a global network                           | 1-10 |
| A sample network layout                                        | 1-11 |
| Synchronizing configurations and broadcasting performance      |      |
| metrics                                                        | 1-13 |
| Using a 3-DNS Controller as a standard DNS server              | 1-13 |
| Load balancing connections across the network                  | 1-15 |
| Working with BIG-IP Controllers and other products             | 1-16 |
| What's new in version 3.0                                      | 1-18 |
| Network Map                                                    | 1-18 |
| ECV service monitors                                           | 1-18 |
| IP geolocation                                                 | 1-18 |
| EDGE-FX Cache                                                  | 1-19 |
| Dynamic delegation                                             | 1-19 |
| KBPS load balancing                                            | 1-19 |
| Limit checks for availability                                  | I-20 |
| Last resort pool                                               | I-20 |
| Prober, hops, and discovery ACLs                               | I-20 |
| Open SSH support                                               | 1-21 |
| 2                                                              |      |
| <b>4</b>                                                       |      |
| Essential Configuration Tasks                                  |      |
| Reviewing the configuration tasks                              | 2-I  |
| Essential configuration tasks                                  | 2-I  |
| Planning issues for the network setup                          | 2-I  |
| Defining data centers and servers                              |      |
| Planning sync groups                                           | 2-3  |

Administrator Guide vii

| Setting up communications between 3-DNS Controllers,              |      |
|-------------------------------------------------------------------|------|
| BIG-IP Controllers, and big3d agents                              | 2-5  |
| Planning issues for the load balancing configuration              | 2-7  |
| Using advanced traffic control features                           |      |
| Planning DNS zone file management                                 |      |
| Replacing your DNS servers with 3-DNS Controllers                 |      |
| Running 3-DNS Controllers as authoritative                        |      |
| for sub-domains only                                              | 2-12 |
| Setting up a basic configuration                                  | 2-14 |
| Setting up a data center                                          |      |
| Setting up servers                                                | 2-19 |
| Defining 3-DNS Controller servers                                 |      |
| Defining BIG-IP Controller servers                                |      |
| Defining EDGE-FX Caches                                           |      |
| Defining host servers                                             |      |
| Configuring host SNMP settings                                    |      |
| Setting up sync groups                                            |      |
| Setting the time tolerance value                                  |      |
| Configuring global variables                                      |      |
| Configuration overview                                            |      |
| Target usage                                                      |      |
| Setting up a globally distributed network configuration           | 3-2  |
| Adding data centers to the globally distributed network           |      |
| configuration                                                     | 3-3  |
| Adding 3-DNS Controllers to the globally distributed network      |      |
| configuration                                                     | 3-4  |
| Adding BIG-IP Controllers to the globally distributed network     |      |
| configuration                                                     | 3-5  |
| Adding wide IPs                                                   | 3-6  |
| Configuring topology records for the globally distributed network |      |
| configuration                                                     |      |
| Additional configuration settings and tools                       | 3-9  |
| Setting limits thresholds                                         | 3-9  |
| Other resources                                                   | 3-10 |
|                                                                   |      |
| 4                                                                 |      |
| Configuring a Content Delivery Network                            |      |
| Introducing the content delivery network                          | 4-1  |
| Using the 3-DNS Controller in a CDN                               |      |
|                                                                   |      |

|                    | CDN configuration example                                       | 4-2  |
|--------------------|-----------------------------------------------------------------|------|
|                    | Deciding to use a CDN provider                                  |      |
|                    | Setting up a CDN provider configuration                         |      |
|                    | Adding data centers                                             |      |
|                    | Adding 3-DNS Controllers                                        |      |
|                    | Adding servers                                                  |      |
|                    | Adding wide IPs and pools                                       |      |
|                    | Adding a topology statement                                     |      |
|                    | Ensuring resource availability                                  |      |
|                    | Monitoring the configuration                                    |      |
| 5                  |                                                                 |      |
| Adding 3-DN        | NS Controllers to the Network                                   |      |
| _                  | Working with more than one 3-DNS Controller                     | 5-I  |
|                    | Preparing to add a second 3-DNS Controller to your network      | 5-I  |
|                    | Installing the hardware and running the First-Time Boot utility | 5-2  |
|                    | Making the principal 3-DNS Controller aware of the additional   |      |
|                    | controller                                                      | 5-2  |
|                    | Running the 3dns_add script                                     |      |
|                    | Verifying the configuration                                     | 5-4  |
| 6                  |                                                                 |      |
| Administration     | on and Monitoring                                               |      |
| , (21111111001 401 | Monitoring and administration utilities provided on the         |      |
|                    | 3-DNS Controller                                                | 6-1  |
|                    | Working with the 3-DNS Maintenance menu                         |      |
|                    | Configuring wide IPs                                            |      |
|                    | Viewing statistics                                              |      |
|                    | Working with the big3d agent                                    |      |
|                    | Managing synchronized files                                     |      |
|                    | Working with security issues                                    |      |
|                    | Using the 3-DNS web server                                      |      |
|                    | Working with syncd                                              |      |
|                    | Configuring NTP                                                 |      |
|                    | Configuring NameSurfer                                          |      |
|                    | Changing passwords for the 3-DNS Controller                     |      |
|                    | Changing passwords and adding new user IDs for the              |      |
|                    | 3-DNS web server                                                | 6-12 |
|                    | Using the 3-DNS Console                                         | 6-13 |
|                    | Using the Network Map                                           |      |
|                    | Viewing system statistics                                       |      |

Administrator Guide ix

#### 7

# Additional Load Balancing Options

| Configuring load balancing using specialized modes                 | 7- I |
|--------------------------------------------------------------------|------|
| Setting up Quality of Service (QOS) mode                           | 7-I  |
| Understanding QOS coefficients                                     | 7-2  |
| Customizing the QOS equation                                       | 7-3  |
| Using the Dynamic Ratio option                                     | 7-6  |
| Setting up Global Availability mode                                | 7-8  |
| A Global Availability configuration example                        | 7-10 |
| Setting up load balancing for services that require multiple ports | 7-11 |
| An example configuration for e-commerce services                   | 7-13 |
| Ensuring availability for e-commerce, FTP, and other services that |      |
| use multiple ports                                                 | 7-15 |

# Glossary

# Index



# Introduction

- Getting started
- Using the Administrator Kit
- Finding help and technical support resources
- What is the 3-DNS Controller?
- Managing traffic on a global network
- What's new in version 3.0

# Getting started

The *3-DNS Controller Administrator Guide* is designed to help you quickly configure your 3-DNS Controller to manage your wide-area network traffic and DNS. The Administrator Guide contains the following chapters:

- ◆ Essential Configuration Tasks
  This chapter describes the tasks you must complete, regardless of the type of wide-area traffic management you want to configure.
- Configuring a Globally Distributed Network
   This chapter describes the tasks you complete to set up a globally distributed network.
- ◆ Configuring a Content Delivery Network
  This chapter describes the tasks you complete to set up a
  network that includes a CDN provider.
- ◆ Adding 3-DNS Controllers to the Network
  This chapter describes the tasks you complete to configure
  additional 3-DNS Controllers in a network that already contains
  one or more 3-DNS Controllers.
- Administration and Monitoring
   This chapter describes the administrative tasks you complete for the 3-DNS Controller, as well as the monitoring tools that are provided with the controller.
- Additional Load Balancing Options
   This chapter describes the specialized load balancing modes that are available on the 3-DNS Controller, such as Quality of Service.

# Choosing a configuration tool

The 3-DNS Controller provides the following web-based and command line administrative tools that make for easy setup and configuration.

#### First-Time Boot utility

The First-Time Boot utility is a wizard that walks you through the initial system setup. The utility helps you quickly define basic system settings, such as a root password and the IP addresses for the interfaces that connect the 3-DNS Controller to the network. The First-Time Boot utility also helps you configure access to the 3-DNS web server, which hosts the web-based Configuration utility, as well as the NameSurfer application that you can use for DNS zone file management.

### Configuration utility

The Configuration utility is a web-based application that you use to configure and monitor the 3-DNS Controller. Using the Configuration utility, you can define the load balancing configuration along with the network setup, including data centers, sync groups, and servers used for load balancing and path probing. In addition, you can configure advanced features such as topology settings and SNMP agents. The Configuration utility also monitors network traffic, current connections, load balancing statistics, performance metrics, and the operating system itself.

The 3-DNS web server, which hosts the Configuration utility, provides convenient access to downloads such as the SNMP MIB and documentation for third-party applications such as NameSurfer<sup>TM</sup>.

### NameSurfer application

The NameSurfer application, produced by Data Fellows, is a third-party application that automatically configures DNS zone files associated with domains handled by the 3-DNS Controller. You can use NameSurfer to configure and maintain additional DNS zone files on 3-DNS Controllers that run as master DNS servers. The Configuration utility provides direct access to the NameSurfer application, as well as the corresponding documentation for the application.

#### 3-DNS Maintenance menu

The 3-DNS Maintenance menu is a command line utility that executes scripts which assist you in configuration and administrative tasks, such as installing the latest version of the **big3d** agent on all your systems, or editing the load balancing configuration files. You can use the 3-DNS Maintenance menu directly on the 3-DNS Controller, or you can use the menu when connected to the controller using a remote shell, such as the SSH client (**ssh** is configured on crypto 3-DNS Controllers only), or a standard RSH client (if **rsh** is configured).

# Browser support

The Configuration utility, which provides web-based access to the 3-DNS Controller system configuration and features, supports the following browser versions:

- Netscape Navigator 4.5 and 4.7
- Microsoft Internet Explorer, version 4.02 or later

# Using the Administrator Kit

The 3-DNS® Controller Administrator Kit provides simple steps for quick, basic configuration, and also provides detailed information about more advanced features and tools, such as the **3dnsmaint** command line utility. The information is organized into the guides described below.

#### ◆ 3-DNS Controller Installation Guide

The Installation Guide walks you through the basic steps needed to get the hardware plugged in and the system connected to the network. Most users turn to this guide only the first time that they set up a 3-DNS Controller. The Installation Guide also covers general network administration issues, such as setting up common network administration tools including Sendmail.

#### ◆ 3-DNS Controller Administrator Guide

The Administrator Guide provides essential configuration tasks, two examples of common wide-area load balancing solutions, and monitoring and administration options.

#### ◆ 3-DNS Controller Reference Guide

The Reference Guide provides basic descriptions of individual 3-DNS Controller objects, such as wide IPs, pools, virtual servers, load balancing modes, the **big3d** agent, resource records, and production rules. It also provides syntax information for **3dnsmaint** commands, configuration utilities, configuration files, and system utilities.

## Stylistic conventions

To help you easily identify and understand certain types of information, this documentation uses the stylistic conventions described below.



All examples in this documentation use only non-routable IP addresses. When you set up the solutions we describe, you must use IP addresses suitable to your own network in place of our sample IP addresses.

### Identifying new terms

When we first define a new term, the term is shown in bold italic text. For example, a *virtual server* is a the combination of an IP address and port that maps to a set of back-end servers.

#### Identifying references to objects, names, and commands

We apply bold text to a variety of items to help you easily pick them out of a block of text. These items include web addresses, IP addresses, utility names, and portions of commands, such as variables and keywords. For example, the **nslookup** command requires that you include at least one **<ip\_address>** variable.

#### Identifying references to other documents

We use italic text to denote a reference to another document. In references where we provide the name of a book as well as a specific chapter or section in the book, we show the book name in bold, italic text, and the chapter/section name in italic text to help quickly differentiate the two. For example, you can find information about **3dnsmaint** commands in the *3dnsmaint Command Reference* section of the *3-DNS Controller Reference Guide*.

### Identifying command syntax

We show actual, complete commands in bold Courier text. Note that we do not include the corresponding screen prompt, unless the command is shown in a figure that depicts an entire command line screen. For example, the following command sets the 3-DNS Controller load balancing mode to Round Robin:

lb mode rr

Table 1.1 explains additional special conventions used in command line syntax.

| Item in text | Description                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
| \            | Continue to the next line without typing a line break.                                                                                |
| < >          | You enter text for the enclosed item. For example, if the command has <b><your< b=""> <b>name&gt;</b>, type in your name.</your<></b> |
| I            | Separates parts of a command.                                                                                                         |
| [ ]          | Syntax inside the brackets is optional.                                                                                               |
| •••          | Indicates that you can type a series of items.                                                                                        |

**Table 1.1** Command line conventions used in this manual

# Finding help and technical support resources

You can find additional technical documentation about the 3-DNS Controller in the following locations:

#### **♦** Release notes

The release note for the current version of the 3-DNS Controller is available from the home page of the Configuration utility. The release note contains the latest information for the current version including a list of new features and enhancements, a list of fixes, and a list of known issues.

#### • Online help for 3-DNS Controller features

You can find help online in three different locations:

- The Configuration utility home page has PDF versions of the guides included in the Administrator Kit. The 3-DNS Controller software upgrades replace the guides with updated versions as appropriate.
- The Configuration utility has online help for each screen. Simply click the **Help** button in the toolbar.
- Individual commands have online help, including command syntax and examples, in standard UNIX man page format.

  Type the command followed by the question mark option (-?), and the 3-DNS Controller displays the syntax and usage associated with the command.

#### **♦** Third-party documentation for software add-ons

The Configuration utility contains online documentation for the third-party software included with the 3-DNS Controller, including NameSurfer.

#### **◆** Technical support through the World Wide Web

The F5 Networks Technical Support web site, http://tech.F5.com, contains the Ask F5 knowledge base and provides the latest technical notes and updates for administrator guides (in PDF and HTML formats). To access this site you must first email askf5@f5.com and obtain a customer ID and a password.

# What is the 3-DNS Controller?

The 3-DNS Controller is a network appliance that manages and balances traffic over global networks. The 3-DNS Controller manages network traffic patterns using load balancing algorithms, topology-based routing, and production rules that control and distribute traffic according to specific policies. The system is highly configurable, and its web-based and command line configuration utilities allow for easy system setup and monitoring.

The 3-DNS Controller provides a variety of features that meet special needs. For example, with this product you can:

- Configure a content delivery network with a CDN provider
- Guarantee multiple port availability for e-commerce sites
- Provide dynamic persistence by maintaining a connection between an LDNS IP address and a virtual server in a wide IP pool
- Restrict local clients to local servers for globally-distributed sites using Topology load balancing
- Change the load balancing configuration according to current traffic patterns or time of day
- Customize load balancing modes
- Set up load balancing among BIG-IP Controllers, EDGE-FX Caches, and other load-balancing hosts
- Monitor real-time network conditions

# Internet protocol and network management support

The 3-DNS Controller supports both standard the DNS protocol and the 3-DNS Controller iQuery protocol (a protocol used for collecting dynamic load balancing information). The 3-DNS Controller also supports administrative protocols, such as Simple Network Management Protocol (SNMP), and Simple Mail Transfer Protocol (SMTP) (outbound only), for performance monitoring and notification of system events. For administrative purposes, you can use SSH (distributed only in crypto 3-DNS Controllers), RSH,

Telnet, and FTP. The Configuration utility supports HTTPS, for secure web browser connections using SSL (distributed only in crypto 3-DNS Controllers), as well as standard HTTP connections.

The 3-DNS Controller's SNMP agent allows you to monitor status and current traffic flow using popular network management tools, including the Configuration utility. The SNMP agent provides detailed data such as current connections being handled for each virtual server.

# Security features

The 3-DNS Controller offers a variety of security features that can help prevent hostile attacks on your site or equipment.

#### **♦** Secure administrative connections

crypto versions of 3-DNS Controllers support secure shell administrative connections using the Mindterm SSH console, for local administration, and open SSH for remote administration. The 3-DNS web server, which hosts the web-based Configuration utility, supports SSL connections as well as user authentication.

#### Secure iQuery communications

crypto versions of 3-DNS Controllers also support Blowfish encryption for iQuery communications between other appliances running the **big3d** agent.

#### **◆** TCP wrappers

TCP wrappers provide an extra layer of security for network connections.

# Configuration scalability

The 3-DNS Controller is a highly scalable and versatile solution. You can configure the 3-DNS Controller to manage up to several hundred domain names, including full support of domain name aliases. The 3-DNS Controller supports a variety of media options,

including Fast Ethernet, Gigabit Ethernet, and FDDI; the controller also supports multiple network interface cards that can provide redundant or alternate paths to the network.

# System synchronization options

The 3-DNS Controller sync group feature allows you to automatically synchronize configurations from one 3-DNS Controller to the other 3-DNS Controllers in the network, simplifying administrative management. The synchronization feature offers a high degree of administrative control. For example, you can set the controller to synchronize a specific configuration file set, and you can also set which 3-DNS Controllers in the network receive the synchronized information and which ones do not.

# Configuring data collection for server status and network path data

The 3-DNS Controller platform includes a **big3d** agent, which is an integral part of 3-DNS Controller load balancing. The **big3d** agent continually monitors the availability of the servers that the 3-DNS Controller load balances. It also monitors the integrity of the network paths between the servers that host the domain and the various local DNS servers that attempt to connect to the domain. The **big3d** agent runs on 3-DNS Controllers, BIG-IP Controllers, and EDGE-FX Caches distributed throughout your network. Each **big3d** agent broadcasts its collected data to all of the 3-DNS Controllers in your network, ensuring that all 3-DNS Controllers work with the latest information.

The **big3d** agent offers a variety of configuration options that allow you to choose the data collection methods you want to use. For example, you can configure the **big3d** agent to track the number of hops (intermediate system transitions) along a given network path, and you can also set the **big3d** agent to collect host server performance information using the SNMP protocol.

# Redundant system configurations

A *redundant system* is essentially a pair of 3-DNS Controller units, one operating as an active unit responding to DNS queries, and one operating as a standby unit. If the active unit fails, the standby unit takes over and begins to respond to DNS queries while the other controller reboots and becomes a standby unit.

The 3-DNS Controller actually supports two methods of checking the status of the peer system in a redundant system:

#### ♦ Hardware-based fail-over

In a redundant system that has been set up with hardware-based fail-over, the two units in the system are connected to each other directly using a fail-over cable attached to the serial ports. The standby controller checks on the status of the active controller every second using this serial link.

#### ◆ Network-based fail-over

In a redundant system that has been set up with network-based fail-over, the two units in the system communicate with each other across an Ethernet network instead of going across a dedicated fail-over serial cable. The standby controller checks on the status of the active controller every second using the Ethernet.



In a network-based fail-over configuration, the standby 3-DNS Controller immediately takes over if the active unit fails. If a client had queried the failed controller, and not received an answer, it automatically re-issues the request (after 5 seconds) and the standby unit, functioning as the active controller, responds.

# Managing traffic on a global network

This section provides a brief overview of how 3-DNS Controllers work within a global network and how they interact with BIG-IP Controllers, EDGE-FX Caches, and host machines in the network.

The section also illustrates how the 3-DNS Controller works with the **big3d** agents that run in various locations in the network, and with the LDNS servers that make DNS requests on behalf of clients connecting to the Internet.

The following sample configuration shows the 3-DNS Controllers that load balance connections for a sample Internet domain named **domain.com**.

# A sample network layout

The 3-DNS Controllers in your network sit in specific data centers, and work in conjunction with BIG-IP Controllers, EDGE-FX Caches, and host servers that also sit in your network data centers. All 3-DNS Controllers in the network can receive and respond to DNS resolution requests from the LDNS servers that clients use to connect to the domain.

Figure 1.1 illustrates the layout of the 3-DNS Controllers, the BIG-IP Controllers, and the host servers in the three data centers. The Los Angeles data center houses one 3-DNS Controller and one BIG-IP Controller, as does the New York data center. The Tokyo data center houses only one 3-DNS Controller and one host server.

