
BIG-IP® Acceleration: Concepts

Version 11.6

Table of Contents

Legal Notices...11

Acknowledgments...13

Chapter 1: Introducing Acceleration..19

Overview: Introduction to acceleration...20

Origin web server load balancing..20

About data centers..20

Data compression...21

Data deduplication...21

Optimization of TCP connections..21

Caching objects...22

Optimization of HTTP protocol and web applications..22

Overview: BIG-IP Acceleration...22

Application management...23

Application monitoring...23

Deployment of Distributed BIG-IP Application Acceleration..................................23

Management of requests to origin web servers..23

Management of responses to clients...24

Flow of requests and responses...25

About symmetric optimization using iSession on BIG-IP systems........................26

Chapter 2: Accelerating Traffic with Acceleration Profiles..27

About HTTP compression profiles...28

HTTP Compression profile options...28

About Web Acceleration profiles..28

Web Acceleration profile settings..29

Meta characters...30

Web Acceleration Profile statistics description..32

About iSession profiles...33

Screen capture showing compression settings...33

About CIFS traffic optimization...34

About MAPI optimization..34

About TCP profiles...35

About tcp-lan-optimized profile settings..35

About tcp-mobile-optimized profile settings...35

About mptcp-mobile-optimized profile settings..36

About tcp-wan-optimized profile settings...37

About HTTP2 (experimental) profiles...37

About HTTP/2 profiles...38

HTTP/2 (experimental) profile settings..39

3

Table of Contents

About SPDY profiles...40

About NTLM profiles..41

About OneConnect profiles..42

OneConnect and HTTP profiles..43

OneConnect and SNATs...44

OneConnect and NTLM profiles..44

Chapter 3: Managing Traffic with Bandwidth Controllers..45

Overview: Bandwidth control management..46

Bandwidth controllers vs. rate shaping..46

About static bandwidth control policies..46

About dynamic bandwidth control policies...46

Example of a dynamic bandwidth control policy..47

Chapter 4: Managing Traffic with Rate Shaping...49

Introduction to rate shaping..50

About rate classes..50

Rate class name..51

Base rate..51

Ceiling rate...51

Burst size...51

Depleting the burst reservoir..52

Replenishing a burst reservoir...52

About specifying a non-zero burst size ...52

About the direction setting...53

About the parent class...54

About shaping policy..54

About queue method..54

About drop policy...55

Chapter 5: Using Acceleration Policies to Manage and Respond to HTTP Requests.......57

Overview: Acceleration policies...58

Policies screen access..58

Types of acceleration policies..58

BIG-IP acceleration policies options..59

Acceleration policy selection...59

Customization of acceleration policies..60

Creation of user-defined policies...60

Publication of acceleration policies...60

About the Acceleration Policy Editor role..60

Acceleration policies exported to XML files...61

Overview: Policy Matching...61

Resolution rules when multiple nodes match..61

Unmatched requests...63

4

Table of Contents

An example matching rule..63

Overview: Policy Editor screen...64

Policy Editor screen parts..65

Policy Tree...65

Acceleration policy rule inheritance...66

Inheritance rule parameters..67

Inheritance rule parameters override..68

Policy Tree modification for an acceleration policy..69

Overview: HTTP header parameters...69

Requirements for servicing requests...70

About the HTTP request process..70

Requirements for caching responses..71

About the HTTP responses process...72

Configuration of rules based on HTTP request headers.......................................72

Configuration of rules based on HTTP response headers....................................77

Regular expressions and meta tags for rules..78

Management of Cache-Control response headers...78

X-WA-Info response headers..79

Reference summary for HTTP data...82

HTTP request data type parameters...82

Response status codes...82

S code definitions..83

HTTP data types for regular expression strings..84

Max age value for compiled responses...86

Meta characters...86

Advanced Debug settings for General Options ..88

Chapter 6: Differentiating Requests and Responses with Variation Rules........................89

