ARX®–1500/2500 Hard Drive FRU
Any modifications to this device, unless expressly approved by the manufacturer, can void the user's authority to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance
This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance
This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to Information Technology products at the time of manufacture.

Acknowledgments
This product includes software from several third-party vendors. Each vendor is listed below with the applicable copyright.

Copyright (c) 1990, 1993, 1994, 1995 The Regents of the University of California. All rights reserved.

Copyright 2000 by the Massachusetts Institute of Technology. All Rights Reserved.

Export of this software from the United States of America may require a specific license from the United States Government. It is the responsibility of any person or organization contemplating export to obtain such a license before exporting.

Copyright 1993 by OpenVision Technologies, Inc.

Copyright (C) 1998 by the FundsXpress, INC.

All rights reserved.

Export of this software from the United States of America may require a specific license from the United States Government. It is the responsibility of any person or organization contemplating export to obtain such a license before exporting.

Copyright (c) 1995-2001 International Business Machines Corporation and others

All rights reserved.

Copyright (c) 1990-2003 Sleepycat Software. All rights reserved.

Copyright (c) 1995, 1996 The President and Fellows of Harvard University. All rights reserved.

Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved.

Unless otherwise noted, the companies, organizations, products, domain names, email addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Revision History
September 2012 — First printing for hardware release.
About Replacing Hard Drives

This document describes how to remove and insert the ARX-1500 and ARX-2500 replaceable hard disk drives.

Before You Begin

When returning a disk drive, power supply, or the entire ARX, you must include the serial number for the chassis. In some cases, you also need to include the base MAC address for the chassis.

Use the `show chassis` command to obtain the serial number. If you cannot reach the CLI, read the serial number on the front, righthand side of the chassis (under the cooling holes).

See the following example output for the `show chassis` command.

canbyA# show chassis

<table>
<thead>
<tr>
<th>Identification:</th>
<th>UUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>canbyA</td>
</tr>
<tr>
<td></td>
<td>64a6417e-cc3d-11df-80ca-a73fbeb72ef8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chassis:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis Type</td>
<td>ARX-1500</td>
</tr>
<tr>
<td>Model Number</td>
<td>ARX1500LE-F5</td>
</tr>
<tr>
<td>Serial Number</td>
<td>XX-ABCD-0509</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chassis Environment:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base MAC Address</td>
<td>00:0a:49:75:5d:00</td>
</tr>
<tr>
<td>Power</td>
<td>Online</td>
</tr>
<tr>
<td>Fan(setting)</td>
<td>Online (high)</td>
</tr>
<tr>
<td>System Temp.</td>
<td>Normal 30 C</td>
</tr>
<tr>
<td>CPU Temp.</td>
<td>51 C</td>
</tr>
</tbody>
</table>
The disk drives are accessible from the front of the chassis, as called out in Figure 1.1.

As a general rule, perform all replacements on the secondary (also called backup or junior) device. In particular, perform disk drive replacements on the secondary device.

WARNING

Static electricity can damage device components. Be sure to wear antistatic straps before handling hardware modules and disk drives.

Replacing the Disk Drives

Replacing disk drives on the ARX-1500 / ARX-2500 platforms is a hot-swap procedure and does not require powering down the device nor does it involve a loss of service.

If you do not replace a failed drive, the system continues to run, in a degraded state, with the disk missing from the RAID set. Best practices dictate that you replace failed disk drives. To achieve maximum performance and avoid service interruptions, replace disk drives on the secondary (backup) device only. If necessary, fail over the device before starting the replacement process.

Simply replacing a failed disk does not incorporate the newly-installed replacement disk into the RAID set nor does it initiate the process of rebuilding the RAID set. After replacing a disk, be sure to rebuild the RAID set. For instructions, see Rebuilding the RAID Set, on page 1-4.

As shown in the following figure, the ARX-1500 contains two hot-swap, hard disk drives. The disk drives are in the same location on the ARX-2500.