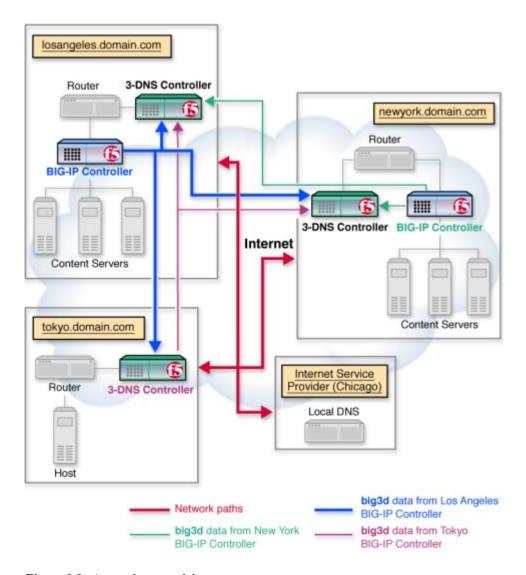



Figure 1.1 A sample network layout

In the Los Angeles and New York data centers, the **big3d** agent runs on the BIG-IP Controller, but in the Tokyo data center, the **big3d** agent runs on the 3-DNS Controller. Each **big3d** agent collects information about the network path between the data center where it is running and the client's LDNS server in Chicago, as illustrated by the red lines. Each **big3d** agent also broadcasts the network path information it collects to the 3-DNS Controllers running in each data center, as illustrated by the green, blue, and purple lines.



Each BIG-IP Controller and 3-DNS Controller in a data center typically runs a big3d agent.

# Synchronizing configurations and broadcasting performance metrics

The 3-DNS Controllers typically work in sync groups, where a group of controllers shares load balancing configuration settings. In a sync group, any controller that has new configuration changes can broadcast the changes to any other controller in the sync group, allowing for easy administrative maintenance. To distribute metrics data among the controllers in a sync group, the principal 3-DNS Controller sends requests to the **big3d** agents in the network, asking them to collect specific performance and path data. Once the **big3d** agents collect the data, they each broadcast the collected data to all controllers in the network, again allowing for simple and reliable metrics distribution.

# Using a 3-DNS Controller as a standard DNS server

When a client requests a DNS resolution for a domain name, an LDNS sends the request to the 3-DNS Controller that is authoritative for the zone. The 3-DNS Controller first chooses the best available virtual server out of a pool to respond to the request, and then returns a DNS resource record to the requesting local DNS server. The LDNS server uses the answer for the period of

time defined within the resource record. Once the answer expires, however, the LDNS server must request name resolution all over again to get a fresh answer.

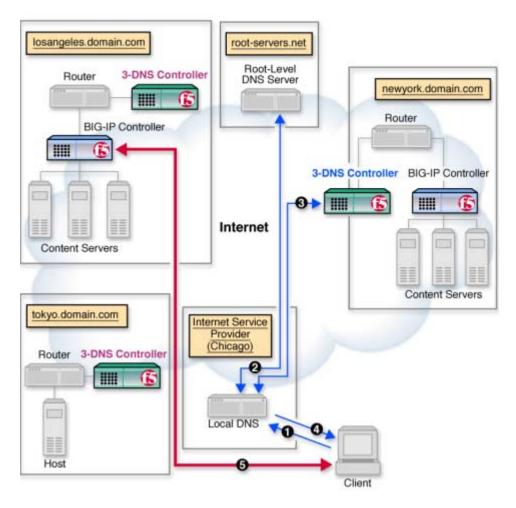



Figure 1.2 DNS name resolution process

Figure 1.2 illustrates the specific steps in the name resolution process.

- The client connects to an Internet Service Provider (ISP) and queries the local DNS server to resolve the domain name www.domain.com.
- If the information is not already in the LDNS server's
  cache, the local DNS server queries a root server (such as
  InterNIC's root servers). The root server returns the IP
  address of a DNS associated with www.domain.com,
  which in this case runs on the 3-DNS Controller.
- The LDNS then connects to the 3-DNS Controller looking to resolve the www.domain.com name. The 3-DNS Controller uses a load balancing mode to choose an appropriate server to receive the connection, and returns the server's IP address to the LDNS.
- 4. The LDNS ends the connection to the 3-DNS Controller and passes the IP address to the client.
- 5. The client connects to the IP address through an ISP.

# Load balancing connections across the network

Each of the 3-DNS Controller load balancing modes can provide efficient load balancing for any network configuration. The 3-DNS Controller bases load balancing on pools of virtual servers. When a client requests a DNS resolution, the 3-DNS Controller uses the specified load balancing mode to choose a virtual server from a pool of virtual servers. The resulting answer to this resolution request is returned as a standard **A** record.

Although some load balancing configurations can get complex, most load balancing configurations are relatively simple, whether you use a basic, static load balancing mode or an advanced, dynamic load balancing mode. More advanced configurations can incorporate multiple pools, as well as advanced traffic control features, such as topology or production rules.

For more information on specific load balancing modes, see *Load Balancing* in the Reference Guide. For more information on load balancing configurations, review the sample configurations in Chapter 3, *Configuring a Globally-Distributed Network*, and Chapter 4, *Configuring a Content Delivery Network*. If you are unfamiliar with the 3-DNS Controller, you may also want to review Chapter 2, *Essential Configuration Tasks*.

# Working with BIG-IP Controllers and other products

The 3-DNS Controller balances connections across a group of virtual servers that run in different data centers throughout the network. You can manage virtual servers from the following types of products:

#### **♦ BIG-IP Controllers**

A BIG-IP Controller virtual server maps to a series of content servers.

#### **◆ EDGE-FX Caches**

An EDGE-FX Cache virtual server maps to cached content that gets refreshed at frequent intervals.

#### **♦** Generic hosts

A host virtual server can be an IP address or an IP alias that hosts the content.

#### Other load balancing hosts

Other load balancing hosts map virtual servers to a series of content hosts.

Figure 1.3 illustrates the hierarchy of how the 3-DNS Controller manages virtual servers.

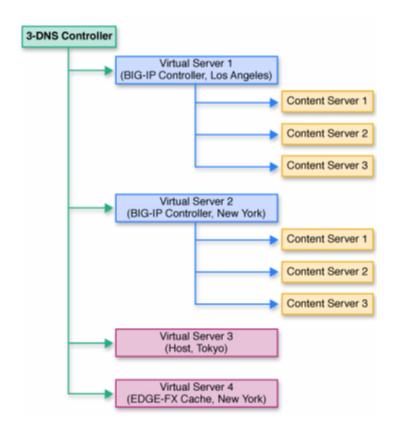



Figure 1.3 3-DNS Controller load balancing management

### Comparing 3-DNS Controllers and BIG-IP Controllers

While both controllers provide load balancing, one of the significant differences between the 3-DNS Controller and the BIG-IP Controller is that the 3-DNS Controller responds to DNS requests issued by an LDNS on behalf of a client, while the BIG-IP Controller provides connection management between a client and a back-end server.

Once the 3-DNS Controller returns a DNS answer to an LDNS, the conversation between the LDNS and the 3-DNS Controller ends, and the client connects to the IP address returned by the 3-DNS Controller. Unlike the 3-DNS Controller, the BIG-IP Controller sits between the client and the content servers. It manages the client's entire conversation with the content server.

# What's new in version 3.0

The 3-DNS Controller offers the following major new features in version 3.0, in addition to many other enhancements.

# Network Map

The Network Map allows you to see your physical and logical network configurations side-by-side, using an illustrative tree. For more information on using the Network Map, see Chapter 6, *Network Map*, in the *3-DNS Controller Reference Guide*.

### **ECV** service monitors

With extended content verification (ECV) service monitors, you can not only monitor the availability of a port or service on a server, but also monitor the availability of content or other items hosted by that server. For more information on using ECV health checks, see Chapter 4, *Extended Content Verification*, in the *3-DNS Controller Reference Guide*.

# IP geolocation

With the IP geolocation classifier, you can set up topology records that load balance name resolution requests to the geographically closest virtual server. You can perform topology-based load balancing among wide IP pools or within a pool. The classification feature is accurate to the **country** level and is available on 3-DNS

Controllers that support encrypted communications. For more information on using the IP geolocation classifier and topology load balancing, see Chapter 3, *Configuring a Globally-Distributed Network*.

#### **EDGE-FX Cache**

The 3-DNS Controller now supports the F5 Networks EDGE-FX Cache as a server type. In general, you place an EDGE-FX Cache at any location in your network where caching ability saves bandwidth and increases the quality of service to your end users. You can use the 3-DNS Controller to manage traffic to the EDGE-FX Caches in your network. For more information on using the EDGE-FX Cache with your 3-DNS Controller, see Chapter 2, *Essential Configuration Tasks*.

# Dynamic delegation

You can now use dynamic delegation to redirect name resolution requests to third-party DNS servers by designating a pool type **CDN**. You can also use dynamic delegation to distribute DNS resolutions between an origin site and a content delivery network (CDN). For more information on using dynamic delegation, see Chapter 4, *Configuring a Content Delivery Network*.

# KBPS load balancing

A new load balancing mode, kilobytes per second (KBPS), is now available for wide IPs, BIG-IP Controllers, and hosts. This mode allows you to set up load balancing based on virtual server throughput, in kilobytes per second. You can configure KBPS as a load balancing mode for pools, and you can also configure the KBPS factor in Quality of Service (QOS) load balancing. For more information on using KBPS load balancing, see Chapter 5, Load Balancing, in the 3-DNS Controller Reference Guide.

# Limit checks for availability

When you set limit checks for availability, the 3-DNS Controller can detect when a managed server or virtual server is low on system resources, such as CPU, disk, memory, or network bandwidth, and redirect the traffic to another virtual server. Setting limits thresholds helps eliminate any negative impact on a virtual server's performance of service tasks that may be time critical, require high bandwidth, or put high demand on system resources. You can set limits thresholds for the following objects: BIG-IP Controllers, EDGE-FX Caches, hosts, virtual servers, and pools. For more information on using limits thresholds, see Chapter 3, *Configuring a Globally-Distributed Network*.

### Last resort pool

The wide IP pool that you designate as the last resort pool, in the Configure Load Balancing for New Pool screen, is the virtual server pool that the 3-DNS Controller uses when all other pools have reached their thresholds or are unavailable for any reason. When your network includes cache appliances hosting content from an origin site, you can designate the origin site as the last resort pool to handle requests when your cache virtual servers have reached their thresholds. You can also use the last resort pool to designate an overflow network so your origin servers remain available if network traffic spikes. For more information on using a last resort pool, see Chapter 5, Load Balancing, in the 3-DNS Controller Reference Guide.

# Prober, hops, and discovery ACLs

You can now define prober, hops, and discovery access control lists (ACLs) based on CIDR definitions. This allows you to block probing for members of the ACL when you are using dynamic, Round Trip Time (RTT) probing on the 3-DNS Controller. For more information on defining prober, hops, and discovery access control lists, see Chapter 2, *Access Control Lists*, in the *3-DNS Controller Reference Guide*.

### Open SSH support

The SSH client has been upgraded to Mindbright's Mindterm SSH console. With the Mindterm SSH console, you can administer the 3-DNS Controller using the command line from a remote workstation. For more information on Mindterm, visit the Mindbright website at http://www.mindbright.se/mindterm.



The 3-DNS Controllers distributed outside of the United States to a select few countries, regardless of system type, do not support encrypted communications. They do not include the Mindterm SSH client, nor do they support SSL connections to the 3-DNS web server. Instead, you can use the standard Telnet, FTP, and HTTP protocols to connect to the unit and perform administrative functions.



## Essential Configuration Tasks

- Reviewing the configuration tasks
- Planning issues for the network setup
- Planning issues for the load balancing configuration
- Using advanced traffic control features
- Planning DNS zone file management
- Setting up a basic configuration
- Setting up a data center
- Setting up servers
- Setting up sync groups
- Configuring global variables

## Reviewing the configuration tasks

Once you have completed the First-Time Boot utility, you set up the network and load balancing aspects of the 3-DNS Controller. The 3-DNS Controller has three essential configuration tasks that all users must complete, regardless of the chosen load balancing solution.

### Essential configuration tasks

The 3-DNS Controller has three essential configuration tasks that must be completed, regardless of the type of configuration you are setting up:

- Configure the physical aspects of your load balancing network, which includes the following
  - · Data centers
  - Servers and virtual servers
  - Communications between the controller and other servers
  - 3-DNS Controller synchronization (if you have more than one in your network)
- Configure the logical aspects of your load balancing network, including wide IPs and pools
- Configure the global load balancing mode and global variables

## Planning issues for the network setup

After you finish running the First-Time Boot utility, and connect each controller to the network, you can set up the network and load balancing configuration on one controller, and let the sync group feature automatically broadcast the configuration to the other controllers in the network. You do not have to configure the 3-DNS Controllers individually, unless you are planning an

advanced configuration that requires different configurations for different data centers, or you are configuring the 3-DNS Controllers using the command line utility.



If you are configuring additional controllers in a network that already has 3-DNS Controllers in it, please review Chapter 5, Adding 3-DNS Controllers to the Network.

During the network setup phase, you define three basic aspects of the network layout, in the following order:

#### Data centers

**Data centers** are the physical locations that house the equipment you use for load balancing.

#### Servers

The servers you define in the network setup include only the 3-DNS Controllers, BIG-IP Controllers, EDGE-FX Caches, and host machines that you use for load balancing.

#### Sync group

A *sync group* defines the group of 3-DNS Controllers that shares configuration settings and path data.



During the network setup phase of configuration, we recommend that you connect to the 3-DNS Controller from a remote workstation where you can complete the remaining configuration tasks using the web-based Configuration utility.

### Defining data centers and servers

It is important that you define all of your data centers before you begin defining servers because when you define a server, you specify the data center where the server runs. You do this by choosing a data center from the list of data centers you have already defined. To define a data center, you need only specify the data center name. To define a server, however, you need to specify the following items:

- Server type (3-DNS Controller, BIG-IP Controller, EDGE-FX Cache, or host)
- Server IP address (or shared IP alias for redundant systems)
- Name of the data center where the server runs
- **big3d** agent factories (BIG-IP Controllers, 3-DNS Controllers and EDGE-FX Caches only)
- Virtual servers managed by the server (BIG-IP Controllers, EDGE-FX Caches, and hosts only)
- SNMP host probing settings (hosts only)



One important aspect of planning data centers and servers is to decide how to set up the big3d agent, and which ports you need to open for communications between the controllers in your network. See Chapter 3, big3d Agent, in the 3-DNS Controller Reference Guide, for help with determining how both of these issues affect your installation.

### Planning sync groups

A *sync group* is a group of 3-DNS Controllers that share information. In a sync group, a *principal* 3-DNS Controller issues requests to the **big3d** agents to gather metrics data. Both the principal controller and the *receiver* 3-DNS Controllers in the group receive broadcasts of metrics data from the **big3d** agents. All controllers in the group also receive broadcasts of updated configuration settings from the 3-DNS Controller that has the latest configuration changes.

When you define the sync group, select 3-DNS Controllers from the list of servers you have already defined. The sync group lists the controllers in the order in which you selected them. The first controller in the list is the principal 3-DNS Controller. The remaining controllers in the list are receiver 3-DNS Controllers. If the principal controller becomes disabled, the next controller in the list becomes the principal 3-DNS Controller until the original principal controller comes back online.

#### Understanding how sync groups work

The sync group feature synchronizes individual configuration files, such as **wideip.conf** and other files that store system settings. You have the option of adding files to the synchronization list.

The controllers in a sync group operate as peer servers. At set intervals, the **syncd** daemon compares the timestamps of the configuration files earmarked for synchronization on all of the controllers. If the timestamp on a specific file differs between controllers, the controller with the latest file broadcasts the file to all of the other controllers in the group.

#### Understanding how the time tolerance variable affects sync groups

The time tolerance value is a global variable that defines the number of seconds that one 3-DNS Controller's time setting is allowed to be out of sync with another 3-DNS Controller's time setting. If the difference between the times on the controllers is greater than the time tolerance, the time setting on the controller running behind is reset to match the controller with the most recent time. For example, if the time tolerance is 5 seconds, and one 3-DNS Controller is running 10 seconds ahead of the other, the controller running behind has its time reset to match the one running 10 seconds ahead. If the second controller was running only 2 seconds ahead of the other, the time settings would remain unchanged. The values are 0, 5, and higher (values of 1-4 are automatically set to 5, and 0 turns off time syncing). The default setting is 10 seconds.

The time setting on 3-DNS Controllers is important because a 3-DNS Controller compares time stamps on files when deciding whether to synchronize files with other 3-DNS Controllers in the sync group.

# Setting up communications between 3-DNS Controllers, BIG-IP Controllers, and big3d agents

There are three different communication issues that you need to resolve when you set up communication between the controllers running in your network:

#### 3-DNS Controllers communicating with other 3-DNS Controllers

To allow 3-DNS Controllers to communicate with each other, you must set up **ssh** and **scp** tools for crypto controllers (that use SSH and SCP) that communicate with other crypto controllers, and you must set up **rsh** and **rcp** tools for controllers that communicate with non-crypto controllers (that do not use SSH and SCP).

#### 3-DNS Controllers communicating with BIG-IP Controllers and EDGE-FX Caches

To allow 3-DNS Controllers to communicate with BIG-IP Controllers and EDGE-FX Caches, you address the same **ssh** and **rsh** issues. Crypto controllers communicating with other crypto controllers can use **ssh** and **scp** tools, but controllers communicating with non-crypto controllers require **rsh** and **rcp** tools.

◆ 3-DNS Controllers communicating with big3d agents
To allow communications between big3d agents and the 3-DNS
Controller, you need to configure iQuery ports on both the
3-DNS Controllers and the BIG-IP Controllers that run the
big3d agent.



Enabling **rsh** and **rcp** does not prevent crypto 3-DNS Controllers from using encryption when they communicate with other crypto 3-DNS Controllers, BIG-IP Controllers, or EDGE-FX Caches.

#### Setting up communication between crypto and non-crypto controllers

The 3-DNS Controllers need to communicate with each other in order to synchronize configuration and performance data. If you use exclusively crypto 3-DNS Controllers (those that use **ssh** and **scp**), or exclusively non-crypto 3-DNS Controllers (those that do not use **ssh** and **scp**), the communication tools set up by the First-Time Boot utility are all you need. Crypto controllers all use **ssh** and **scp**, and non-crypto controllers all use **rsh** and **rcp**.

If you work in a mixed environment where some 3-DNS Controllers are crypto, and other 3-DNS Controllers are non-crypto, you need to enable the **rsh** and **rcp** tools on the crypto 3-DNS Controllers. Though the **rsh** and **rcp** tools come pre-installed on the crypto 3-DNS Controllers, you must explicitly enable these tools on the crypto 3-DNS Controllers. You can easily do this by running the **rsetup** script or the **config\_rshd** script from the command line, or you can enable the tools when you run the First-Time Boot utility. Table 2.1 shows the ports and protocols that 3-DNS Controllers use to communicate with each other.

| From                           | То                             | Protocol | From<br>Port | To<br>Port | Purpose |
|--------------------------------|--------------------------------|----------|--------------|------------|---------|
| Crypto 3-DNS<br>Controller     | Crypto 3-DNS<br>Controller     | TCP      | <1023        | 22         | SSH/SCP |
| Non-crypto<br>3-DNS Controller | Non-crypto<br>3-DNS Controller | TCP      | >1024        | 514        | RSH/RCP |
| Crypto 3-DNS<br>Controller     | Non-crypto<br>3-DNS Controller | TCP      | >1024        | 514        | RSH/RCP |
| Non-crypto<br>3-DNS Controller | Crypto 3-DNS<br>Controller     | TCP      | >1024        | 514        | RSH/RCP |

 Table 2.1 Communications between 3-DNS Controllers

#### Setting up data collection with the big3d agent

The **big3d** agent collects performance information from other 3-DNS Controllers, BIG-IP Controllers, and EDGE-FX Caches, on behalf of the 3-DNS Controller you are configuring. The 3-DNS Controller then uses this performance data for load balancing. The **big3d** agent uses factories to manage the data collection. For detailed information on configuring the **big3d** agent, and managing the factories, opening the UDP ports, and working with firewalls, please review Chapter 3, *big3d Agent*, in the *3-DNS Controller Reference Guide*.