Overview: Variation rules...90

Cache efficiency improvement..90

User-specific content...91

Definition of variation rules parameters...91

Value groups...91

Management of conflicting rules parameters..92

Chapter 7: Managing Compiled Responses with Assembly Rules.....................................93

Overview: Assembly rules..94

Management of content served from origin web servers......................................94

Chapter 8: Proxying Requests and Responses..95

Overview: Proxying rules...96

Proxying rules parameters..96

5

Table of Contents

Chapter 9: Managing Requests and Responses with Lifetime Rules.................................97

Overview: Lifetime rules...98

Lifetime managed requests...98

Lifetime managed responses..98

About specifying the amount of time to store cached content...............................99

About serving cached content when origin web server content is

unavailable...100

About preserving origin web server headers and directives to downstream

devices...100

Custom Cache-Control directives..100

About replacing origin web server headers and directives with a no-cache

directive..101

Chapter 10: Invalidating Cached Content..103

Overview: Invalidating cached content for an application..104

Overview: Invalidating cached content for a node..104

Invalidations triggers...104

Invalidations lifetime..105

Invalidations rules parameters..106

Request header matching criteria...106

Cached content to invalidate...106

Chapter 11: Managing Object Types..107

Overview: Object classification..108

Classification by object type..108

Classification by group..108

Management of object types...108

Chapter 12: Caching Objects in a VIPRION Cluster...111

Overview: Acceleration in a cluster..112

Chapter 13: Immediately Caching Dynamic Objects..113

Overview: Caching an object on first hit...114

Chapter 14: Accelerating Parallel HTTP Requests...115

Overview: HTTP request queuing..116

Chapter 15: Managing HTTP Traffic with the HTTP/2 Profile...119

Overview: Managing HTTP Traffic with the HTTP/2 (experimental) profile....................120

About HTTP/2 profiles...120

HTTP/2 (experimental) profile settings..121

6

Table of Contents

Chapter 16: Managing HTTP Traffic with the SPDY Profile..123

Overview: Managing HTTP traffic with the SPDY profile..124

SPDY profile settings...124

Chapter 17: Accelerating Requests and Responses with Intelligent Browser

Referencing..127

Overview: Reducing conditional GET requests with Intelligent Browser Referencing....128

About conditional GET requests..128

About Intelligent Browser Referencing for HTML..128

About Intelligent Browser Referencing for cascading style sheet files................128

About the adaptive Intelligent Browser Referencing lifetime...............................129

Intelligent Browser Referencing example...129

Advanced IBR settings for general options ...130

Chapter 18: Accelerating JavaScript and Cascading Style Sheet Files...........................133

Overview: Accelerating cascading style sheet, JavaScript, and inline image files.........134

About minification of JavaScript and cascading style sheet content...................134

About reordering cascading style sheet and JavaScript URLs and content........134

About inlining documents and image data..134

About concatenation of JavaScript and cascading style sheet files....................135

About DNS prefetching..135

Chapter 19: Establishing Additional TCP Connections with MultiConnect.....................137

Overview: Accelerating requests and responses with MultiConnect..............................138

Optimization of TCP connections..138

MultiConnect example...138

Chapter 20: Serving Specific Hyperlinked Content with Parameter Value

Substitution..141

Overview: Serving specific hyperlinked content with parameter value substitution.......142

About configuring value substitution parameters for an assembly rule...............142

About using number randomizer for parameter value substitution......................143

A parameter value substitution example...143

Chapter 21: Accelerating Access to PDF Content..145

Overview: Accelerating access to PDF content with PDF linearization.........................146

Chapter 22: Accelerating Images with Image Optimization...147

Overview: Accelerating images with image optimization...148

Optimization of image format..148

Optimization with JPEG-XR..148

7

Table of Contents

Optimization with WebP..149

Optimization with file compression..149

Optimization of headers..149

Optimization of sampling factor...150

Optimization with progressive encoding..150

Optimization of color values..150

Chapter 23: Accelerating Video Streams with Video Delivery Optimization....................151