Figure 1.1 ARX-1500 disk drive location
Replacing the Disk Drives

The bays are clearly labeled on the device and designated in the CLI as Bay 1 (top drive) and Bay 2 (bottom drive).

Note that each disk drive includes 2 LEDs. The LED on the left indicates power and the LED on the right indicates drive activity.

The system notifies you of an internal disk failure (or potential failure) through the CLI or an SNMP trap. If you receive an email notification of an internal disk failure, consult the ARX SNMP Reference in the section Disks (Internal to the ARX).

◆ Important

Before replacing a drive, verify that the bay number (of the drive you are about to replace) matches the bay number of the failed drive (from the CLI or the SNMP trap).

To replace a disk drive:

1. From the CLI, ensure that the primary device is fully functional by entering the show redundancy command.

2. From the CLI, enter the show chassis diskuse command to determine the bay number of the offline or failed drive.

For example, the following ARX-1500 output from the show chassis diskuse command shows two disks installed and the disk in bay 2 as Failed:

```bash
canbyA# show chassis diskuse

Logical Disk Details:
Disk  Status  Verification Mode  Verification Rate
------  --------  ----------------  ----------------
1       Optimal  Automatic      10 %

Disk Details:
Disk  Size     State    Transfer Rate  Model
------  --------  -------  ------------  --------
Bay 1  136.91G  Online   3.0Gb/sec  HUC103014CSS600
Bay 2  136.91G  Failed   3.0Gb/sec  HUC103014CSS600

RAID Controller Details:
Rebuild Rate  Max Transfer Rate  Firmware  RAID Alarm
-------------  ---------------  --------  ------------
90 %          3.0Gb/sec       5.2-0[17945]  Enabled
```
About Replacing Hard Drives

1. Slide the latch (silver button, left side of the drive carrier) to the left to release the drive lever.
2. Grasp the lever and gently slide the drive out of the slot.
3. Insert the replacement drive into the slot.
4. Press the replacement drive gently to lock the lever and fully seat the drive.

Silencing the RAID Alarm

If an audible alarm goes off after you remove a drive, you can silence it with the `raid silence` command entered from the CLI (priv-exec mode).

For example, the following command sequence logs into a device at address 10.1.33.105, enters `enable` to go to priv-exec mode, and silences the RAID alarm:

```bash
$ telnet 10.1.33.105
Trying 10.1.33.105...
Connected to 10.1.33.105.
Escape character is '^]'.
Username: admin
Password: password
canbyA> enable
canbyA# raid silence
canbyA# ...
```

Rebuilding the RAID Set

Simply replacing a failed disk does not incorporate the newly-installed disk into the RAID set nor does it initiate the process of rebuilding the RAID set.

To enable the newly-installed disk to join the RAID set, issue the `raid rebuild` command from the CLI priv-exec mode:

```bash
canbyA# raid rebuild {disk1 | disk2}
```

where `disk1` | `disk2` specifies the disk to rebuild. (The disk in bay 1 is `disk1`.)

For example, the following command rebuilds the disk in bay 2:

```bash
canbyA# raid rebuild disk2
canbyA# ...
```
Replacing the Disk Drives

Rebuilding the RAID set places a load on the disk subsystem. In particular, the ARX-1500 and ARX-2500 write their metalog data to the RAID set, and managed-volume performance is affected if these writes are slowed.

The ARX-1500 and ARX-2500 write all of their metalog data both to the active peer and the backup peer at the same time, so a raid rebuild on the backup peer still affects managed-volume processing on the active peer.

Thus, to achieve maximum performance on the active device during the rebuilding process and to avoid service interruptions, we recommend performing the rebuild on the secondary (backup) device and during off hours only.

Monitoring the RAID Set Rebuild

A disk rebuild can take more than an hour. To monitor the progress of the rebuild, you can issue the show chassis diskuse command to see a percentage-complete meter. For more information, see RAID Management in the ARX CLI Reference.
Chapter 1
About Replacing Hard Drives