# Planning issues for the load balancing configuration

The final phase of installing 3-DNS Controllers is setting up the load balancing configuration. Load balancing configurations are based on pools of virtual servers. When the 3-DNS Controller receives a connection request, it uses a load balancing mode to determine which virtual server in a given pool should receive the connection. The virtual servers in the pool can be the virtual servers managed by BIG-IP Controllers, virtual servers managed by EDGE-FX Caches, virtual servers managed by a generic host servers, or they can be individual host servers themselves. Note that the 3-DNS Controller continuously verifies which virtual servers in the pool are currently available to accept load balanced connections.

Simple configurations typically use a single pool of virtual servers and a load balancing mode that does not require significant additional configuration steps, such as Round Robin or Hops. More advanced load balancing configurations can use multiple pools, customized load balancing modes, and other advanced traffic control features, such as topology load balancing and production rules.

We have included two popular 3-DNS Controller configurations in this Administrator Guide; please review Chapter 3, *Configuring a Globally-Distributed Network*, and Chapter 4, *Configuring a Content Delivery Network*. For additional details about advanced load balancing features, please refer to Chapter 7, *Additional Load Balancing Options*.

## Using advanced traffic control features

The 3-DNS Controller offers two advanced features that you can configure to further control the distribution and flow of network traffic.

#### ◆ Topology load balancing

With topology-based load balancing, you can direct client requests to virtual servers in the geographically closest data center. You can set up topology load balancing between pools, or within a pool. For details about working with topology-based features, see Chapter 3, *Configuring a Globally-Distributed Network*, and Chapter 11, *Topology*, in the *3-DNS Controller Reference Guide*.

#### Production rules

Production rules are a policy-based management feature that you can use to dynamically change the load balancing configuration and the system settings based on specific triggers, such as the time of day, or the current network traffic flow. You can set up standard production rules using the Configuration utility, or you can define custom production rules using the production rules scripting language. Refer to Chapter 7, *Production Rules*, in the *3-DNS Controller Reference Guide*, for information about setting up production rules.

## Planning DNS zone file management

An important part of installing 3-DNS Controllers in your network is planning which server should be authoritative for a given DNS zone. When you initially set up a 3-DNS Controller in your network, you have two basic options for setting up DNS zone file management:

- You can use the 3-DNS Controller as authoritative for your domain.
- You can use an existing authoritative DNS for your domain, and make the 3-DNS Controller authoritative your sub-domains (defined as wide IPs).

The 3-DNS Controller must always be authoritative for your wide IP sub-domains, regardless of which server is the authoritative DNS for the network. However, we strongly recommend that you set up the 3-DNS Controller as authoritative for your domain.

One major benefit of setting up the 3-DNS Controller to be authoritative for your domain is that you can easily manage DNS zone files using NameSurfer, a browser-based, third-party application included on the 3-DNS Controller. With NameSurfer, you can also easily transfer your existing zone files to the 3-DNS Controller after the initial installation.

When you define wide IPs in the Configuration utility, the NameSurfer application automatically makes the appropriate additions to the zone files, and broadcasts the new zone files to the other DNS servers in your network. If you configure wide IPs manually, however, you need to make the corresponding zone file changes manually.

If you use the advanced synchronization features of the 3-DNS Controller, we strongly recommend that you configure each 3-DNS Controller to run as authoritative for the domain. This type of configuration offers the following advantages:

 You can change zone files on any one of the 3-DNS Controllers in the network and have those changes automatically broadcast to all of the other controllers in the network.

- Each 3-DNS Controller has the most up-to-date zone files, providing you one or more layers of redundancy.
- The NameSurfer application automatically controls the addition, configuration, and deletion of zone files.

### Replacing your DNS servers with 3-DNS Controllers

Figure 2.1 shows an implementation where both 3-DNS Controllers in the network are authoritative for the domain, **domain.com**.

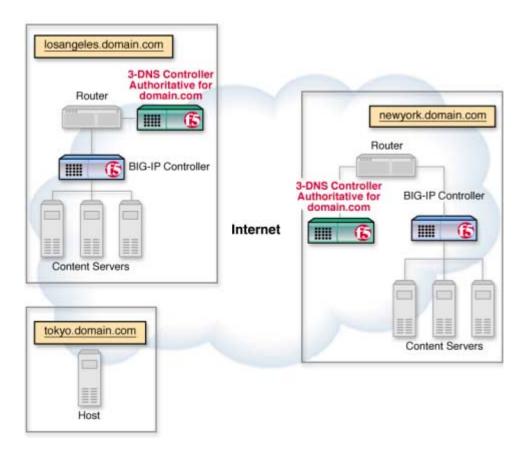



Figure 2.1 Using 3-DNS Controllers as authoritative DNS servers

#### Converting existing BIND files during an initial installation

After you initially install the 3-DNS Controller, you need to transfer existing BIND files, and then convert them to the NameSurfer format.

The first option for importing your existing BIND files is to transfer your zone files from your current name server to NameSurfer. After configuring NameSurfer during the First-Time Boot utility and connecting to the Configuration utility, use the

**Copy from other name server** option in NameSurfer. For more information, refer to the NameSurfer documentation available from the splash screen in the Configuration utility.

The second option for converting your existing BIND files is to skip the NameSurfer configuration when you run the First-Time Boot utility. You transfer the zone files and **named.conf** file after the system has rebooted, and then run the **config\_namesurfer** script that configures, converts, and starts the NameSurfer application.



We recommend that you transfer your existing zone files using NameSurfer during the First-Time Boot utility. If you choose to transfer your existing zone files using the config\_namesurfer script, please consult with your vendor first.

# Running 3-DNS Controllers as authoritative for sub-domains only

At a minimum, all 3-DNS Controllers must be authoritative for the zones associated with wide IP definitions. When you set up a configuration where the 3-DNS Controllers are authoritative for only those sub-domains, you need to make a few changes to the zone files on the DNS server that is authoritative for the domain, after you configure the 3-DNS Controller.

Figure 2.2 shows an example where both 3-DNS Controllers are authoritative for the wide IP sub-domain, **wip.domain.com**, and a generic name server in the Tokyo data center is authoritative for the domain, **domain.com**.

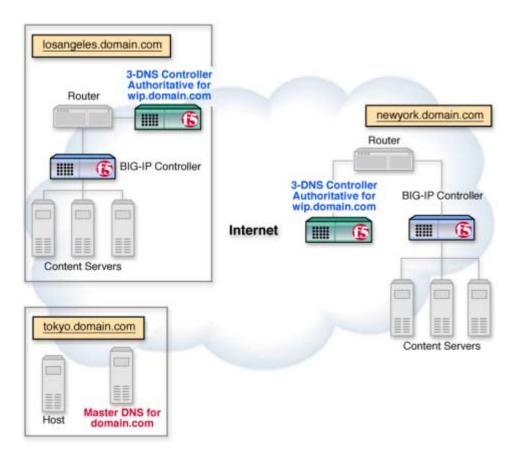



Figure 2.2 Using 3-DNS Controllers as authoritative DNS servers for sub-domains

Note that you should still set NameSurfer to be authoritative during the First-Time Boot utility for initial installations, or during the NameSurfer configuration script for upgrade installations. Remember that NameSurfer is authoritative for the zone files on the 3-DNS Controller, but in this configuration, the zone files contain only those records associated with wide IPs configured on the 3-DNS Controller. When you configure wide IPs in the Configuration utility, the NameSurfer application automatically

updates the corresponding sub-domain zones and broadcasts them to the other DNS servers in the network. For configurations where synchronization is enabled, changes to any NameSurfer files are automatically updated to the other 3-DNS Controllers.

## Setting up a basic configuration

The second phase of installing 3-DNS Controllers is to define the network setup. Each 3-DNS Controller in the network setup must have information regarding which data center stores specific servers, and with which other 3-DNS Controllers it can share configuration and load balancing information. A basic network setup includes data centers, servers, and one sync group. Once you have the basic network components configured on your 3-DNS Controller, you can set up the wide IPs you need for managing your load balancing. We recommend that you review the load balancing scenarios in the remaining chapters of this guide before you configure the wide IPs.

The following sections describe the various elements of a basic network:

#### Data centers

Data centers are the top level of your network setup. We recommend that you configure one data center for each physical location in your global network. The data center element of your configuration defines the servers (3-DNS Controllers, BIG-IP Controllers, EDGE-FX Caches, and hosts) that reside at that location.

A data center can contain any type of server. For example, in Figure 2.3, the Tokyo data center contains a 3-DNS Controller and a host, while the New York and Los Angeles data centers contain 3-DNS Controllers and BIG-IP Controllers.

For information about configuring data centers, see *Setting up a data center*, on page 2-16.

#### **♦** Servers

The servers that you define in the network setup include 3-DNS Controllers, BIG-IP Controllers, EDGE-FX Caches, and host machines. You define the 3-DNS Controllers that manage the BIG-IP Controllers, EDGE-FX Caches, and hosts, and you also define the virtual servers that are managed by the servers. Virtual servers are the ultimate destination for connection requests.

For information about configuring servers, see *Setting up servers*, on page 2-19.

#### ♦ Sync groups

Sync groups contain only 3-DNS Controllers. When setting up a sync group, you define which 3-DNS Controllers have the same configuration. In most cases, you should define all 3-DNS Controllers as part of the same sync group.

For information about configuring sync groups, see *Setting up sync groups*, on page 2-35.

#### Wide IPs

After you define virtual servers for your BIG-IP Controllers and hosts, you need to specify how connections are distributed among the virtual servers by defining wide IPs. A wide IP maps a domain name to a pool of virtual servers, and it specifies the load balancing modes that the 3-DNS Controller uses to choose a virtual server from the pool.

When an LDNS requests a connection to a specific domain name, the wide IP definition specifies which virtual servers are eligible to answer the request, and which load balancing modes to use in choosing a virtual server to resolve the request.

For information about configuring wide IPs and choosing load balancing modes, please refer to Chapter 5, *Load Balancing*, in the *3-DNS Controller Reference Guide*.

#### Global variables

You can configure global variables that apply to all servers and wide IPs in your network. However, the default values of the global variables work well for most situations, so configuring

global variables is optional.

For information about configuring global variables, see *Configuring global variables*, on page 2-38.

## Setting up a data center

The first step in configuring your 3-DNS Controller network is to create data centers. A *data center* defines the group of 3-DNS Controllers, BIG-IP Controllers, EDGE-FX Caches, and hosts that reside in a single physical location. Figure 2.3 shows an example of a data center.

The advantage of grouping all machines from a single physical location into one data center in the configuration is to allow path information collected by one machine to be shared with all other machines in the data center. The 3-DNS Controller uses the **big3d** agent to collect path and metrics information about the other machines, and their virtual servers, in the data center. The 3-DNS Controller then applies path metrics results to all the virtual servers in the data center when making load balancing decisions.

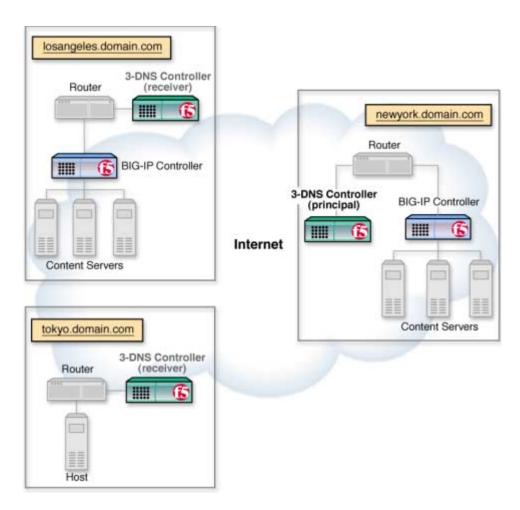



Figure 2.3 Example data center setup

#### To configure a data center using the Configuration utility

- 1. In the navigation pane, click **Data Centers**.
- 2. On the toolbar, click **Add Data Center**. The Add New Data Center screen opens.

- Add the new data center settings. For help on defining data centers, click **Help** on the toolbar.
   The data center is added to your configuration.
- 4. Repeat this process for each data center in your network.

When you add servers to the network setup, you assign the servers to the appropriate data centers.

#### To configure a data center using the command line utility

- At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.
- Select Edit 3-DNS Configuration to open the wideip.conf file.

The **editor** variable determines whether this command starts **vi** or **pico**.

- 3. Locate or add the **datacenter** statement.
  - The **datacenter** statement should be the second statement in the file, after the **globals** statement and before **server** statements.
- 4. In the first line of the **datacenter** statement, type a name for the data center and enclose the name in quotation marks, as shown in Figure 2.4.
- 5. Type the server type and IP address for each server that is part of the specified data center.
  - Figure 2.4 shows the correct syntax for the **datacenter** statement.

```
datacenter {
  name <"data center name">
  [ location <"location info"> ]
  [ contact <"contact info"> ]
  [ 3dns <IP address> ]
  [ bigip <IP address> ]
  [ edge_fx <IP address> ]
  [ host <IP address> ]
}
```

Figure 2.4 Syntax for the datacenter statement

Repeat the preceding procedure until you have added a separate **datacenter** statement for each data center in your network.

Figure 2.5 shows a sample **datacenter** statement.

```
datacenter {
  name "New York"
  location "NYC"
  contact "3DNS_Admin"
  3dns 192.168.101.2
  bigip 192.168.101.40
  host 192.168.105.40
}
```

Figure 2.5 Sample data center definition

## Setting up servers

There are four types of servers: 3-DNS Controllers, BIG-IP Controllers, EDGE-FX Caches, and hosts. At the minimum, your network includes one 3-DNS Controller, and at least one server (BIG-IP Controller, EDGE-FX Cache, or host) that it manages.

This section describes how to set up each 3-DNS Controller, BIG-IP Controller, EDGE-FX Cache, and host machine that make up your network. The setup procedures here assume that the BIG-IP Controllers, EDGE-FX Caches, and hosts are up and running, and that they already have virtual servers defined. Note that 3-DNS Controllers do not manage virtual servers.

### Defining 3-DNS Controller servers

The purpose of defining a 3-DNS Controller server is to establish in which data center the 3-DNS Controller resides and, if necessary, to change **big3d** agent settings. In setting up a 3-DNS Controller server, you also make that 3-DNS Controller available so you can add it to a sync group.



Please review Chapter 5, Adding 3-DNS Controllers to the Network, if you are configuring more than one 3-DNS Controller in your network.

## To define a 3-DNS Controller server using the Configuration utility

- In the navigation pane, expand the Servers item, then click 3-DNS Controllers.
- 2. On the toolbar, click **Add 3-DNS Controller**. The Add New 3-DNS Controller screen opens.
- 3. Add the new 3-DNS Controller settings. For help on defining 3-DNS Controllers, click **Help** on the toolbar.

The 3-DNS Controller is added to your configuration. Repeat this procedure for each 3-DNS Controller you need to add.

## To define a 3-DNS Controller server using the command line utility

 At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.

- 2. On the 3-DNS Maintenance menu, select **Edit 3-DNS Configuration** to open the **wideip.conf** file.
- 3. Use the syntax shown in Figure 2.6 to define a 3-DNS Controller.

All **server** statements should appear after the **sync\_group** statement and before **wideip** statements.

```
server {
 type 3dns
 address <IP address>
 name <"3dns_name">
 iquery_protocol [ udp | tcp ]
  [ remote {
   secure <yes | no>
   user <"user name">
   } ]
  [ interface {
   address <NIC IP address>
   address <NIC IP address>
   } ]
  [ factories {
   prober <number>
   discovery <number>
   snmp <number>
   hops <number>
   } ]
  [ prober <IP address> ]
 probe_protocol < icmp | udp | tcp | dns_rev | dns_dot>
 port <port to probe>
```

Figure 2.6 Syntax for defining a 3-DNS Controller server

Figure 2.7 shows a sample **server** statement that defines a 3-DNS Controller.

```
// New York
server {
   type 3dns
   address 192.168.101.2
   name "3dns-newyork"
   iquery_protocol udp
   remote {
      secure yes
      user "root"
   }
   prober 192.168.101.40
   probe_protocol dns_rev
   port 53
}
```

Figure 2.7 Sample 3-DNS Controller server definition

### Defining BIG-IP Controller servers

Before you define BIG-IP Controller servers, you should have the following information:

- The IP address and service name or port number of each virtual server to be managed by the BIG-IP Controller
- The IP address of the server itself

## To define a BIG-IP Controller server using the Configuration utility

- 1. In the navigation pane, expand the **Servers** item, and then click **BIG-IP Controllers**.
- On the toolbar, click Add BIG-IP Controller. The Add New BIG-IP Controller screen opens.
- Add the new BIG-IP Controller settings. (For help on defining BIG-IP Controllers, click **Help** on the toolbar.) The BIG-IP Controller and specified virtual server are added to your configuration.

## To add more virtual servers using the Configuration utility

- In the navigation pane, expand the Servers item, and then click BIG-IP Controllers.
- 2. In the table, find the BIG-IP Controller that you just added.
- 3. Click the entry in its **BIG-IP Virtual Servers** column.
- On the toolbar, click Add Virtual Server.
   The Add Virtual Server to BIG-IP screen opens.
- 5. Add the new virtual server settings. For help on adding virtual servers, click **Help** on the toolbar.

Repeat this process for each virtual server you want to add to this BIG-IP Controller.

## To define a BIG-IP Controller server using the command line utility

- At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.
- On the 3-DNS Maintenance menu, select Edit 3-DNS Configuration to open the wideip.conf file.
- Use the syntax shown in Figure 2.8 to define a BIG-IP Controller.

All **server** statements should appear after the **sync\_group** statement and before **wideip** statements.

If you need to allow iQuery packets to pass through firewalls, include the **translate** keyword in the **server** statement that defines the BIG-IP Controller. When you include the **translate** keyword, the iQuery utility includes translated IP addresses in the packets sent to the specific BIG-IP Controller. For more information on configuring the **big3d** agent and iQuery, see Chapter 3, *big3d Agent*, of the *3-DNS Controller Reference Guide*.

```
server {
 type bigip
 address <IP address>
 name <"bigip_name">
 iquery_protocol [ udp | tcp ]
 limit {
  [ kbytes_per_second <number>
   packets_per_second <number>
   disk_avail <number>
   cpu_usage <number>
   memory_avail <number>
   current_connections <number> ]
  }
  [ remote {
   secure <yes | no>
   user <"user name">
    } ]
  [ interface {
   address <NIC IP address>
   address <NIC IP address>
  [ factories {
   prober <number>
   discovery <number>
   snmp <number>
   hops <number>
    } ]
 vs {
   address <virtual server IP address>
   port <port number> | service <"service name">
    [ translate {
       address <IP address>
       port <port number>|service <"service name">
     } ]
   }
```

Figure 2.8 Syntax for defining a BIG-IP Controller server

Figure 2.9 shows a sample **server** statement that defines a BIG-IP Controller.

```
server {
  type bigip address 192.168.101.40 name "bigip-newyork"
  iquery_protocol udp
  remote {
     secure yes
user "administrator"
  # Tell 3-DNS about the 2 interfaces on a BIG-IP HA
  interface {
     address 192.168.101.41 address 192.168.101.42
  # Change the number of factories doing the work at big3d
  factories {
     prober
     discovery 1
     snmp 1
     hops
               2
  }
  vs {
     address 192.168.101.50
     service
                    "http"
     }
  vs {
     address 192.168.101.50:25 // smtp translate {
        address 10.0.0.50:25
```

Figure 2.9 Sample BIG-IP Controller server definition

### **Defining EDGE-FX Caches**

Before you define EDGE-FX Cache servers, you should have the following information:

- The IP address and service name or port number of each virtual server to be managed by the EDGE-FX Cache
- The IP address of the cache itself

## To define an EDGE-FX Cache server using the Configuration utility

- In the navigation pane, expand the Servers item, then click EDGE-FX Caches.
- 2. On the toolbar, click **Add EDGE-FX Cache**. The Add New EDGE-FX Cache screen opens.
- Add the new EDGE-FX Cache settings. (For help on defining an EDGE-FX Cache, click **Help** on the toolbar.) The EDGE-FX Cache and specified virtual server are added to your configuration.