About video delivery optimization..152

About caching video segments by location...152

About caching popular content..152

About video delivery optimization cache priority...152

About globally configuring video delivery optimization..152

About video delivery optimization bit rate selection...152

About the video Quality of Experience profile..153

About mean opinion score...153

Chapter 24: Compressing Content from an Origin Web Server..155

Overview: Enabling content compression from an origin web server............................156

Chapter 25: Accelerating Responses with Metadata Cache Responses..........................157

Overview: Using Metadata cache responses to accelerate responses..........................158

Advanced Metadata Cache Options for General Options ...158

Chapter 26: Accelerating Traffic with a Local Traffic Policy..159

About classifying types of HTTP traffic with a local traffic policy....................................160

Local traffic policy matching Strategies settings..160

Local traffic policy matching Requires profile settings...160

Local traffic policy matching Controls settings...161

Local traffic policy matching Conditions operands ..161

Local traffic policy matching Actions operands ...163

Chapter 27: Accelerating Traffic with Intelligent Client Cache..167

About intelligent client cache..168

Chapter 28: Using Forward Error Correction to Mitigate Packet Loss.............................169

Overview: Using forward error correction (FEC) to mitigate packet loss........................170

About forward error correction (FEC)..170

Chapter 29: Using the Request Logging Profile...171

Overview: Configuring a Request Logging profile..172

About the Request Logging profile..172

8

Table of Contents

Standard log formats...172

Request Logging profile settings..173

Request Logging parameters...175

Chapter 30: Monitoring BIG-IP Acceleration Application Performance............................179

Overview: Monitoring the performance of a BIG-IP acceleration application.................180

Advanced performance monitor settings for general options180

Overview: ROI reports...180

About Byte Savings reports...181

About Caching Requests Saved reports...181

About IBR Savings reports..181

About Inlined Links reports..182

About ICC Savings reports..182

Chapter 31: Managing Deduplication...183

What is symmetric data deduplication?...184

Which codec do I choose?...184

Chapter 32: About Discovery..185

About discovery on BIG-IP AAM systems..186

About subnet discovery...186

About dynamic discovery of remote endpoints..186

9

Table of Contents

10

Table of Contents

Legal Notices

Publication Date

This document was published on November 14, 2014.

Publication Number

MAN-0467-03

Copyright

Copyright © 2014, F5 Networks, Inc. All rights reserved.

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5 assumes
no responsibility for the use of this information, nor any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent,
copyright, or other intellectual property right of F5 except as specifically described by applicable user
licenses. F5 reserves the right to change specifications at any time without notice.

Trademarks

AAM, Access Policy Manager, Advanced Client Authentication, Advanced Firewall Manager, Advanced
Routing, AFM, Application Acceleration Manager, Application Security Manager, APM, ARX, AskF5,
ASM, BIG-IP, BIG-IQ, Cloud Extender, CloudFucious, Cloud Manager, Clustered Multiprocessing, CMP,
COHESION, Data Manager, DevCentral, DevCentral [DESIGN], DNS Express, DSC, DSI, Edge Client,
Edge Gateway, Edge Portal, ELEVATE, EM, EnterpriseManager, ENGAGE, F5, F5 [DESIGN], F5 Certified
[DESIGN], F5 Networks, F5 SalesXchange [DESIGN], F5 Synthesis, f5 Synthesis, F5 Synthesis [DESIGN],
F5 TechXchange [DESIGN], Fast Application Proxy, Fast Cache, FirePass, Global Traffic Manager, GTM,
GUARDIAN, iApps, IBR, iCall, Intelligent Browser Referencing, Intelligent Compression, IPv6 Gateway,
iControl, iHealth, iQuery, iRules, iRules OnDemand, iSession, L7 Rate Shaping, LC, Link Controller,
LineRate, LineRate Systems [DESIGN], Local Traffic Manager, LROS, LTM, Message Security Manager,
MobileSafe, MSM, OneConnect, Packet Velocity, PEM, Policy Enforcement Manager, Protocol Security
Manager, PSM, Real Traffic Policy Builder, SalesXchange, ScaleN, SDAC (except in Japan), SDC, Signalling
Delivery Controller, Solutions for an application world, Software Designed Applications Services, SSL
Acceleration, StrongBox, SuperVIP, SYN Check, TCP Express, TDR, TechXchange, TMOS, TotALL,
Traffic Management Operating System, Traffix (except Germany), Traffix [DESIGN] (except Germany),
Transparent Data Reduction, UNITY, VAULT, vCMP, VE F5 [DESIGN], Versafe, Versafe [DESIGN],
VIPRION, Virtual Clustered Multiprocessing, WebSafe, and ZoneRunner, are trademarks or service marks
of F5 Networks, Inc., in the U.S. and other countries, and may not be used without F5's express written
consent.