## To add more virtual servers using the Configuration utility

- In the navigation pane, click Servers, then click EDGE-FX Caches.
- 2. In the table, find the EDGE-FX Cache that you just added.
- 3. Click the entry in its **EDGE-FX Virtual Servers** column.
- 4. On the toolbar, click **Add Virtual Server**.

  The Add Virtual Server to EDGE-FX screen opens.
- 5. Add the new virtual server settings. For help on adding virtual servers, click **Help** on the toolbar.

Repeat this process for each virtual server you want to add to this EDGE-FX Cache.

## To define an EDGE-FX Cache server using the command line utility

- At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.
- On the 3-DNS Maintenance menu, select Edit 3-DNS Configuration to open the wideip.conf file.
- 3. Use the syntax shown in Figure 2.10 to define a EDGE-FX Cache.

```
server {
type edge_fx
address <IP address>
name < "edge_name">
iquery_protocol [ udp | tcp ]
limit {
[ kbytes_per_sec <number>
 pkts_per_sec <number>
 current_conns <number>
 [ remote {
secure <yes | no>
user <"user name">
}]
[ interface {
address <NIC IP address>
address <NIC IP address>
}]
[ factories {
prober <number>
discovery < number>
snmp <number>
hops <number>
}]
vs {
address <virtual server IP address>
port <port number> | service <"service name">
```

Figure 2.10 Syntax for defining an EDGE-FX Cache server

In the **wideip.conf** file, all **server** statements should appear after the **sync\_group** statement and before **wideip** statements.

If you need to allow iQuery packets to pass through firewalls, include the **translate** keyword in the **server** statement that defines the EDGE-FX Cache. When you include the **translate** keyword, the iQuery utility includes translated IP addresses in the packets sent to the specific EDGE-FX Cache. For more information on configuring the **big3d** agent and iQuery, see Chapter 3, *big3d Agent*, of the *3-DNS Controller Reference Guide*.

Figure 2.11 shows a sample **server** statement that defines an EDGE-FX Cache.

Figure 2.11 Sample EDGE-FX Cache server definition

### Defining host servers

A host is an individual network server or server array controller other than the BIG-IP Controller or EDGE-FX Cache. Before configuring a host, you should have the following information:

#### **♦** Address information

The IP address and service name or port number of each virtual server to be managed by the host.

#### **◆** SNMP information for host probing

To implement host probing and to collect performance metrics, you must specify SNMP agent settings after you define the host server. The settings you specify include the type and version of SNMP agent that runs on the host, the community string, and the number of communication attempts that you want the **big3d** agent to make while gathering host metrics. SNMP agent settings for hosts are described in *Configuring host SNMP settings*, on page 2-32.



To fully configure host probing, you must configure the SNMP agent settings in the host definition as previously described, and you must also set up the big3d agents to run SNMP factories, and configure the SNMP agents on the hosts themselves. For details, please refer to Chapter 3, big3d Agent, and Chapter 10, SNMP, in the 3-DNS Controller Reference Guide.

#### To define a host server using the Configuration utility

- In the navigation pane, expand the Servers item, and then click Host Servers.
- On the toolbar, click Add Host Server. The Add New Host Server screen opens
- Add the new host server settings. For help on adding host servers, click **Help** on the toolbar.
   The host and the specified virtual server are added to your configuration.

## To add more virtual servers using the Configuration utility

- 1. In the navigation pane, click **Host Servers**.
- 2. In the table, find the host that you just added, and click the entry in its **Host Virtual Servers** column.

- 3. On the toolbar, click **Add Host Virtual Server**. The Add Virtual Server to Host screen opens.
- 4. Add the new virtual server settings. For help on adding virtual servers, click **Help** on the toolbar.

Repeat this process for each virtual server you want to add to this host.

#### To define a host server using the command line utility

- 1. At the command prompt, type **3dnsmaint** to open the 3-DNS Maintenance menu.
- 2. On the 3-DNS Maintenance menu, select **Edit 3-DNS Configuration** to open the **wideip.conf** file.

3. Use the syntax shown in Figure 2.12 to define a host.

All **server** statements should appear after the **sync\_group** statement and before **wideip** statements.

```
server {
 type host
 address <IP address>
 name <"host_name">
  [ prober <ip_address> ]
 probe_protocol <tcp | icmp | udp | dns_rev | dns_dot>
 port <port number> | service <"service name">
   agent <generic | ucd | solstice | ntserv | ciscoldv2 | ciscoldv3 |
arrowpoint | foundry | alteon | cacheflow | win2kserv>
   port <port number>
   community <"community string">
   timeout <seconds>
   retries <number>
   version <SNMP version>
   } ]
 vs {
   address <virtual server IP address>
   port <port number> | service <"service name">
    [ probe_protocol <tcp | icmp | udp | dns_rev | dns_dot> ]
```

Figure 2.12 Syntax for defining a host server

Figure 2.13 shows a sample **server** statement that defines a host.

```
server {
  type
              host
              192.168.104.40
  address
               "host-tokyo"
  name
  prober 192.168.101.40
  probe_protocol icmp
  port
               53
  snmp {
    agent ucd
    community "public" version 1
  }
  vs {
     address 192.168.104.50:25
  }
  vs {
     address 192.168.104.50:80
```

Figure 2.13 Sample host server definition

### Configuring host SNMP settings

After defining a host server, you need to configure its SNMP settings if you want to use SNMP host probing. Remember that you must first set up at least one SNMP probing factory on any 3-DNS Controller or BIG-IP Controller that runs the **big3d** agent.

The SNMP prober collects some or all of the following information from hosts.

- · Memory utilization
- · CPU utilization
- · Disk space utilization
- · Packet rate (packets per second
- Throughput rate (kilobytes per second)
- · Current connections

The 3-DNS Controller uses this performance information for advanced load balancing modes such as Packet Rate, Quality of Service, and Kilobytes/Second.

The 3-DNS Controller supports the following host SNMP agents:

| SNMP Agent | Description                                                                                                                              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Generic    | A generic SNMP agent is an SNMP agent that collects metrics provided by object identifiers (OIDs) as specified in the RFC 1213 document. |
| UCD        | This free SNMP agent is provided by the University of California at Davis. It is available on the web at http://net-snmp.sourceforge.net |
| Solstice   | This SNMP agent is a product of Sun Microsystems.                                                                                        |
| NTServ     | This SNMP matrix agent is a product of Microsoft Corporation and is distributed with Microsoft Windows NT Server 4.0.                    |
| Win2KServ  | This SNMP matrix agent is a product of Microsoft Corporation and is distributed with Microsoft Windows 2000 Server.                      |
| Cisco LDV2 | This SNMP agent is a product of Cisco Systems and is distributed with the Cisco LocalDirector, version 2.X.                              |
| Cisco LDV3 | This SNMP agent is a product of Cisco Systems and is distributed with the Cisco LocalDirector, version 3.X.                              |
| ArrowPoint | This SNMP agent is a product of Cisco Systems and is distributed with the Cisco/ArrowPoint CSS series.                                   |
| Alteon     | This SNMP agent is a product of Alteon WebSystems and is distributed with the ACEdirector.                                               |
| Foundry    | This SNMP agent is a product of Foundry Networks and is distributed with the Foundry ServerIron.                                         |
| CacheFlow  | This SNMP agent is a product of CacheFlow and is distributed with the CacheFlow appliances.                                              |

Table 2.2 Supported SNMP agents

Administrator Guide 2 - 33

#### Viewing host performance metrics

The Configuration utility displays the host metrics in the Host statistics screen. The 3-DNS Controller bases the advanced load balancing decisions on packet rate, kilobytes per second, and current connections metrics, but the Host screen displays the other metrics as well, for information purposes.

#### Reviewing SNMP configuration issues

The SNMP probing feature requires that each host run an SNMP agent, and that there is open network communication between the hosts and the **big3d** agents in the data centers. Certain firewall configurations block SNMP communications, and you may need to verify that the firewalls in your network allow SNMP traffic to pass through. For information on configuring the **big3d** agent and working with firewalls, see Chapter 3, *big3d Agent*, in the *3-DNS Controller Reference Guide*.

In addition to properly configuring the SNMP agents on the hosts themselves, you need to specify SNMP host probing settings in two places in the 3-DNS Controller configuration. First, when you define a BIG-IP Controller or 3-DNS Controller server, you set the **big3d** agent to run at least one SNMP factory. Second, when you define the host servers, you configure specific SNMP agent settings for each host. For example, you need to specify the type of agent running on the host as well as the community string that allows access to the SNMP agent. For more information on configuring SNMP agents, please review Chapter 10, *SNMP*, in the *3-DNS Controller Reference Guide*.

The SNMP chapter also includes some useful tips on configuring the different SNMP agents on the hosts themselves. We recommend that you use the information in conjunction with the documentation originally provided with the SNMP agent.

### Setting up sync groups

A *sync group* defines a group of 3-DNS Controllers that synchronize their configuration settings and metrics data. A sync group contains a principal controller and one or more receiver controllers. The *principal* controller is the 3-DNS Controller from which the *receiver* controllers obtain their metrics and server statistics information. You configure a sync group from the principal 3-DNS Controller. First list the IP address of the principal itself. Then list the receiver 3-DNS Controllers in the order that they should become principals if previously listed 3-DNS Controllers fail.

Each 3-DNS Controller in your network must be included in a sync group. There may be cases where you do not want a 3-DNS Controller to share its configuration with other controllers. In this case, you can create a separate sync group for each 3-DNS Controller. Each sync group contains only its own name or IP address.

Figure 2.14 Sample non-syncing sync groups statements



To implement such a configuration, you must modify each 3-DNS Controller's wideip.conf file; the Configuration utility does not support this function.

Administrator Guide 2 - 35

#### To define a sync group using the Configuration utility

- In the navigation pane, click 3-DNS Sync.
   The System Add a New Sync Group screen opens.
- In the New Sync Group Name box, type the name of the new sync group and click Add.
   The Add a 3-DNS to a Sync Group screen opens.
- 3. From the list of 3-DNS Controllers, first select the 3-DNS Controller that you want to be the principal controller. Then check the box next to each 3-DNS Controller that you want to add to the sync group.
- 4. Click Add.

#### To define a sync group using the command line utility

- At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.
- On the 3-DNS Maintenance menu, select Edit 3-DNS Configuration to open the wideip.conf file.
- 3. Use the syntax shown in Figure 2.15 to define sync groups.

The **sync\_group** statement should appear after the **datacenter** statement and before **server** statements.

```
sync_group {
  name "<name>"
  3dns <ip_address | "domain_name">
  [ 3dns <ip_address | "domain_name"> ] ...
}
```

Figure 2.15 Syntax for setting up a sync group

Figure 2.16 shows a sample **sync\_group** statement.

Figure 2.16 Sample sync group definition

#### Setting the time tolerance value

The time tolerance value is a global variable that defines the number of seconds that one 3-DNS Controller's time setting is allowed to be out of sync with another 3-DNS Controller's time setting. We recommend that you leave the time tolerance variable at the default setting of 10.

## To check the value for the time tolerance setting using the Configuration utility

- 1. In the navigation pane, click **System**. The System General screen opens.
- 2. On the toolbar, click **Timers and Task Intervals**.
- 3. Note the value in the **3-DNS Sync Time Tolerance** box, and change it if necessary.
- 4. If you change this setting, click **Update** to save it. For more information about the settings on this screen, click **Help** on the toolbar.

## To check the value for the time tolerance setting in the configuration file

- 1. At the command prompt, type **3dnsmaint** to open the 3-DNS Maintenance menu.
- 2. On the 3-DNS Maintenance menu, select **Edit 3-DNS Configuration** to open the **wideip.conf** file.

Administrator Guide 2 - 37

3. Search for **time\_tolerance**. If the **time\_tolerance** sub-statement is not in the configuration file, the default (10) is used.

## Configuring global variables

The default values for global parameters are sufficient for most load balancing situations. However, we recommend that you specifically enable encryption for crypto 3-DNS Controllers.

## To configure global parameters using the Configuration utility

- In the navigation pane, click System.
   The System General screen opens. Note that global parameters are grouped into several categories on this screen. Each category has its own toolbar item, and online help is available for each parameter.
- 2. Make general global changes at the System General screen or, to make changes to global parameters in other categories, click the appropriate toolbar item.
- 3. Add the new global settings. For help on configuring the global settings, click **Help** on the toolbar.

The new global parameters are added to your configuration.

## To configure global parameters using the command line utility

- 1. At the command prompt, type **3dnsmaint** to open the 3-DNS Maintenance menu.
- 2. On the 3-DNS Maintenance menu, select **Edit 3-DNS Configuration** to open the **wideip.conf** file.
- 3. Locate or add the **globals** statement. The **globals** statement should be at the top of the file.

4. Under the **globals** statement, type the appropriate sub-statement and value.

For example, to enable encryption for iQuery transactions (which is recommended), change the encryption parameter to **yes** (the default setting is **no**). If you want to use a non-default name for the encryption key file, type it on the next line.

Figure 2.17 shows the correct syntax for enabling encryption.

```
globals {
   encryption yes
   encryption_key_file "/etc/F5key.dat"
}
```

Figure 2.17 Syntax for enabling encryption

Administrator Guide 2 - 39

# Configuring a Globally-Distributed Network

- Configuration overview
- Target usage
- Setting up a globally distributed network configuration
- Additional configuration settings and tools

## Configuration overview

When you are familiar with your traffic patterns and are expanding into a global marketplace, you can use the 3-DNS Controller to distribute requests in an efficient and seamless manner to the geographically closest server for address resolution, using Topology load balancing. When you use Topology load balancing, the 3-DNS Controller compares the location information derived from the DNS query message to the topology records in the topology statement. The controller then distributes the request according to the topology record that best matches the location information.

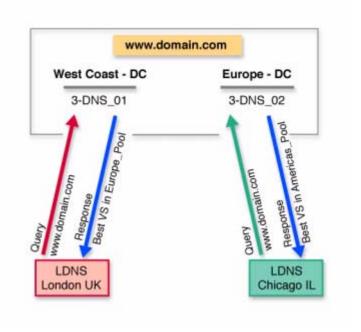



Figure 3.1 Topology load balancing in a globally distributed network

Administrator Guide 3 - I

## Target usage

The Topology load balancing mode is optimal for organizations that have data centers in more than one country or on more than one continent. The crypto 3-DNS Controller enables topology-based load balancing by resolving DNS requests to the geographically closest server. The traditional topology load balancing mode, that provides basic topology mapping functionality, uses IP subnets of virtual servers and known LDNS servers. This can result in a very large list of IP subnets to manage when you want to map a specific geographic region.

To simplify topology load balancing, the 3-DNS Controller contains a classifier that maps IP addresses to geographic locations. With this classifier, the 3-DNS Controller resolves DNS requests to the geographically closest LDNS server at either the country or the continent level. The controller then load balances the request to virtual servers in IP subnets, wide IP pools, or data centers.

You can set up Topology load balancing either between wide IP pools or within a wide IP pool. For the example in Figure 3.1, we configure Topology load balancing between wide IP pools.

## Setting up a globally distributed network configuration

By going through the following setup tasks, you can configure the 3-DNS Controller to process requests, using Topology, in a globally distributed network. This configuration is based on the following assumptions:

- You have more than one data center.
- You have a 3-DNS Controller in each data center.
- You have BIG-IP Controllers, or other load balancing hosts, in the data centers.
- You want to load balance requests to the geographically closest virtual server.

If you use a CDN for some or all of your content delivery, please refer to Chapter 4, *Configuring a Content Delivery Network*, to set up this configuration.

The following sections describe, in order, the specific configuration tasks you perform to set up a globally distributed network. Please review the tasks before you actually perform them, so that you are familiar with the process.

## Adding data centers to the globally distributed network configuration

The first task you perform is to add your data centers to the 3-DNS Controller Configuration utility.

#### To add data centers using the Configuration utility

- 1. In the navigation pane, click **Data Centers**. The Data Centers screen opens.
- 2. Click **Add Data Center** on the toolbar. The Add Data Centers screen opens.
- 3. Add your data center information. For information and help on the specific settings on this screen, click **Help** on the toolbar.
- 4. Repeat the previous steps to add all of your data centers to the configuration.

For the globally distributed network configuration shown in Figure 3.1, on page 3-1, we have added two data centers, **West Coast** and **Europe**.

Administrator Guide 3 - 3

## Adding 3-DNS Controllers to the globally distributed network configuration

Once you have added all of your data centers to the 3-DNS Controller configuration, you are ready to let the controller that you are configuring know about other 3-DNS Controllers in your network.



Please note that when you are working with more than one 3-DNS Controller, you create your entire configuration on one controller and then add the second controller using the 3dns\_add script. The 3dns\_add script copies the entire configuration from the first (or existing) controller onto the second (new) controller, and synchronizes all of the settings. For details on configuring additional 3-DNS Controllers in existing networks, using the 3dns\_add script, see Chapter 5, Adding 3-DNS Controllers to the Network.

#### To add 3-DNS Controllers using the Configuration utility

- In the navigation pane, expand the Servers item, then click 3-DNS Controllers.
  - The 3-DNS Controllers screen opens.
- 2. Click **Add 3-DNS Controller** on the toolbar. The Add New 3-DNS Controller screen opens.
- 3. Add the 3-DNS Controller information.
- 4. Repeat the previous steps to add any additional 3-DNS Controllers to the configuration.



For information and help on the specific settings on any screen in the Configuration utility, click **Help** on the toolbar.

For the globally distributed network configuration shown in Figure 3.1, on page 3-1, we have a 3-DNS Controller in each data center, West Coast and Europe. The controller we are configuring is labeled 3DNS\_01, and is in the West Coast data center. The additional controller is in the Europe data center, and is labeled 3DNS\_02.

## Adding BIG-IP Controllers to the globally distributed network configuration

Now you are ready to let the controller know about any BIG-IP Controllers, or other servers, that you have in your network. Remember that the 3-DNS Controller load balances requests to the virtual servers managed by the BIG IP Controllers, EDGE-FX Caches, or host servers in your network. In this example configuration, we set up BIG-IP Controllers. For information on adding EDGE-FX Caches or host servers to your network, please refer to *Setting up servers*, on page 2-19.

The following steps outline how to add BIG-IP Controllers to your configuration.

#### To add BIG-IP Controllers using the Configuration utility

- 1. In the navigation pane, expand the **Servers** item, then click **BIG-IP Controllers**.
  - The BIG-IP Controllers screen opens.
- Click Add BIG-IP Controller on the toolbar.
   The Add New BIG-IP Controller screen opens.
- 3. Add the BIG-IP Controller information and click **Next**. For information and help on the specific settings on this screen, click **Help** on the toolbar.
- 4. In the Data Centers screen, select the Data Center where the BIG-IP Controller is located and click **Next**.
- In the Configure Virtual Server screen, add the information for the first virtual server managed by the BIG-IP Controller and click Finish.

Administrator Guide 3 - 5

- To add more virtual servers to your configuration, click Add Virtual Server on the toolbar.
- Once you have configured your first BIG-IP Controller, you can repeat the previous steps to add all of the additional BIG-IP Controllers to the 3-DNS Controller configuration.



For information and help on the specific settings on any screen in the Configuration utility, click **Help** on the toolbar.

#### Adding wide IPs

Once you have added all the physical elements to your 3-DNS Controller configuration, you can begin configuring wide IPs and pools for load balancing. Before you start adding wide IPs, verify that you have configured all the virtual servers you need for load balancing. In order to optimize the Topology load balancing mode, you need to properly configure the wide IPs and pools, as follows.

#### To add a wide IP and pool using the Configuration utility

- 1. In the navigation pane, click **Wide IPs**. The Wide IP List screen opens.
- Click Add Wide IP on the toolbar. The Add a New Wide IP screen opens.
- 3. Add the wide IP address, name, and port information.
- 4. For the **Pool LB Mode**, select **Topology** and click **Next**. The Configure Load Balancing for New Pool screen opens.
- Add the pool name and click Next. The Select Virtual Servers screen opens.

- 6. In the Select Virtual Servers screen, check the virtual servers among which you want the 3-DNS Controller to load balance DNS requests, and click Finish.

  The 3-DNS Controller adds the wide IP and settings to the configuration.
- 7. If you want to create additional pools for load balancing, click the name of the wide IP you just created in the Wide IPs List screen. When the Modify Wide IP screen opens, click **Add Pool** on the toolbar.
- 8. Repeat the previous procedures to add as many wide IPs and pools as are required for your network.



For information and help on the specific settings on any screen in the Configuration utility, click **Help** on the toolbar.

For the globally distributed network configuration shown in Figure 3.1, on page 3-1, we have set up one wide IP, labeled **www.domain.com**, and we added two pools to the wide IP, **americas\_pool** and **europe\_pool**. When you configure the topology records, as explained in the next section, we designate these two pools to process the load balancing requests based on the geographic location of the local DNS server or client making the request.

## Configuring topology records for the globally distributed network configuration

You must configure the topology records before the 3-DNS Controller can use the Topology load balancing mode. The Topology load balancing mode distributes connections after evaluating and scoring the topology records in the topology statement. If you have no topology records in the topology statement, or if the scores returned for two or more records are equal, the 3-DNS Controller load balances the virtual servers using the Random load balancing mode.

Administrator Guide 3 - 7

The following procedure explains how to configure topology records in the Configuration utility. For more information on how the 3-DNS Controller uses the topology records, and how to configure topology in the **wideip.conf** file, please review Chapter 11, *Topology*, in the *3-DNS Controller Reference Guide*.

## To configure topology records using the Configuration utility

- 1. In the navigation pane, click **Topology**. The Manage Topology Records screen opens.
- 2. Add the settings for the topology records.
- 3. Click **Add**.



For information and help on the specific settings on any screen in the Configuration utility, click **Help** on the toolbar.

For the globally distributed network configuration shown in Figure 3.1, on page 3-1, we added topology records, as shown in Figure 3.2:

| //server           | ldns                | score |
|--------------------|---------------------|-------|
| pool.americas_pool | cont.North America  | 100   |
| pool.europe_pool   | !cont.North America | 100   |

Figure 3.2 Example of a topology statement

With this topology statement, in our example configuration, queries to resolve **www.domain.com** from local DNS servers somewhere in North America get responses from virtual servers in the pool **americas\_pool**. All other queries to resolve **www.domain.com** get responses from virtual servers in the pool **europe\_pool**.

## Additional configuration settings and tools

The following optional settings and tools can help you refine your load balancing configuration.

#### Setting limits thresholds

When you set limits thresholds for availability, the 3-DNS Controller can detect when a managed server or virtual server is low on system resources and redirect the traffic to another virtual server. Setting limits helps eliminate any negative impact on a virtual server's performance of service tasks that may be time critical, require high bandwidth, or put high demand on system resources. The system resources for which you can set limits are:

- CPU
- Disk
- Memory
- · Packet rate
- Kilobytes per second (throughput rate)
- · Current connections

#### To set limits thresholds for BIG-IP Controllers

- In the navigation pane, expand the Servers item and click BIG-IP Controllers.
- 2. In the Limits Settings column of the BIG-IP Controller for which you want to set limit thresholds, click the Configure

Limits button | + ? .

The Modify Server Limits Settings screen opens.

 Check the metrics for which you want to set limits, and type values based on your network resources. For more information and help on this screen, click **Help** on the toolbar.

Administrator Guide 3 - 9

You can also set limits thresholds on virtual server resources. Please note that if a server meets or exceeds its limits settings, both the server and the virtual servers it manages are marked as unavailable for load balancing. You can quickly review the availability of any of your servers or virtual servers in the Statistics screens in the Configuration utility.

#### Other resources

#### Monitoring system performance

The Statistics screens in the Configuration utility provide a great deal of information about the 3-DNS Controller. For example, you can monitor server performance and view limits settings in the Server and Virtual Server Metrics statistics screen. For more information, see Chapter 6, *Administration and Monitoring*.

#### Viewing your configuration

The Network Map provides an interactive map of your configuration. You can see how the data centers, servers, and virtual servers you configured are related to the wide IPs and pools you created for load balancing. You can also make real-time changes to your configuration from the Network Map. For more information, see Chapter 6, *Network Map*, in the *3-DNS Controller Reference Guide*.

#### To view the Network Map

- 1. In the navigation pane, click **Network Map**. The Network Map screen opens.
- To open the Network Map in a separate popup screen, click Undock. (This is useful if you are making a series of changes and want to see how it affects your configuration.)

4

## Configuring a Content Delivery Network

- Introducing the content delivery network
- Deciding to use a CDN provider
- Setting up a CDN provider configuration
- Ensuring resource availability
- Monitoring the configuration

### Introducing the content delivery network

A content delivery network (CDN) is a network of clusters that includes devices designed and configured to maximize the speed at which a content provider's content is delivered. The purpose and goal of a content delivery network is to cache content closer, in Internet terms, to the user than the origin site is. Using a CDN to deliver content greatly reduces wide area network (WAN) latency so the content gets to the user more quickly, and the origin site servers are not overloaded and slowed by requests for content. The fundamental WAN traffic distribution mechanism in all CDNs that we know about is DNS.

#### Using the 3-DNS Controller in a CDN

The following features make the 3-DNS Controller a logical choice for the wide-area traffic management in a CDN.

#### **♦** Geographic redirection

The 3-DNS Controller uses the pool load balancing mode Topology to redirect DNS requests based on location information derived from the DNS query message. You can set up wide IPs so that the controller delegates DNS queries either to a data center by responding with **A** records, or to a CDN provider by responding with a **CNAME** record and two or more **NS** records.

#### **◆** CDN peering

We have partnered with several CDN providers to facilitate CDNs. To take advantage of these content delivery partnerships, you can designate a pool type CDN on the 3-DNS Controller so the controller redirects requests to a CDN provider rather than to a grouping of virtual servers.

#### • Resource monitoring, limits, and thresholds

The 3-DNS Controller has sophisticated monitoring screens so you can quickly analyze the performance and availability of your network resources. You can also set limits on physical and throughput resources to ensure that your content is always available and none of your resources are overtaxed.

Administrator Guide 4 - I

#### CDN configuration example

The two following diagrams illustrate how DNS query resolutions for content delivery networks are processed by the 3-DNS Controller. In the example, the content provider for **www.download.domain.com** has two data centers, one in San Jose, California (see Figure 4.1), and one in Washington, DC (see Figure 4.2). The 3-DNS Controllers (in the two data centers) use the Topology load balancing mode to direct the DNS queries to the geographically closest virtual servers.

In Figure 4.1, a local DNS server in Seattle, Washington, sends a query for the domain **www.download.domain.com** (1A). Based on the location information in the query packet header, the 3-DNS Controller in the content provider's North American data center resolves the query to the best virtual server in that data center, and sends an **A** record response to the Seattle LDNS (1B).

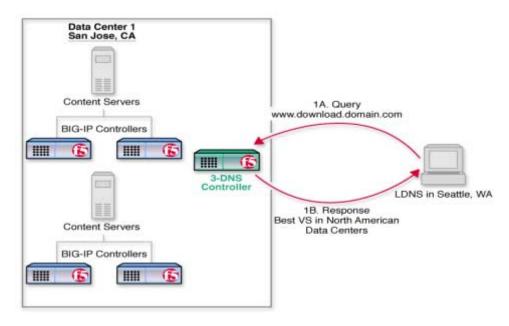



Figure 4.1 DNS query resolution based on Topology load balancing mode

In Figure 4.2, a local DNS server in London sends a query for the same domain, www.download.domain.com (2A). Based on the location information in the query packet header, the 3-DNS Controller in the content provider's North American data center responds to the London LDNS with delegation information (a CNAME record and two or more NS records) about the DNS for the content delivery peer (2B). The London LDNS then sends the redirected query (based on the CNAME record) for www.download.domain.com to the CDN provider (2C). The CDN provider DNS server responds with the IP address of the best virtual server for resolution among those in the CDN (2D). The CDN provider's cache servers resolve to the origin site virtual servers for cache refreshes using a different domain name (origin.download.domain.com).

Administrator Guide 4 - 3

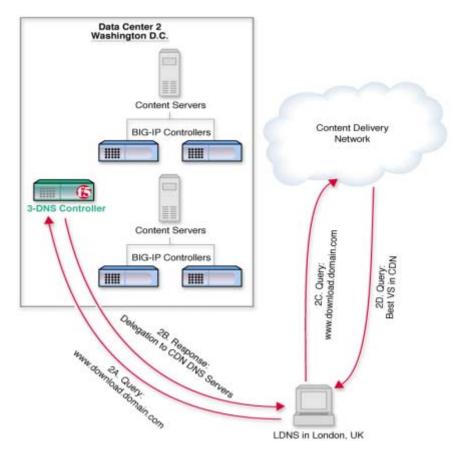



Figure 4.2 DNS query resolution to content delivery network provider

## Deciding to use a CDN provider

The 3-DNS Controller is well-suited to serve as the wide-area traffic manager (WATM) for CDNs that have many of the following attributes:

 The CDN provider has a global presence around the edge of the Internet.

- The CDN provider outsources a content delivery infrastructure to content providers.
- The CDN provider is the authoritative DNS for the content provider's domain, and uses DNS to find a data center with CDN resources at the edge of the network nearest to the client.
- The CDN provider serves all of the content provider's traffic because the CDN is authoritative for the content provider's domain. Content providers manage this by creating logical groupings of their content under different domains. For example, an investment firm might have a CDN host their news content with the subdomain, news.domain.com, while they serve their stock quotes content with the subdomain, quote.domain.com, from their corporate data center.
- The CDN provider charges X dollars per megabit per second.
   The CDN provider determines billing by collecting and processing edge cache and server logs.
- The CDN provider has an infrastructure in place to manage the multitude of geographically distributed devices.
- The CDN provider usually establishes some type of service level agreement (SLA) to ensure that content is being served faster from the CDN than from the content provider's servers.

## Setting up a CDN provider configuration

The following sections describe the specific tasks you perform to set up a CDN provider configuration, as shown in the example configuration on page 4-2. The tasks are as follows:

- Adding data centers
- Adding 3-DNS Controllers
- Adding servers
- Adding wide IPs and pools
- Adding a topology statement

Please review the tasks before you actually perform them so that you are familiar with the process.

Administrator Guide 4 - 5

#### Adding data centers

The first task you perform is to add the data centers to the configuration on the 3-DNS Controller.

#### To add data centers using the Configuration utility

- In the navigation pane, click **Data Centers**.
   The Data Centers screen opens.
- Click Add Data Center on the toolbar. The Add Data Centers screen opens.
- Add the data center information. For our example, we add the two data centers labeled **Data Center 1** and **Data** Center 2.
- 4. Repeat the previous steps to add all of your data centers to the configuration.

#### Adding 3-DNS Controllers

Once you have added all of your data centers to the 3-DNS Controller configuration, you are ready to let the controller you are configuring know about other 3-DNS Controllers in your network.



Please note that when you are working with more than one 3-DNS Controller, you create your entire configuration on one controller and then add the second controller using the 3dns\_add script. The 3dns\_add script copies the entire configuration from the first controller onto the second controller, and synchronizes all of the settings. For details on configuring additional 3-DNS Controllers in existing networks, using the 3dns\_add script, see Chapter 5, Adding 3-DNS Controllers to the Network.

#### To add 3-DNS Controllers using the Configuration utility

 In the navigation pane, expand the Servers item, then click 3-DNS Controllers.

The 3-DNS Controllers screen opens.

- Click Add 3-DNS Controller on the toolbar.
   The Add New 3-DNS Controller screen opens.
- 3. Add the 3-DNS Controller information.
- 4. Repeat the previous steps to add any additional 3-DNS Controllers to the configuration.

#### Adding servers

Now you are ready to let the controller know about any BIG-IP Controllers, EDGE-FX Caches, or hosts that you have in your data centers. For specific information on configuring any of these server types, please review *Setting up servers* on page 2-19.

#### Adding wide IPs and pools

Once you have added all the physical elements to the 3-DNS Controller configuration, you can begin configuring wide IPs and pools for the CDN. In addition to setting up the wide IPs and pools for your origin site, you also set up a pool for the CDN provider.

Before you start adding wide IPs, verify that you have configured all the virtual servers you need for load balancing for your origin site. The following instructions describe how to set up the CDN configuration shown in Figures 4.1 and 4.2.

#### To add a wide IP and pool using the Configuration utility

- 1. In the navigation pane, click **Wide IPs**. The Wide IP List screen opens.
- Click Add Wide IP on the toolbar. The Add a New Wide IP screen opens.
- Add the wide IP address, name, and port information. For our example, the wide IP name is www.download.domain.com.
- 4. For the **Pool LB Mode**, select **Topology** and click **Next**. The Configure Load Balancing for New Pool screen opens.

Administrator Guide 4 - 7

- 5. In the Configure Load Balancing for New Pool screen, update these settings:
  - a) Add the pool name.For our example, the first pool name is **origin**.
  - b) Check the Use Dynamic Ratio option.
  - c) In the **Load Balancing Modes, Preferred** list, select **Round Trip Time**.
  - d) In the Load Balancing Modes, Alternate list, select Packet Rate.
  - e) In the Load Balancing Modes, Fallback list, select Round Robin.
  - f) Accept the defaults for the rest of the settings and click Next.
    - The Select Virtual Servers screen opens.
- 6. In the Select Virtual Servers screen, check the virtual servers among which you want the 3-DNS Controller to load balance DNS requests, and click Finish.

  The 3-DNS Controller adds the wide IP and settings to the configuration. For our example, you would check the virtual servers that map to the download site content in the North American data center.

#### To add a CDN provider pool to the wide IP

- In the Wide IP List screen, click 1 Pools in the Pools column for the wide IP www.download.domain.com. The Modify Wide IP Pools screen opens.
- On the toolbar, click Add Pool.
   The Configure Load Balancing for New Pool opens.
- 3. In the Configure Load Balancing for New Pool screen, update these settings:
  - a) Add the pool name.
     For our example, the CDN provider pool name is cdn\_pool.

- b) In the Pool TTL box, type 60. With a longer time-to-live, an LDNS has time to follow the CNAME record and redirect queries to the CDN.
- c) In the Load Balancing Modes, Preferred list, select Round Robin.
- d) In the Load Balancing Modes, Alternate list, select None.
- e) In the **Dynamic Delegation**, **Type** list, select **CDN**.
- f) In the **Dynamic Delegation**, Canonical Name box, type the canonical name that you want the 3-DNS Controller to deliver in the **CNAME** record when it redirects traffic to the CDN provider. For our example, the canonical name is **www.cdn.download.domain.com**. Note that the canonical name for the CDN pool type automatically becomes an alias for the wide IP.
- g) In the **Dynamic Delegation**, **Zone Name** box, type the name of the zone for which the CDN provider DNS servers are authoritative. For our example, the zone name is **cdn.download.domain.com**.
- Accept the defaults for the rest of the settings, and click Next.
  - The Select CDN for <pool name> screen opens.
- In the Select CDN for <pool name> screen, select the CDN provider that hosts your content and click Update.

You have now set up the load balancing and delegation pools for your domain. The last required configuration step is to create a topology statement.

Administrator Guide 4 - 9

#### Adding a topology statement

The topology statement contains the topology records that the 3-DNS Controller uses to load balance DNS queries from geographically dispersed local DNS servers. The following procedure describes how to set up a topology statement, with two topology records, for our example.



For more detailed information on working with topology on the 3-DNS Controller, see Chapter 11, Topology, in the 3-DNS Controller Reference Guide. For information on setting up globally-distributed network with Topology load balancing, see Chapter 3, Configuring a Globally-Distributed Network, in this guide.

#### To set up topology records using the Configuration utility

- 1. In the navigation pane, click **Topology**. The Manage Topology Records screen opens.
- For the first topology record, select Continent in the upper LDNS box.
- 3. In the lower **LDNS** box, select **North America**.
- 4. In the upper **Server** box, select **Wide IP Pool**.
- 5. In the lower **Server** box, select **origin**.
- 6. In the **Weight** box, type a value. For our example, we type **100**.
- Click **Add**.
   The first topology record is added to the configuration.
- 8. For the second topology record, in the upper **LDNS** box select **Continent**.
- 9. In the lower **LDNS** box, select **North America**.
- 10. Check the LDNS Not Equal box.
- 11. In the upper **Server** box, select **Wide IP Pool**.
- 12. In the lower **Server** box, select **cdn pool**.

13. In the Weight box, type a value. For our example, we type **100**.

#### 14. Click Add.

The second topology record is added to the configuration.

Now you have created a topology statement for your CDN and the 3-DNS Controller can successfully load balance DNS queries based on the location information derived from the DNS query message.

### Ensuring resource availability

The following resource availability settings are designed to ensure that your content is always available and that your system resources are not overtaxed to the point of failure. The resource availability settings you may want to use with your CDN configuration are:

#### ♦ Last resort pool

You can designate a pool as the last resort pool so that in the event that all other pools become unavailable for load balancing, the 3-DNS Controller directs DNS queries to the virtual servers in this pool. For information on configuring a last resort pool, see *Using the last resort pool designation* in *Chapter 5, Load Balancing*, in the *3-DNS Controller Reference Guide*.

#### **♦** Limit settings

You can set limits on system resources and throughput to enhance availability. You can set limits for any server type, virtual servers, and pools. For more information on setting limits, view the online help for the Modify Limit Settings screens in the Configuration utility.

Administrator Guide 4 - 11

## Monitoring the configuration

The following resources can help you monitor your configuration and troubleshoot problems.

- You can view performance metrics, limit settings, and other details about your data centers, servers, virtual servers, wide IPs, and pools in the Statistics screens in the Configuration utility. For more information on specific Statistics screens, click **Help** on the toolbar.
- ◆ You can view your configuration using the Network Map in the Configuration utility. You can also make modifications to the configuration from the Network Map. Click **Help** on the toolbar if you have questions on how to use the Network Map.
- You can review detailed information on the specific features of the 3-DNS Controller in the 3-DNS Controller Reference Guide.

## 5

# Adding 3-DNS Controllers to the Network

- Working with more than one 3-DNS Controller
- Preparing to add a second 3-DNS Controller to your network
- Running the 3dns\_add script
- Verifying the configuration

# Working with more than one 3-DNS Controller

When you are working with more than one 3-DNS Controller in your network, and you want the controllers to load balance to the same virtual servers, you can create your entire configuration on one controller and then add the second controller using the **3dns\_add** script. The **3dns\_add** script copies the entire configuration from the first controller onto the second controller, and synchronizes all of the settings between the controllers. When you are finished, the first controller acts as the principal controller in the sync group, and the second controller becomes a receiver controller. (For more information about sync groups, see *Setting up sync groups*, on page 2-35.)

The following sections of this chapter describe the procedures you follow to add a 3-DNS Controller into a network that already has at least one 3-DNS Controller configured and working properly. If you are adding your first 3-DNS Controller to your network, please review this chapter first, Chapter 2, *Essential Configuration Tasks*.



If you are adding a second 3-DNS Controller to your network but do not want it to be in the same sync group as your first controller, or you want the second 3-DNS Controller to load balance to a different set of virtual servers, then do not use the 3dns\_add script.

# Preparing to add a second 3-DNS Controller to your network

Before you run the **3dns\_add** script on any additional 3-DNS Controllers you are adding to your network, you should complete the following tasks:

 Physically install the second 3-DNS Controller in its data center. (See the 3-DNS Controller Installation Guide for more information on the hardware installation.)

- Run the First-Time Boot utility on the second controller. (See the *3-DNS Controller Installation Guide* for more information on the First-Time Boot utility.)
- Make the principal 3-DNS Controller aware of the IP address, fully-qualified domain name, and data center location of the second 3-DNS Controller. (See the following section, *Making the principal 3-DNS Controller aware of the additional controller*.)

Completing these tasks ensures that when you run the **3dns\_add** script, the second 3-DNS Controller successfully copies the configuration information from the first 3-DNS Controller.