All other product and company names herein may be trademarks of their respective owners.

Patents

This product may be protected by one or more patents indicated at:
http://www.f5.com/about/guidelines-policies/patents

Export Regulation Notice

This product may include cryptographic software. Under the Export Administration Act, the United States
government may consider it a criminal offense to export this product from the United States.

http://www.f5.com/about/guidelines-policies/patents

RF Interference Warning

This is a Class A product. In a domestic environment this product may cause radio interference, in which
case the user may be required to take adequate measures.

FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device pursuant
to Part 15 of FCC rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This unit generates, uses, and
can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual,
may cause harmful interference to radio communications. Operation of this equipment in a residential area
is likely to cause harmful interference, in which case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Anymodifications to this device, unless expressly approved by themanufacturer, can void the user's authority
to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance

This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance

This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to
Information Technology products at the time of manufacture.

12

Legal Notices

Acknowledgments

This product includes software developed by Bill Paul.

This product includes software developed by Jonathan Stone.

This product includes software developed by Manuel Bouyer.

This product includes software developed by Paul Richards.

This product includes software developed by the NetBSD Foundation, Inc. and its contributors.

This product includes software developed by the Politecnico di Torino, and its contributors.

This product includes software developed by the Swedish Institute of Computer Science and its contributors.

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed by the Computer Systems Engineering Group at the Lawrence
Berkeley Laboratory.

This product includes software developed by Christopher G. Demetriou for the NetBSD Project.

This product includes software developed by Adam Glass.

This product includes software developed by Christian E. Hopps.

This product includes software developed by Dean Huxley.

This product includes software developed by John Kohl.

This product includes software developed by Paul Kranenburg.

This product includes software developed by Terrence R. Lambert.

This product includes software developed by Philip A. Nelson.

This product includes software developed by Herb Peyerl.

This product includes software developed by Jochen Pohl for the NetBSD Project.

This product includes software developed by Chris Provenzano.

This product includes software developed by Theo de Raadt.

This product includes software developed by David Muir Sharnoff.

This product includes software developed by SigmaSoft, Th. Lockert.

This product includes software developed for the NetBSD Project by Jason R. Thorpe.

This product includes software developed by Jason R. Thorpe for AndCommunications, http://www.and.com.

This product includes software developed for the NetBSD Project by Frank Van der Linden.

This product includes software developed for the NetBSD Project by John M. Vinopal.

This product includes software developed by Christos Zoulas.

This product includes software developed by the University of Vermont and State Agricultural College and
Garrett A. Wollman.

This product includes software developed by Balazs Scheidler (bazsi@balabit.hu), which is protected under
the GNU Public License.

This product includes software developed by Niels Mueller (nisse@lysator.liu.se), which is protected under
the GNU Public License.

In the following statement, "This software" refers to the Mitsumi CD-ROM driver: This software was
developed by Holger Veit and Brian Moore for use with 386BSD and similar operating systems. "Similar
operating systems" includes mainly non-profit oriented systems for research and education, including but
not restricted to NetBSD, FreeBSD, Mach (by CMU).