### Installing the hardware and running the First-Time Boot utility

You can find detailed instructions on installing the 3-DNS Controller hardware in the *3-DNS Controller Installation Guide*. The Installation Guide also includes detailed instructions on running the First-Time Boot utility. When you have finished this part of the setup for the second controller, do not make any other changes to the configuration.

# Making the principal 3-DNS Controller aware of the additional controller

Once you have installed the hardware and run the First-Time Boot utility on the new controller, you add its configuration information to the existing 3-DNS Controller. This controller becomes the principal controller in the sync group once you run the **3dns\_add** script on the new controller. Note that if you already have more than one 3-DNS Controller in a sync group, you should add the configuration information for the new controller to the principal controller in that sync group.

# To add the new controller to the existing controller's configuration using the Configuration utility

- 1. Add the second data center to the configuration.
  - a) In the navigation pane, click **Data Centers**.
     The Data Centers screen opens.
  - b) Click **Add Data Center** on the toolbar. The Add Data Centers screen opens.
  - c) Add the information for the data center where you installed the new controller, and click **Update**.
- 2. Add the second 3-DNS Controller to the configuration.
  - a) In the navigation pane, expand the Servers item, and click 3-DNS Controllers.
     The 3-DNS Controllers screen opens.
  - b) Click **Add 3-DNS Controller** on the toolbar. The Add New 3-DNS Controller screen opens.
  - c) Add the information for the new controller and click Update.
- 3. Add the new controller to the existing controller's sync group.
  - a) In the navigation pane, click **3-DNS Sync**. The System-Synchronization screen opens.
  - b) Click **Add to Group** on the toolbar.

    The Add a 3-DNS to a Sync Group screen opens.
  - c) Check the controller you just defined and click **Add**. The new controller becomes a receiver in the sync group of the existing controller.

You have now successfully added the new controller to the existing controller's configuration. The following sections describe how to run the **3dns\_add** script and verify the configuration.

# Running the 3dns\_add script

You can run the **3dns\_add** script on the new 3-DNS Controller either using a remote secure shell session, or using a monitor and keyboard connected locally to the controller.

#### To run the 3dns\_add script

- 1. At the **login** prompt, type **root**.
- 2. At the **password** prompt, type the password you configured when you ran the First-Time Boot utility.
- 3. To run the script, type **3dns\_add** at the command line. The script copies the entire configuration of the existing 3-DNS Controller to the new controller.

# Verifying the configuration

Once the script finishes, we recommend that you verify the following aspects of your configuration:

- Verify that each 3-DNS Controller has the necessary agents and daemons running.
- Verify that any servers you configured are up and available to receive load balancing requests.
- Verify that any virtual servers you configured are **up** and available to respond to requests.
- Verify that any wide IPs you configured are load balancing requests as you configured them.

You can perform these verification tasks on any of the controllers in the sync group, however, we recommend that you use the principal 3-DNS Controller. The following sections describe the verification process in detail.



You may want to wait a few minutes before you verify the configuration so that the 3-DNS Controllers have time to synchronize with each other.

# To verify that each 3-DNS Controller has the necessary agents and daemons running

 In the navigation pane, expand the Statistics item and click 3-DNS.

The 3-DNS Statistics screen opens.

- 2. Click the **Refresh** button.
- 3. In the Server and Big3d columns, make sure the status is **up**, which is indicated by a small green ball.
- 4. In the E/D column, make sure the controllers are Enabled.
- If the status of any of your controllers is down, unknown, or unavailable, wait a few minutes and click Refresh again. If status of the controllers remains down, unknown, or unavailable, contact Technical Support for assistance.

#### To verify that any servers you configured are up

 In the navigation pane, expand the Statistics item and click Data Centers.

The Data Centers Statistics screen opens.

2. Click the **Refresh** button.

- 3. In the Server column, make sure the status of any BIG-IP Controllers, EDGE-FX Caches, or hosts you configured is **up**, which is indicated by a small green ball.
- 4. If the status of any of your servers is down, unknown, or unavailable, wait a few minutes and click Refresh again. If status of the servers remains down, unknown, or unavailable, contact Technical Support for assistance.

#### To verify that any virtual servers you configured are up

- In the navigation pane, expand the Statistics item and click Virtual Servers.
  - The Data Centers Statistics screen opens.
- 2. Click the **Refresh** button.
- 3. In the OK column, make sure the status of any virtual servers you configured is **up**, which is indicated by a small green ball.
- 4. If the status of any of your virtual servers is down, unknown, or unavailable, wait a few minutes and click Refresh again. If status of the virtual servers remains down, unknown, or unavailable, contact Technical Support for assistance.

#### To verify that the wide IPs are load balancing properly



This is the only verification task that you perform using the command line utility. The **nslookup** command is a standard UNIX command for DNS.

1. At the command prompt, type **nslookup** and press Enter.

2. Type the following: server <IP\_address>

where **<IP\_address>** is the IP address of one of your 3-DNS Controllers, and press Enter.

3. Type the name of the wide IP (for example, **news.domain.com**) for which you want to verify load balancing and press Enter.

If the virtual servers belonging to the wide IP appear in a pattern that reflects the load balancing mode you selected, you have successfully configured your 3-DNS Controllers. Note that you can repeat the previous procedure for each wide IP you configured.

# Administration and Monitoring

- Monitoring and administration utilities provided on the 3-DNS Controller
- Working with the 3-DNS Maintenance menu
- Changing passwords for the 3-DNS Controller
- Using the 3-DNS Console
- Using the Network Map
- Viewing system statistics

# Monitoring and administration utilities provided on the 3-DNS Controller

The 3-DNS Controller provides utilities for monitoring and administration. You can perform configuration tasks, and monitor system statistics for all components of the 3-DNS Controller.

The 3-DNS Controller provides the following configuration, monitoring, and administration utilities:

#### **♦** Configuration utility

The Configuration utility is a browser-based application you can use to configure and monitor the 3-DNS Controller. The Configuration utility supports Netscape Navigator, version 4.5 or later, and Internet Explorer, version 4.02 or later.

#### ◆ 3-DNS Maintenance menu

The 3-DNS Maintenance menu is a command line utility you can use to manually configure the 3-DNS Controller. Use the 3-DNS Maintenance menu to simplify certain tasks such as starting the **big3d** agent and editing the **wideip.conf** file.

#### **◆ 3-DNS Console**

The 3-DNS Console is a secure shell tool that you can use, from the Configuration utility, to view the command line utility from a web browser.

#### ♦ Network Map

The Network Map is an interactive screen, in the Configuration utility, where you can view your physical and logical configurations simultaneously.

#### Statistics screens

Using the Statistics screens in the Configuration utility, you can view a myriad of performance and metrics details about the 3-DNS Controller, the servers and the virtual servers it manages, and the load balancing it performs.

# Working with the 3-DNS Maintenance menu

You can use the 3-DNS Maintenance menu to manually configure and monitor the 3-DNS Controller. However, if you work with either the browser-based Configuration utility or the NameSurfer application, you cannot use the 3-DNS Maintenance menu.

You can use the 3-DNS Maintenance menu to perform the following types of manual configuration tasks:

- · Configure wide IPs
- · View statistics
- Work with the big3d agent
- Manage synchronized files
- Work with security issues
- Configure the 3-DNS web server
- Work with **syncd**
- Configure NTP
- Configure NameSurfer

Figure 6.1 shows the main screen of the 3-DNS Maintenance menu:.

```
3 D N S(®) Maintenance Menu
Configure secure communication between all 3-DNS and BIG-IP systems
Generate and Copy iQuery Encryption Key
Check versions of named, BIG-IP kernel and needed big3d
Edit big3d matrix
Install and Start big3d
Edit BIND Configuration
Edit 3-DNS Configuration
Backup the 3-DNS Controller
Restore a 3-DNS Controller from a backup
Synchronize Metrics Data
Check big3d
Restart big3d
Reconfigure 3-DNS Web Administration
Restart 3-DNS Administration
Change/Add Users for 3-DNS Web Administration
Dump and List named Database
Stop syncd
Restart syncd
Configure connection to NTP time server
Configure NameSurfer(TM)
Enter 'q' to Ouit
```

Figure 6.1 3-DNS Maintenance menu main screen

#### To use the 3-DNS Maintenance menu

- Type the following command to open the menu:
   3dnsmaint
- 2. From the menu, select the command to you wish to execute, and press the Enter key.

Each command is described in the following sections.

### Configuring wide IPs

We recommend that you use NameSurfer to handle BIND configuration, and that you use the Configuration utility to configure wide IPs. However, if you choose to manually edit BIND and the 3-DNS Controller configuration files, use the following commands.

#### Edit BIND Configuration

The **Edit BIND Configuration** command opens the **named.conf** file for editing.



Use this command only if you are performing all configuration tasks manually. It is important that you do not use this command if you are using the Configuration utility or NameSurfer.

#### Edit 3-DNS Configuration

The **Edit 3-DNS Configuration** command runs the **edit\_wideip** script, which performs the following tasks:

- Opens the wideip.conf file for editing
- Copies the wideip.conf file to all other 3-DNS Controllers in the local 3-DNS Controller's sync group
- · Restarts named

### Viewing statistics

From the Maintenance menu, use the **Dump and List named Database** command to view various 3-DNS Controller statistics.

The **Dump and List named Database** command corresponds to the **3dprint** script, which lets you view the following statistics screens on the command line:

#### **◆ 3-DNS**

This object displays statistics about each 3-DNS Controller in your network. The statistics include such things as whether the controller is enabled or disabled, the number of packets per second traveling in and out of the 3-DNS Controller during the last sample period, the name of the sync group to which each 3-DNS Controller belongs, and so on.

#### BIG-IP

This object displays statistics about all BIG-IP Controllers known to the 3-DNS Controller. The statistics include such things as the number of virtual servers each BIG-IP Controller manages, the number of times the 3-DNS Controller resolves requests to those virtual servers, and more.

#### EDGE

This object displays statistics about all EDGE-FX Caches known to the 3-DNS Controller. The statistics include such things as the number of virtual servers each EDGE-FX Cache manages, the number of times the 3-DNS Controller resolves requests to those virtual servers, and more.

#### **♦** Hosts

This object displays statistics about all hosts known to the 3-DNS Controller, such as the number of times the 3-DNS Controller resolves requests to the host, and the number of virtual servers that the hosts manage.

#### **♦** Virtual Servers

This object displays statistics about BIG-IP Controller, EDGE-FX Cache, and host virtual servers; the statistics include such things as the server state, and the number of times it has received resolution requests.

#### Paths

This object displays path statistics such as round trip time, packet completion rate, the remaining time to live (TTL) before a path's metric data needs to be refreshed, and so on.

#### **◆ Local DNS**

This object displays statistics collected for LDNS servers: the number of resolution requests received from a given server, the current protocol used to probe the server, and more.

#### ♦ Wide IPs

This object displays statistics about each wide IP defined on the 3-DNS Controller. The statistics include such things as load balancing information, the remaining time to live (TTL) before the wide IP's metrics data needs to be refreshed, and so on.

#### Globals

This object displays statistics about the globals sub-statements. The statistics include such things as the current and default values for each of the globals sub-statements, and whether you have to restart **named** when you make changes to the parameters.

#### Summary

This object displays summary statistics such as the 3-DNS Controller version, the total number of resolved requests, and the load balancing methods used to resolve requests.

#### ◆ Data Centers

This object displays statistics about the data centers and their servers in your network. The statistics include such things as the names of the data centers, the name or IP address of the servers in the data center, and whether the data center is enabled or disabled.

#### **♦** Sync Groups

This object displays statistics about each sync group in your network. The statistics include such things as the name of the sync group, whether **named** is running on each 3-DNS Controller, whether the **big3d** agent is running on each 3-DNS Controller, the name and IP address of the 3-DNS Controller, and whether the 3-DNS Controller is a principal or receiver.

To view more statistics information, expand the **Statistics** item on the navigation pane in the Configuration utility.

### Working with the big3d agent

You can use the following commands to work with the **big3d** agent, which collects information about paths between a data center and a specific LDNS server.

#### Check versions of named, BIG-IP kernel and needed big3d

The Check versions of named, BIG-IP kernel and needed big3d command runs the big3d\_version script. This script displays version numbers for all BIG-IP Controllers known to the 3-DNS Controller, and the version numbers of the big3d agent and named utility running on each BIG-IP Controller.

#### Edit big3d matrix

The **Edit big3d matrix** command opens an editable file that lists version numbers for all BIG-IP Controllers known to the 3-DNS Controller, and the version numbers of the **big3d** agent and **named** utility running on each BIG-IP Controller.

You do not need to edit this file unless a new BIG-IP kernel or a **named** version creates a conflict. If this happens, you need to place a new version of the **big3d** agent on all BIG-IP Controllers.

The **Install and Start big3d** command uses the matrix file to determine which version of the **big3d** agent to transfer.

#### Install and Start big3d

The Install and Start big3d command runs the big3d\_install script, which installs and starts the appropriate version of the big3d agent on each BIG-IP Controller in the network.

#### Check big3d

The Check big3d command runs the big3d\_check script, which verifies that each BIG-IP Controller is running the big3d agent.

#### Restart big3d

The **Restart big3d** command runs the **big3d\_restart** script, which stops and restarts the **big3d** agent on each BIG-IP Controller.

### Managing synchronized files

You can use the following commands to copy matrix data to a new 3-DNS Controller, to archive synchronized files, or to retrieve an archive.

#### Synchronize Metrics Data

The **Synchronize Metrics Data** command runs the **3dns\_sync\_metrics** script, which prompts you to copy metrics data from a remote 3-DNS Controller to the local 3-DNS Controller.

You should use this command only when you are configuring a new 3-DNS Controller.

### Working with security issues

You can use the following commands to address security issues for your network setup.

#### Configure secure communication between all 3-DNS and BIG-IP systems

The Configure secure communication between all 3-DNS and BIG-IP systems command runs the 3dns\_auth script, which configures secure shell access to any new 3-DNS Controller, BIG-IP Controller, or EDGE-FX Cache that is added to a network.

The **3dns\_auth** script generates a password authentication by setting the **RSA Authentication** parameter to **yes** in /etc/sshd\_config.conf and copying the ssh key to each 3-DNS Controller, BIG-IP Controller, and EDGE-FX Cache. When prompted for an RSA password, press the Enter key instead of typing a password.

For more information, see Chapter 9, *Scripts*, and Chapter 12, *Utilities*, in the *3-DNS Controller Reference Guide*.

#### Generate and Copy Encryption iQuery Key

The **Generate and Copy Encryption iQuery key** command runs the **install\_key** script, which then runs the **F5makekey** script. **F5makekey** generates a seed key for encrypting communications between the 3-DNS Controller and BIG-IP Controller.

For more information, see Chapter 9, *Scripts*, and Chapter 12, *Utilities*, in the *3-DNS Controller Reference Guide*.



This command is not available in the non-crypto version of the 3-DNS Controller.

### Using the 3-DNS web server

You can use the following commands to configure the 3-DNS web server.

#### Reconfigure 3-DNS Web Administration

The **Reconfigure 3-DNS Web Administration** command runs the **3dns\_web\_config** script, which lets you make configuration changes to the 3-DNS web server.

#### Restart 3-DNS Administration

The **Restart 3-DNS Administration** command runs the **3dns\_admin\_start** script, which restarts the 3-DNS web server.

#### Change/Add Users for 3-DNS Web Administration

The Change/Add Users for 3-DNS Web Administration command runs the 3dns\_web\_passwd script, which lets you provide restricted or administrative access to the 3-DNS web server for selected users only, and assigns passwords for those users. Users with restricted access have access to the statistics area and

can view configuration, but cannot commit any changes. Users with administrative access have access to all areas of the 3-DNS web server.



The 3dns\_web\_passwd script is run by the First-Time Boot utility.

### Working with syncd

You can use the following commands to work with **syncd**, the synchronization daemon that runs on all 3-DNS Controllers. The function of **syncd** is to update and synchronize all 3-DNS Controller configuration files.

#### Stop syncd

The **Stop syncd** command runs the **syncd\_stop** script, which stops the **syncd** daemon, if it is running.

#### Restart syncd

The **Restart syncd** command runs the **syncd\_start** script, which restarts the **syncd** daemon if it is already running, or starts it if it is not.

### Configuring NTP

The 3-DNS Controllers in a network must have their time synchronized to within a few seconds of each other. If you do not synchronize the controllers, it is done by default through iQuery messages exchanged between 3-DNS Controllers. However, the following command allows much more precise time synchronization between the 3-DNS Controllers.

#### Configure Connection to NTP Time Server

The Configure Connection to NTP Time Server command allows the 3-DNS Controller to synchronize its time to a public NTP (Network Time Protocol) server on the Internet. To simplify the task of the choosing the best time server, this command has a list of regional time servers built into it. A 3-DNS Controller is not required to have NTP configured; depending on the network configuration, it may not be possible to configure NTP (for example, if the 3-DNS Controller is behind a firewall and the firewall does not pass NTP packets).

### Configuring NameSurfer

You can use the following command to have NameSurfer handle DNS zone file management on the 3-DNS Controller.

#### Configure NameSurfer

The **Configure NameSurfer** command makes NameSurfer the master on the 3-DNS Controller, and NameSurfer then handles the zone file management, dealing with all changes and updates to the zone files. You can access the NameSurfer application in the Configuration utility by clicking **NameSurfer** on the navigation pane.



If you do not set NameSurfer to be the master for your wide IP zones, you cannot use the Configuration utility. Instead, you must manually configure all 3-DNS Controller settings.

# Changing passwords for the 3-DNS Controller

The First-Time Boot utility prompts you to define a password that allows remote access to the 3-DNS Controller, and also prompts you to define a password for the 3-DNS web server. You can change these passwords at any time.

# To change the root user password for command line access

- At the 3-DNS Controller command line prompt, log in as root and use the passwd command.
- 2. At the **password** prompt, type the password you want to use for the 3-DNS Controller and press Enter.
- 3. To confirm the password, retype it and press Enter.

# Changing passwords and adding new user IDs for the 3-DNS web server

You can create new users for the 3-DNS web server, change a password for an existing user, or recreate the password file altogether, without actually going through the 3-DNS web server configuration process.

#### To add a new user ID using the Configuration utility

- 1. In the navigation pane, click **User Admin**. The User Administration screen opens.
- 2. Add the user administration settings. For help on configuring the settings, click **Help** on the toolbar.

# To change or add user information using the 3-DNS Maintenance menu

- 1. At the command prompt, type **3dnsmaint** to open the 3-DNS Maintenance menu.
- On the 3-DNS Maintenance menu, select the Change/Add Users for 3-DNS Web Administration command.

# To create new users and change passwords for existing users using the command line utility

The following command creates a new user ID, or changes the password for an existing user ID. In place of the **<username>** parameter, type the user ID for which you want to create a password:

/var/f5/httpd/bin/htpasswd /var/f5/httpd/basicauth/users \ <username>

Once you enter the command, you are prompted to type the new password for the named user.

#### To manually create a new password file

The following command recreates the 3-DNS web server password file, and defines one new user ID and password. In place of the <username> parameter, type the user ID that you want to create:

/var/f5/httpd/bin/htpasswd -c /var/f5/httpd/basicauth/users \ <username>

Once you enter the command, you are prompted to type the new password for the new user.

## Using the 3-DNS Console

The 3-DNS Console allows you to open an SSH session for the 3-DNS Controller from the Configuration utility. The crypto 3-DNS Controller uses the MindTerm SSH client to enable secure command line administration with the 3-DNS Console. You can perform any of the command line tasks in a popup console screen.



The MindTerm SSH client requires a Java virtual machine to operate. If you are unable to run the MindTerm SSH client, make sure that you have a Java virtual machine installed and that your browser has Java enabled in the Preferences, or Options, section. For more information on Java virtual machines and download options, visit your web browser manufacturer's web site.

#### To use the 3-DNS Console from the Configuration utility

- In the navigation pane, click 3-DNS Console.
   A popup console opens.
- 2. When you see the command prompt, press Enter.
- 3. Log in to the controller as you normally would.



You can only administer the local 3-DNS Controller using the 3-DNS Console. If you wish to use the command line utility to administer remote controllers, you do so using an SSH, Telnet, or other secure session.

## Using the Network Map

The Network Map is a dynamic, illustrative map of the physical and logical components of your network. The Network Map lets you see how the data centers, servers, and virtual servers you configured are mapped to the wide IPs and pools you configured. You can also make changes to your configuration from the Network Map, using the following options:

- You can double-click any object name on the Network Map to expand the object.
- You can right-click any object name to view a popup menu of configuration options for that object.

#### To view the Network Map using the Configuration utility

- In the navigation pane, click Network Map.
   The Network Map screen opens.
- To see the relationships between the components, double-click the component. The tree expands and the component is highlighted (in blue).

- 3. To modify a component, right-click the component to view a popup menu, then select the item you want to change.
- 4. You can also click the name of the component in the status bar in the lower portion of the screen to edit the component's configuration.

For more information on the features of the Network Map, click **Help** on the toolbar.



The Network Map SSH client requires a Java virtual machine to operate. If you are unable to run the Network Map SSH client, make sure that you have a Java virtual machine installed and that your browser has Java enabled in the Preferences, or Options, section. For more information on Java virtual machines and download options, visit your web browser manufacturer's web site.

# Viewing system statistics

Using the Configuration utility, you can view current statistics about the following objects in the configuration:

| Statistics Item  | Description                                                                                                      |
|------------------|------------------------------------------------------------------------------------------------------------------|
| Summary          | This statistics screen provides information about the 3-DNS Controller itself.                                   |
| Globals          | This statistics screen provides information on the global settings for the 3-DNS Controller.                     |
| Disabled objects | This statistics screen provides information on the servers and virtual servers that you have disabled.           |
| Metrics          | This statistics screen provides performance information for the servers and virtual servers you have configured. |

**Table 6.1** Configuration utility Statistics screens

| Statistics Item              | Description                                                                                                                                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dynamic persistence requests | This statistics screen provides information on the virtual connections between local DNS servers and virtual servers for given wide IPs in the network. |
| Data centers                 | This statistics screen provides information on the data centers in your network.                                                                        |
| Sync groups                  | This statistics screen provides information on the 3-DNS Controllers that are in the same sync group as the controller you are looking at.              |
| Wide IPs                     | This statistics screen provides information on the wide IPs and pools you configured.                                                                   |
| ECV                          | This statistics screen provides performance information for any ECV health monitors you have configured.                                                |
| 3-DNS Controllers            | This statistics screen provides information on the 3-DNS Controllers you have configured.                                                               |
| BIG-IP Controllers           | This statistics screen provides information on the BIG-IP Controllers you have configured.                                                              |
| EDGE-FX Caches               | This statistics screen provides information on the EDGE-FX Caches you have configured.                                                                  |
| Probers                      | This statistics screen provides information on the probers you have configured.                                                                         |
| Hosts                        | This statistics screen provides information on the hosts you have configured.                                                                           |
| Virtual servers              | This statistics screen provides information on the virtual servers you have configured.                                                                 |
| Paths                        | This statistics screen provides information on the paths created by the 3-DNS Controller when paths are required to fulfill name resolution requests.   |
| Local DNS servers            | This statistics screen provides information on the local DNS servers in the 3-DNS Controller's database.                                                |

Table 6.1 Configuration utility Statistics screens

#### To view system statistics

- 1. In the navigation pane, expand the **Statistics** item.
- 2. From the list, select the item representing the statistics you wish to view.
- 3. For details about the information displayed on a specific statistics screen, click **Help** on the toolbar.



# Additional Load Balancing Options

- Configuring load balancing using specialized modes
- Setting up Quality of Service (QOS) mode
- Setting up Global Availability mode
- Setting up load balancing for services that require multiple ports

# Configuring load balancing using specialized modes

The 3-DNS Controller offers many options for load balancing DNS queries to virtual servers. The specialized modes described in this chapter help you refine the 3-DNS Controller's load balancing capabilities. This chapter describes the following specialized load balancing modes:

- Quality of Service
- Global Availability
- E-commerce

You can use these performance-based load balancing modes within in a pool, or you can use them among pools. For example, you can use the Topology mode to load balance among your pools, but you can use the QOS mode within the pools. These specialized mode help you refine the 3-DNS Controller's load balancing capabilities.

In addition to the information in this chapter, Chapter 5, *Load Balancing*, in the *3-DNS Controller Reference Guide*, contains extensive details on all of the load balancing options for the 3-DNS Controller.

# Setting up Quality of Service (QOS) mode

The Quality of Service (QOS) mode is a user-definable mode that includes a configurable combination of the Round Trip Time (RTT), Completion Rate, Packet Rate, Topology, Hops, VS Capacity, and Kilobytes/Second (KBPS) modes. The QOS mode is based on an equation that takes each of these performance factors into account. When the 3-DNS Controller selects a virtual server, it chooses the server with the best overall score.

The Quality of Service mode has default settings that make it easy to use: simply specify QOS as your preferred load balancing mode. There is no need to configure it, but if you want to change

the settings, you can customize the equation to put more or less weight on each individual factor. The following topics explain how to use and adjust the various settings.

### Understanding QOS coefficients

Table 7.1 lists each QOS coefficient, its scale, a likely upper limit for each, and whether a higher or lower value is more efficient.

| Coefficient     | How measured                                                                                        | Example upper limit | Higher or lower? |
|-----------------|-----------------------------------------------------------------------------------------------------|---------------------|------------------|
| Packet rate     | Packets per second                                                                                  | 700                 | Lower            |
| Round trip time | Microseconds                                                                                        | 2,000,000           | Lower            |
| Completion rate | Percentage of successfully transferred packets (0-100%)                                             | 100%                | Higher           |
| Topology        | Score that defines network proximity by comparing server and LDNS IP addresses (0-2 <sup>32</sup> ) | 100                 | Higher           |
| Hops            | Number of intermediate systems transitions (hops)                                                   | 64                  | Lower            |
| VS capacity     | Number of nodes <i>up</i>                                                                           | 20                  | Higher           |

Table 7.1 QOS coefficients: Ranges and limits

If you change the default QOS coefficients, keep the following issues in mind.

#### ♦ Scale

The raw metrics for each coefficient are not on the same scale. For example, completion rate is measured in percentages, while the packet rate is measured in packets per second.

#### **♦** Normalization

The 3-DNS Controller normalizes the raw metrics to values in the range of 0 to 10. As the QOS value is calculated, a high

measurement for completion rate is good, because a high percentage of completed connections are being made, but a high value for packet rate is not desirable because the packet rate load balancing mode attempts to find a virtual server that is not overly taxed at the moment.

#### Emphasis

You can adjust coefficients to emphasize one normalized metric over another. For example, by changing the coefficients to the values shown in Figure 7.1, you are putting the most emphasis on completion rate.

Figure 7.1 QOS coefficients emphasizing completion rate

In the preceding example, if the completion rates for two virtual servers are close, the virtual server with the best packet rate is chosen. If both completion rates and packet rates are close, the round trip time (RTT) breaks the tie. In this example, the metrics for Topology, Hops, and VS Capacity modes are not used in determining how to distribute connections.

### Customizing the QOS equation

You can customize the QOS equation globally, meaning that the equation applies to all wide IPs that use the QOS mode. You can also customize individual wide IPs, in which case the global QOS equation settings are overwritten.

# To modify global QOS coefficients using the Configuration utility

- In the navigation pane, click System.
   The System General screen opens.
- On the toolbar, click Load Balancing.
   The System Load Balancing screen opens.
- 3. Define the global QOS coefficients in the Round Trip Time, Completion Rate, Hops, BIG-IP Packet Rate, Topology, VS Capacity, and KBPS boxes.
- 4. Click Update.

# To modify QOS coefficients for a specific wide IP using the Configuration utility

- 1. In the navigation pane, click Wide IPs.
- 2. In the Wide IP column, click a wide IP name. The Modify Wide IP screen opens.
- On the toolbar, click **Modify Pool**.
   The Modify Wide IP Pools screen opens.
- 4. In the Pool Name column, click the name of a pool. The Modify Load Balancing screen opens.
- Define the wide IP's QOS coefficients in the Round Trip Time, Completion Rate, Hops, Packet Rate, Topology, VS Capacity, and KBPS boxes.
- 6. Click Update.

# To assign global QOS coefficients using the command line utility

- At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.
- On the 3-DNS Maintenance menu, select Edit 3-DNS Configuration to open the wideip.conf file.

- 3. Locate or add the **globals** statement. The **globals** statement should be at the top of the file.
- 4. Refer to the example syntax shown in Figure 7.2 to define a global QOS equation.

```
globals {
          qos_coeff_rtt 20
          qos_coeff_completion_rate 5
          qos_coeff_packet_rate 3
          qos_coeff_topology 0
          qos_coeff_hops 0
          qos_coeff_vs_capacity 0
          qos_coeff_kbps 0
}
```

Figure 7.2 Sample global QOS equation

# To assign QOS coefficients for a specific wide IP using the command line utility

- At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.
- 2. On the 3-DNS Maintenance menu, select **Edit 3-DNS Configuration** to open the **wideip.conf** file.
- 3. Locate the **wideip** statement you want to edit.
- 4. Refer to the example syntax shown in Figure 7.3 to define a wide IP's QOS equation.

Figure 7.3 displays a wide IP definition that overrides the global QOS equation settings shown in Figure 7.2.

```
wideip {
                      192.168.101.50
   address
   service
                        "http"
                      "www.wip.domain.com"
60 // increase the domain default ttl
   name
   ttl
   qos_coeff {
      rtt
                        21
      hops
      completion_rate 7
      packet rate 5
       topology
      vs_capacity
      kbps
   }
   pool {
                     name
ratio
      preferred qos
alternate ratio
address 192.168.101.50 ratio 2
address 192.168.103.50 ratio 1
address 192.168.103.50 ratio 1
   }
   pool {
     name
ratio 1
preferred rr
address 192.168.102.60 ratio 2
192.168.103.60 ratio 1
```

Figure 7.3 QOS coefficient settings that override the global QOS settings

### Using the Dynamic Ratio option

When the Dynamic Ratio option is turned on, the 3-DNS Controller treats QOS scores as ratios, and it uses each server in proportion to the ratio determined by the QOS calculation. When the Dynamic Ratio option is turned off (the default), the 3-DNS Controller uses

only the server with the highest QOS score for load balancing, (in which case it is a winner takes all situation) until the metrics information is refreshed.

### To turn on the Dynamic Ratio option using the Configuration utility

- 1. In the navigation pane, click Wide IPs.
- 2. In the Wide IP column, click a wide IP name. The Modify Wide IP screen opens.
- 3. On the toolbar, click **Modify Pool**. The Modify Wide IP Pools screen opens.
- 4. In the Pool Name column, click the name of a pool. The Modify Load Balancing screen opens.
- 5. Check Use Dynamic Ratio.
- 6. Click Update.

#### To manually turn on the Dynamic Ratio option

- 1. At the command prompt, type **3dnsmaint** to open the 3-DNS Maintenance menu.
- On the 3-DNS Maintenance menu, select Edit 3-DNS Configuration to open the wideip.conf file.

- Locate the wideip statement and the pool definition you want to edit.
- 4. Add the syntax (shown in bold in Figure 7.4) to the pool definition.

```
pool {
   name <"pool_name">
   [ ratio <pool_ratio> ]

   dynamic_ratio yes

[ rr_ldns < yes | no > ]
[ rr_ldns_limit <number> ]
[ preferred < completion_rate | ga | hops | kbps | leastconn |
   packet_rate | qos | random | ratio | return_to_dns | rr |
   rtt | static_persist | topology | vs_capacity | null > ]
[ alternate < ga | kbps | null | random | ratio | return_to_dns |
   rr | static_persist | topology | vs_capacity > ]
[ fallback < completion_rate | ga | hops | kbps | leastconn |
   packet_rate | qos | random | ratio | return_to_dns | rr |
   rtt | static_persist | topology | vs_capacity | null > ]
   address <vs_addr>[:<port>] [ratio <weight>]
}
```

Figure 7.4 Enabling dynamic ratio in a pool configuration

### Setting up Global Availability mode

The Global Availability mode repeatedly selects the first available virtual server in a wide IP definition to respond to DNS queries. If that virtual server becomes unavailable, subsequent connections go to the next listed virtual server in the wide IP definition.

The 3-DNS Controller always starts with the first virtual server in the list. Over time, the first server in the list receives the most connections, and the last server in the list receives the fewest connections. Figure 7.5 shows the 3-DNS Controller using the global availability load balancing mode.

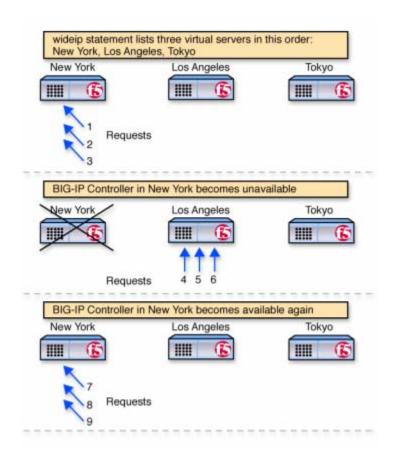



Figure 7.5 Global Availability mode

## To implement the Global Availability load balancing mode using the Configuration utility

- 1. In the navigation pane, click Wide IPs.
- 2. In the Wide IP column, click a wide IP name. The Modify Wide IP screen opens.
- 3. On the toolbar, click **Modify Pool**. The Modify Wide IP Pools screen opens.

- 4. In the Pool Name column, click the name of a pool. The Modify Load Balancing screen opens.
- Select Global Availability as the Preferred, Alternate, or Fallback load balancing mode.
- 6. Click Update.
- A popup screen appears, indicating that with the Global Availability load balancing mode you must order the virtual servers. Click OK.
   The Modify Virtual Servers screen opens.
- 8. In the Order column, specify the order in which you want to list the virtual servers for Global Availability.
- 9. Click Update.

### To implement the Global Availability load balancing mode using the command line utility

- At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.
- On the 3-DNS Maintenance menu, select Edit 3-DNS Configuration to open the wideip.conf file.
- 3. Locate the wideip statement you want to edit.
- 4. Define Global Availability as the preferred, alternate, or fallback load balancing mode.
- 5. List the virtual servers in descending order of preference. See Figure 7.6 for details.

### A Global Availability configuration example

With the global availability load balancing mode, you can configure one data center as your primary service and have several alternate services on standby. In the **wideip** statement, list the virtual servers in descending order of preference. The first available virtual server is chosen for each resolution request.

Figure 7.6 shows a sample **wideip** definition where global availability is the preferred load balancing mode.

Figure 7.6 Configuring a standby data center using Global Availability

The first listed virtual server (192.168.101.60 in this example) receives all resolution requests unless it becomes unavailable. If the first listed virtual server does become unavailable, then the 3-DNS Controller sends resolution requests to the second listed virtual server, and so on.

# Setting up load balancing for services that require multiple ports

Some sites require that you use multiple ports or services to access them, for example an e-commerce site. For these cases, you can configure a wide IP so that connections are not sent to a given address unless all specified ports or services are available.

## To configure multiple ports for a wide IP using the Configuration utility

- 1. In the navigation pane, click **Wide IPs**.
- 2. In the Wide IP column, click a wide IP name. The Modify Wide IP screen opens.
- 3. On the toolbar, click **Port List**. The Wide IP Port List screen opens.
- 4. Type a port number in the box or select a service from the list, then click the right arrow button.
- 5. Repeat step 4 for each port or service you need to add.
- 6. Click Update.

#### To manually configure multiple ports for a wide IP

- At the command prompt, type 3dnsmaint to open the 3-DNS Maintenance menu.
- On the 3-DNS Maintenance menu, select Edit 3-DNS Configuration to open the wideip.conf file.
- 3. Locate the wideip statement you want to edit.
- 4. Add the **port\_list** line as indicated in bold in Figure 7.7.

```
wideip {
 address <ip_addr>
 port <port_number> | <"service name">
 name < "domain_name">
  [ alias <"alias_name"> ]
  [ ttl <number> ]
  [ port_list <port_number> <port_number> ... ]
  [ qos_coeff {
   rtt <n>
   completion_rate <n>
   packet_rate <n>
   topology <n>
   hops <n>
    vs_capacity <n>
   kbps <n>
  [ pool_lbmode <rr | ratio | ga | random | topology> ]
  [ pool definitions ...]
```

Figure 7.7 Enabling multiple ports with the port\_list option

### An example configuration for e-commerce services

In this example, you are setting up a site for selling a product on the Internet. This site contains a non-secure area that contains the product catalog, and a secure area for placing orders. You can configure a wide IP so that clients are sent to a virtual server only when both the secure and non-secure areas are available.

The key entry for this configuration is **port\_list**. The **port\_list** entry specifies that requests can be sent to virtual servers in this pool only if ports 80 (non-secure area) and 443 (secure area) are available.

```
wideip {
  address
                      192.168.101.70
  port 80 // ...
port_list 80 443
"ssl.wip
                    80 // http
                               // e-commerce
                      "ssl.wip.domain.com"
  pool_lbmode rr
  pool {
     name
                     "bigip_pool"
     ratio 2
preferred qos
alternate ratio
address 192.168.101.70 ratio 7
address 192.168.102.60 ratio 2
  pool {
                   "host_pool"
     name
     ratio
                    1
     preferred
                    ratio
      address
                   192.168.104.50 ratio 2
      address
                   192.168.105.60 ratio 1
```

Figure 7.8 Syntax for e-commerce services

For every virtual server address in the pool, a virtual server definition must exist for each port in the port list. For the syntax example shown in Figure 7.8, the BIG-IP Controllers and host machines must have the following virtual servers defined:

```
192.168.101.70:80

192.168.101.70:443

192.168.102.60:80

192.168.104.50:80

192.168.104.50:443

192.168.104.50:443

192.168.105.60:80

192.168.105.60:443
```

# Ensuring availability for e-commerce, FTP, and other services that use multiple ports

Before the 3-DNS Controller selects a virtual server to receive a connection, it verifies that the virtual server is up and available. Certain types of network traffic, such as FTP traffic or e-commerce traffic, require that more than one port be available in order for the client's requests to be properly handled. For example, FTP servers use both ports 20 and 21, while e-commerce sites typically require that both ports 80 and 443 are available to handle HTTP and SSL traffic.

When you set up a load balancing configuration, you can define a port list for a wide IP. When the 3-DNS Controller receives a query, all of the ports in the port list must be available for each virtual server in the wide IP. If a virtual server does not have all ports in the port list available, the 3-DNS Controller marks it as unavailable for load balancing.

## To add a port list for a wide IP using the Configuration utility

- 1. In the navigation pane, click **Wide IPs**. The Wide IPs List screen opens.
- Click the name of the wide IP to which you want to add a port list.
   The Modify Wide IP screen opens.
- 3. Click **Port List** on the toolbar. The Wide IP Port List screen opens.
- 4. Add the ports to the port list for the wide IP, and click **Update**. For more information about this screen, click Help on the toolbar.



# Glossary

#### 3-DNS Maintenance menu

A command line utility that you can use to manually configure the 3-DNS Controller.

#### 3-DNS web server

A standard web server that runs on the 3-DNS Controller and hosts the Configuration utility, and also provides access to useful downloads.

#### A record

The A record is the ADDRESS resource record that a 3-DNS Controller returns to a local DNS server in response to a name resolution request. The A record contains a variety of information, including one or more IP addresses that resolve to the requested domain name.

#### access control list (ACL)

A list of local DNS server IP addresses that are excluded from path probing, hops, or port discovery queries.

#### active unit

In a redundant system, the controller that currently load balances connections. If the active unit in the redundant system fails, the standby unit assumes control and begins to load balance connections.

#### alternate method

Specifies the load balancing mode to use if the preferred method fails.