This product includes software developed by the Apache Group for use in the Apache HTTP server project
(http://www.apache.org/).

This product includes software licensed from Richard H. Porter under the GNU Library General Public
License (© 1998, Red Hat Software), www.gnu.org/copyleft/lgpl.html.

This product includes the standard version of Perl software licensed under the Perl Artistic License (© 1997,
1998 TomChristiansen and Nathan Torkington). All rights reserved. Youmay find the most current standard
version of Perl at http://www.perl.com.

This product includes software developed by Jared Minch.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product contains software based on oprofile, which is protected under the GNU Public License.

This product includes RRDtool software developed by Tobi Oetiker (http://www.rrdtool.com/index.html)
and licensed under the GNU General Public License.

This product contains software licensed from Dr. Brian Gladman under the GNU General Public License
(GPL).

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes Hypersonic SQL.

This product contains software developed by the Regents of the University of California, SunMicrosystems,
Inc., Scriptics Corporation, and others.

This product includes software developed by the Internet Software Consortium.

This product includes software developed by Nominum, Inc. (http://www.nominum.com).

This product contains software developed by Broadcom Corporation, which is protected under the GNU
Public License.

This product contains software developed byMaxMind LLC, and is protected under the GNULesser General
Public License, as published by the Free Software Foundation.

This product includes Intel QuickAssist kernel module, library, and headers software licensed under the
GNU General Public License (GPL).

This product includes software licensed fromGerald Combs (gerald@wireshark.org) under the GNUGeneral
Public License as published by the Free Software Foundation; either version 2 of the License, or any later
version. Copyright ©1998 Gerald Combs.

This product includes software developed by Thomas Williams and Colin Kelley. Copyright ©1986 - 1993,
1998, 2004, 2007

Permission to use, copy, and distribute this software and its documentation for any purpose with or without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation. Permission to modify the
software is granted, but not the right to distribute the complete modified source code. Modifications are to
be distributed as patches to the released version. Permission to distribute binaries produced by compiling
modified sources is granted, provided you

1. distribute the corresponding source modifications from the released version in the form of a patch file
along with the binaries,

14

Acknowledgments

2. add special version identification to distinguish your version in addition to the base release version
number,

3. provide your name and address as the primary contact for the support of your modified version, and
4. retain our contact information in regard to use of the base software.

Permission to distribute the released version of the source code alongwith corresponding sourcemodifications
in the form of a patch file is granted with same provisions 2 through 4 for binary distributions. This software
is provided "as is" without express or implied warranty to the extent permitted by applicable law.

This product includes software developed by the Computer Systems Engineering Group at Lawrence
Berkeley Laboratory. Copyright ©1990-1994 Regents of the University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment: This product includes software developed by the Computer Systems Engineering
Group at Lawrence Berkeley Laboratory.

4. Neither the name of the University nor of the Laboratory may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDINGNEGLIGENCEOROTHERWISE) ARISING INANYWAYOUTOF THEUSEOF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes software developed by Sony Computer Science Laboratories Inc. Copyright ©
1997-2003 Sony Computer Science Laboratories Inc. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THISSOFTWARE ISPROVIDEDBYSONYCSLANDCONTRIBUTORS "AS IS"ANDANYEXPRESS
OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA,ORPROFITS;ORBUSINESS INTERRUPTION)HOWEVERCAUSEDANDONANYTHEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product contains software developed by Google, Inc. Copyright ©2011 Google, Inc.

15

BIG-IP® Acceleration: Concepts

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE ANDNONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN ANACTIONOF CONTRACT, TORT OROTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

This software incorporates JFreeChart, ©2000-2007 by Object Refinery Limited and Contributors, which
is protected under the GNU Lesser General Public License (LGPL).

This product includes software written by Steffen Beyer and licensed under the Perl Artistic License and
the GPL.