#### authoritative DNS

A DNS server that is considered authoritative for one or more DNS zones. Any DNS server that contains a complete copy of the zone file for a given domain is said to be authoritative for that zone. A complete zone file will contain a start of authority resource record (**SOA** record). See also *zones*.

Administrator Guide Glossary - I

#### big3d agent

A monitoring agent that collects metrics information about server performance and network paths between a data center and a specific local DNS server. The 3-DNS Controller uses the information collected by the **big3d** agent for dynamic load balancing.

#### **BIND (Berkeley Internet Name Domain)**

The most common implementation of DNS, which provides a system for matching domain names to IP addresses.

#### completion rate

The percentage of packets that a server successfully processes during a given conversation.

#### **Configuration utility**

The browser-based application that you use to configure the 3-DNS Controller. The 3-DNS web server hosts the Configuration utility.

#### content delivery network (CDN)

A content delivery network (CDN) is an architecture of Web-based network components that helps dramatically reduce the wide-area network latency between a client and the content they wish to access. A CDN includes some or all of the following network components: wide-area traffic managers, Internet service providers, content server clusters, caches, and origin content providers.

#### data center

A physical location that houses one or more 3-DNS Controllers, BIG-IP Controllers, EDGE-FX Caches, or host machines.

#### discovery factory

A tool managed by the **big3d** agent that checks for alternate ports to ping when trying to collect path data for a local DNS.

#### dynamic load balancing modes

Dynamic load balancing modes base connection distribution on live data, such as current server performance and current connection load.

#### dynamic ratio

An option for the Quality of Service load balancing mode. The dynamic ratio feature uses QOS scores as ratios for virtual servers and distributes connections according to the ratio weight for each virtual server. See also *QOS coefficient*.

#### **ECV** (Extended Content Verification)

A service monitor that checks the availability of actual content, (such as a file or an image) on a server, rather than just checking the availability of a port or service, such as HTTP on port 80.

#### fail-over

The process in which a standby unit in a redundant system takes over due to a software or hardware failure detected on the active unit.

#### fail-over cable

The cable that directly connects the two controller units in a redundant system.

#### **FDDI** (Fiber Distributed Data Interface)

A multi-mode protocol for transmitting data at up to 100 Mbps on optical-fiber cables.

#### **First-Time Boot utility**

A utility that walks you through the initial system configuration process on the 3-DNS Controller. The First-Time Boot utility runs automatically when you turn on a controller for the first time.

#### fallback method

Specifies the last load balancing mode that the 3-DNS Controller tries to use if both the preferred and the alternate methods fail.

Administrator Guide Glossary - 3

#### hardware-based fail-over

A redundant system in which the two units are connected directly by a cable.

#### hops

One point-to-point transmission in a network path between a host and a client server. A network path that included a stop at a network router would have two hops: the first from the client to the router, and the second from the router to the host server.

#### hops factory

A type of factory run by the **big3d** agent that collects hops data for network paths.

#### host

A network server which manages one or more virtual servers that the 3-DNS Controller uses for load balancing.

#### ICMP (Internet Control Message Protocol)

An Internet communications protocol used to determine information about routes to destination addresses, such as virtual servers managed by BIG-IP Controllers, EDGE-FX Caches, or hosts.

#### iQuery

A UDP-based protocol used to exchange information between **big3d** agents and 3-DNS Controllers. The iQuery protocol is officially registered for port 4353.

#### LDNS probe state

The status of an local DNS server with respect to metrics collection.

#### LDNS Round Robin

A standard DNS feature that allows a DNS server, or a 3-DNS Controller, to return multiple IP addresses in the A record. The local DNS, or even the browser, can cache the IP addresses and use them for future name resolutions.

#### local DNS (LDNS)

A local DNS server is typically found at a client's Internet service provider. The 3-DNS Controller calculates path information for the path between the local DNS and the virtual servers that the 3-DNS Controller is load balancing, and also uses the local DNS IP address for topology load balancing.

#### metrics

Performance data, including server performance and network path integrity, collected by **big3d** agents and used by the 3-DNS Controller for dynamic load balancing.

#### named

The name server daemon, which manages domain name service software.

#### NameSurfer

The third-party application that automatically manages DNS zone files on 3-DNS Controllers.

#### network-based redundant system

A redundant system in which two units communicate over a network connection, rather than a hard-wired connection.

#### path

The network route between two specific IP addresses. For dynamic load balancing, the 3-DNS Controller uses information about the path between a client LDNS and a specific virtual server that it is load balancing.

#### packet rate

The number of packets per second going in or coming out of a given server.

#### pool

A group of virtual servers to which the 3-DNS Controller distributes connections when load balancing a specific domain.

Administrator Guide Glossary - 5

#### port

A number that is associated with a specific service supported by a host.

#### preferred method

Specifies the primary load balancing mode used to load balance a wide IP. See also *alternate method* and *fallback method*.

#### principal 3-DNS Controller

A 3-DNS Controller that initiates metrics collection by the **big3d** agents and distributes the metrics to other members of the sync group. Note that a sync group can have only one principal. See also *receiver 3-DNS Controller*.

#### prober factory

A tool managed by the **big3d** agent that queries virtual servers to determine whether they are **up** or **down**, and also to determine path metrics such as round trip time and hops.

#### production rule

A tool on the 3-DNS Controller that can change system behavior under specific operating conditions. For example, a production rule can switch load balancing modes or can reroute network traffic to a specific set of servers, based on triggers such as time of day, or current network traffic load.

#### **QOS** coefficient

The ratio weight for a specific factor used in a QOS equation, such as Hops, Round Trip Time, Packet Rate, Completion Rate, KBPS, or Topology scores. Each factor has a default coefficient of 1, but you can change the QOS coefficients to put more weight on a specific factor, and to put less weight on other factors.

#### **QOS** equation

A calculation based on various path statistics used for dynamic load balancing including Hops, Round Trip Time, Packet Rate, Completion Rate, KBPS, and Topology scores.

#### **QOS** score

The result of a QOS calculation. When using dynamic load balancing modes, the 3-DNS Controller uses the QOS score to determine which virtual server has the best performance and should receive new connections.

#### ratio

A parameter that assigns a weight to a virtual server for load balancing purposes.

#### Ratio mode

The Ratio load balancing mode distributes connections across an array of virtual servers in proportion to the ratio weights assigned to each individual virtual server.

#### receiver 3-DNS Controller

A 3-DNS Controller in a sync group that receives metrics data that are broadcast from **big3d** agents, but does not initiate metrics collection. See also *principal 3-DNS Controller*.

#### redundant system

A pair of controllers that are configured for fail-over. In a redundant system, there are two controller units that share an IP address, one running as the active unit and one running as the standby unit. If the active unit fails, the standby unit takes over and manages connection requests. See also *shared IP alias*.

#### remote administrative IP address

An IP address from which a controller allows shell connections, such as Telnet or SSH.

#### rsetup

The script that configures the remote login tools, **rsh** and **rcp**, on a controller.

#### slave DNS server

A DNS server that updates its records by querying a master DNS server.

Administrator Guide Glossary - 7

#### shared IP alias

The IP address that represents a redundant system.

#### **SNMP (Simple Network Management Protocol)**

A standard Internet standard protocol developed to manage nodes on an IP network.

#### **SNMP** agent

The agent that controls SNMP communications on a server.

#### **SNMP** factory

A type of factory run by **big3d** agents that uses the SNMP protocol to collect metrics data for host servers.

#### **SNMP MIB (Management Information Base)**

A text file in standard SNMP format that defines the individual objects you can manage with common SNMP tools, such as HP OpenView.

#### sod (switch-over daemon)

A daemon that controls the fail-over process in a redundant system.

#### standby unit

A controller in a redundant system that is always prepared to become the active unit if the active unit fails.

#### static load balancing mode

A static load balancing mode bases connection distribution on a pre-defined list of criteria; it does not take current server performance or current connection load into account.

#### sync group

A group of 3-DNS Controllers that share configuration information. Each sync group has one principal 3-DNS Controller, and can also have one or more receiver 3-DNS Controllers.

#### time tolerance value

The number of seconds that one 3-DNS Controller's clock is allowed to differ in comparison to another 3-DNS Controller's clock, without the two clocks being considered out of sync.

#### topology record

A record that specifies a score for a local DNS location endpoint and virtual server location endpoint. Topology records are used by the topology load balancing mode to redirect DNS queries to the geographically-closest virtual server based on location information derived from the DNS query message.

#### topology score

The weight assigned to a topology record when the 3-DNS Controller is filtering the topology records to find the best match for a DNS query.

#### topology statement

A collection of topology records.

#### traceroute

The utility that the hops factory uses to calculate total number of network hops between an LDNS and a specific data center.

#### TTL (time-to-live)

The number of seconds for which a specific DNS record or metric is considered to be valid. When a TTL expires, the server usually must refresh the information before using it.

#### virtual server

A specific combination of a virtual address and virtual port, associated with a content site that is managed by a BIG-IP Controller, EDGE-FX Cache, or other type of host server.

#### watchdog timer card

A hardware device that monitors the 3-DNS Controller for hardware failure.

Administrator Guide Glossary - 9

#### well known services (WKS)

A type of resource record that describes the services usually provided by a particular protocol on a particular port.

#### wide IP

A mapping of a fully-qualified domain name to a set of virtual servers that host the domain content, such as a web site or an e-commerce site. See also *pool*.

#### zone

A subset of DNS records for one or more domains.

#### zone file

A set of DNS records that contain domains with one or many domain names, designated mail servers, a list of other name servers that can answer resolution requests, and a set of zone attributes called SOA (Start Of Authority).



# Index

|                                        | В                                       |
|----------------------------------------|-----------------------------------------|
| 3-DNS Console                          | basic configuration                     |
| about 6-13                             | setting up 2-14                         |
| using 6-14                             | big3d agent                             |
| 3-DNS Controller                       | about 1-9                               |
| about 1-7                              | configuring 2-7                         |
| adding a second controller 5-1         | sample configuration 1-13               |
| configuration scalability 1-8          | working with 6-6                        |
| features 1-7                           | BIG-IP Controller                       |
| managing CDNs 4-1                      | connection management I-17              |
| synchronizing time 6-11                | defining 2-22                           |
| verifying the configuration 5-4        | broadcasting                            |
| working with multiple controllers 5-1  | big3d agents 1-13                       |
| 3-DNS Controllers                      | browsers, supported versions I-3        |
| configuring as authoritative 2-12      |                                         |
| configuring NTP 6-10                   | <b>C</b>                                |
| 3-DNS Maintenance menu                 | C                                       |
| about 1-3                              | CDN                                     |
| changing passwords 6-12                | configuration example 4-2               |
| using 6-3                              | configuring 4-5                         |
| working with 6-2                       | delegating DNS queries 4-3              |
| 3-DNS web server I-2                   | described 4-1                           |
| adding users 6-9, 6-12                 | managing with 3-DNS Controller 4-1      |
| changing passwords 6-9, 6-12           | using pool type CDN 4-1                 |
| configuring 6-9                        | using topology load balancing 4-1       |
| password file 6-13                     | CDN providers                           |
| 3dns_add script                        | described 4-1                           |
| about 5-1                              | resolving DNS queries 4-3               |
| running the script 5-4                 | Change 6-9                              |
| verifying the configuration 5-4        | Check big3d command 6-7                 |
| 3dns_auth script 6-8                   | command line utility                    |
| 3dnsmaint command 6-3                  | changing passwords 6-13                 |
|                                        | see 3-DNS Maintenance menu              |
| A                                      | command syntax, conventions 1-5         |
|                                        | configuration tools                     |
| A records I-I5                         | choosing I-I                            |
| access control lists (ACLs) 1-20       | Configuration utility                   |
| Add Users for 3-DNS Web Administration | about 1-2                               |
| command 6-9                            | viewing statistics 6-15                 |
| administrator kit, PDF versions 1-6    | Configure Connection to NTP Time Server |
| Ask F5 knowledge base 1-6              | command 6-11                            |
| authoritative DNS                      | Configure NameSurfer command 6-11       |
| configuring 3-DNS Controllers 2-12     | Configure secure communication          |
| configuring NameSurfer 2-13            | command 6-8                             |

Administrator Guide Index - 3

| configuring                              | E                                        |
|------------------------------------------|------------------------------------------|
| 3-DNS Controllers 2-20                   | e-commerce site                          |
| BIG-IP Controllers 2-22                  | configuring 7-11                         |
| data centers 2-16                        | e-commerce, configuring wide IPs 7-15    |
| global variables 2-38                    | EDGE-FX Cache 1-19                       |
| hosts 2-28                               | Edit 3-DNS Configuration command 6-4     |
| servers 2-19                             | Edit big3d matrix command 6-7            |
| sync groups 2-35                         | Edit BIND Configuration command 6-4      |
| configuring a CDN                        | encrypted connections I-2I               |
| adding 3-DNS Controllers 4-6             | extended content verification (ECV) I-18 |
| adding a topology statement 4-9          |                                          |
| adding data centers 4-5                  | _                                        |
| adding pool type CDN 4-8                 | F                                        |
| adding server types 4-7                  | fail-over                                |
| adding wide IPs and pools 4-7            | hardware-based I-10                      |
| monitoring 4-12                          | network-based I-10                       |
| using a last resort pool 4-11            | First-Time Boot utility 1-2              |
| content availability, monitoring 1-18    | FTP, configuring wide IPs 7-15           |
| content delivery network                 |                                          |
| See CDN                                  | <b>C</b>                                 |
| crypto controller I-21                   | G                                        |
| custom port discovery 1-20               | Generate iQuery key command 6-9          |
|                                          | geolocation classifier                   |
| D                                        | IP addresses I-18                        |
| D                                        | Global Availability mode                 |
| data centers                             | about 7-8                                |
| adding a 3-DNS Controller 5-1            | configuring 7-9                          |
| configuring 2-16                         | configuring standby services 7-10        |
| planning 2-2                             | global variables                         |
| DNS                                      | configuring 2-38                         |
| master servers I-I3                      | globally distributed network 3-2         |
| root servers 1-15                        | adding 3-DNS Controllers 3-4             |
| DNS queries                              | adding BIG-IP Controllers 3-5            |
| delegating to CDN providers 4-3          | adding data centers 3-3                  |
| DNS zone files                           | configuring 3-3                          |
| planning 2-9                             |                                          |
| domain names, maximum supported 1-8      | Н                                        |
| Dump and List named Database command 6-4 | hardware-based fail-over 1-10            |
| Dynamic Ratio                            | health checks I-18                       |
| about 7-6                                |                                          |
| configuring 7-7                          | help<br>online I-6                       |
| using with QOS mode 7-6                  | online 1-0                               |
| Dynamic Ratio attribute 7-6              |                                          |

| hosts                             | multiple services                              |
|-----------------------------------|------------------------------------------------|
| configuring 2-28                  | configuring 7-11                               |
| probing 2-29, 2-32                |                                                |
| supported SNMP agents 2-33        | N                                              |
| viewing statistics 2-34           |                                                |
|                                   | name resolution 1-13, 1-15                     |
| I                                 | name resolution load balancing 1-18 NameSurfer |
| Install and Start big3d 6-7       | about I-2                                      |
| Internet protocols 1-7            | configuring 6-11                               |
| IP geolocation 1-18               | configuring as authoritative 2-13              |
| iQuery                            | transferring BIND files 2-11                   |
| and NTP 6-10                      | Netscape Navigator 1-3                         |
| iQuery protocol 1-7               | network management tools 1-7                   |
|                                   | Network Map                                    |
| K                                 | about 6-14                                     |
|                                   | viewing 6-14                                   |
| KBPS load balancing 1-19          | Network map 1-18                               |
| knowledge base, Ask F5 1-6        | network-based fail-over 1-10                   |
|                                   | nslookup 5-6                                   |
| L                                 | NTP                                            |
| last resort pool 1-20             | and iQuery 6-10                                |
| using in a CDN configuration 4-11 |                                                |
| limit settings                    | 0                                              |
| about I-20                        | •                                              |
| limits settings                   | online help 1-6                                |
| modifying 3-9                     |                                                |
| modifying thresholds 3-9          | P                                              |
| load balancing                    | passwords                                      |
| Dynamic Ratio option 7-6          | 3-DNS web server 6-12                          |
| pools I-15                        | changing root 6-11                             |
| Quality of Service mode 7-1       | PDF versions, administrator kit 1-6            |
| load balancing modes              | pool metrics 1-18                              |
| Global Availability 7-9           | pool, last resort 1-20                         |
| Topology 3-2                      | pools I-15                                     |
|                                   | port discovery methods 1-20                    |
| М                                 | port list                                      |
| M                                 | configuring 7-11                               |
| Maintenance menu 6-2              | principal 3-DNS Controller 1-13                |
| metrics                           | adding another controller 5-2                  |
| collecting from hosts 2-32        | probe blocking. See ACLs                       |
| hosts 2-32                        | probing                                        |
| Microsoft Internet Explorer 1-3   | hosts 2-29, 2-32                               |
| Mindterm SSH console 1-21         | production rules 2-8                           |

Administrator Guide Index - 5

| Q                                        | SNMP MIB 1-2                                         |
|------------------------------------------|------------------------------------------------------|
| QOS coefficients                         | SSH I-8                                              |
| about 7-2                                | using the Mindterm console 1-21                      |
| and wide IPs 7-4                         | SSL 1-8                                              |
| configuring 7-4                          | Statistics screens                                   |
| considerations 7-2                       | in Configuration utility 6-17                        |
| QOS equation                             | statistics screens                                   |
| modifying 7-3                            | about 6-15                                           |
| syntax 7-5                               | viewing 6-15                                         |
| Quality of Service (QOS) mode            | statistics, viewing in 3dnsmaint 6-4                 |
| about 7-1                                | Stop syncd command 6-10                              |
| default settings 7-1                     | stylistic conventions 1-4                            |
| understanding QOS coefficients 7-2       | sub-domains 2-9                                      |
| using Dynamic Ratio 7-6                  | sync groups                                          |
| ,                                        | broadcasting configurations 2-1                      |
| _                                        | configuring 2-35                                     |
| R                                        | planning 2-2                                         |
| Reconfigure 3-DNS Web Administration     | sample configuration 1-13                            |
| command 6-9                              | syncd                                                |
| redundant systems I-10                   | stopping or restarting 6-10                          |
| release notes 1-6                        | working with 6-10                                    |
| remote administration 2-2                | Synchronize Metrics Data command 6-8                 |
| Restart 3-DNS Administration command 6-9 | synchronized files                                   |
| Restart big3d command 6-7                | archiving 6-8                                        |
|                                          | copying metrics 6-8                                  |
| S                                        | system resources                                     |
|                                          | about 3-9                                            |
| sample configuration I-II                | setting limits 3-9                                   |
| big3d agent communications I-I3          |                                                      |
| secure connections I-2I                  | Т                                                    |
| security                                 | ·                                                    |
| changing passwords 6-12                  | Technical Support web site 1-6                       |
| security features 1-8                    | time tolerance value 2-37                            |
| server performance                       | Topology 3-2                                         |
| monitoring 3-10                          | using in a global network 3-2                        |
| servers                                  | topology load balancing 1-18                         |
| configuring 2-19<br>defining 2-2         | topology records<br>configuring 3-7                  |
| SMTP 1-7                                 |                                                      |
| SNMP I-7                                 | topology statement                                   |
| host probing 2-32                        | using in a CDN 4-9 topology-based access control 2-8 |
| probing hosts 2-29                       | topology-based access collicol 2-0                   |
| SNMP agents                              |                                                      |
| supported hosts 2-33                     |                                                      |
| supported Hosts 2-33                     |                                                      |

### U utilities 3-DNS Maintenance menu command line Configuration 1-2 ٧ viewing statistics 6-4 virtual servers availability settings 3-10 defining 2-3 W web server. See 3-DNS web server 1-2 wide IP sub-domains 2-9, 2-12 wide IPs and QOS coefficients 7-4 configuring 6-4 verifying configuration 5-6 Ζ zone file management Namesurfer I-2 zone files transferring to 3-DNS 2-9

Administrator Guide Index - 7