Rsync was written by Andrew Tridgell and Paul Mackerras, and is available under the GNU Public License.

This product includes Malloc library software developed by Mark Moraes. (©1988, 1989, 1993, University
of Toronto).

This product includes open SSH software developed by Tatu Ylonen (ylo@cs.hut.fi), Espoo, Finland
(©1995).

This product includes open SSH software developed by Niels Provos (©1999).

This product includes SSH software developed by Mindbright Technology AB, Stockholm, Sweden,
www.mindbright.se, info@mindbright.se (©1998-1999).

This product includes free SSL software developed by Object Oriented Concepts, Inc., St. John's, NF,
Canada, (©2000).

This product includes software developed by Object Oriented Concepts, Inc., Billerica, MA, USA (©2000).

This product includes free software developed by ImageMagick Studio LLC (©1999-2011).

This product includes software developed by Bob Withers.

This product includes software developed by Jean-Loup Gaily and Mark Adler.

This product includes software developed by Markus FXJ Oberhumer.

This product includes software developed by Guillaume Fihon.

This product includes QPDF software, developed by Jay Berkenbilt, copyright©2005-2010, and distributed
under version 2 of the OSI Artistic License (http://www.opensource.org/licenses/artistic-license-2.0.php).

This product includes software developed by Jeremy Ashkenas and DocumentCloud, and distributed under
the MIT license. Copyright © 2010-2013 Jeremy Ashkenas, DocumentCloud.

This product includes gson software, distributed under the Apache License version 2.0. Copyright ©
2008-2011 Google Inc.

This product includes libwebp software. Copyright © 2010, Google Inc. All rights reserved.

This product includes jxrlib software, copyright ©2009 Microsoft Corp. All rights reserved. Distributed
under the new BSD license.

This product includes node-uuid software, copyright © 2010-2012, Robert Kieffer, and distributed under
the MIT license.

This product includes opencsv software, which is distributed under the Apache 2.0 license.

16

Acknowledgments

This product includes owasp-jave-encoder software, copyright © 2014, Jeff Ichnowski, and distributed
under the New BSD license.

17

BIG-IP® Acceleration: Concepts

Chapter

1
Introducing Acceleration

• Overview: Introduction to acceleration
• Overview: BIG-IP Acceleration

Overview: Introduction to acceleration

BIG-IP® acceleration, deployed symmetrically, asymmetrically, or in combination, can significantly improve
transaction response times. It includes specific techniques that modify or optimize the way in which TCP
and other protocols, applications, and data flows can function across the network. Acceleration features
enable you to refine transaction response times, according to your specific needs.

BenefitAcceleration feature

Enables users to access the best-performing source.Origin web server load
balancing

Enables users to access the best-performing site.Global server load balancing

Reduces the amount of transmitted data. Asymmetric compression condenses
web data for transmission to a browser. Symmetric compression condenses
any data transmission to a remote acceleration device.

Compression

Replaces previously sent data with dictionary pointers to minimize
transmitted data and improve response time. Also ensures that the data is

Data deduplication

current and delivered only to authorized users. This feature is available only
with a licensed BIG-IP® device.

Improves TCP performance. Asymmetric optimization aggregates requests
for any TCP protocol to reduce connection processing. It optimizes TCP

TCP optimization

processing for TCP/IP stacks that increase client-side connections to speed
web page downloads. Symmetric optimization aggregates transactions inside
tunnels that connect acceleration devices.

Manipulates HTTP responses to increase browser caching and decrease
HTTP requests.

Web browser object caching

Reduces client response times by serving web objects directly from a remote
device, rather than from a central server.

Remote web object caching

Manipulates web requests and responses to increase HTTP and web
application efficiency.

HTTP protocol and web
application optimization

Origin web server load balancing

A virtual IP address can be configured on a BIG-IP® Local Traffic Manager™, which then acts as a proxy
for that IP address. The BIG-IP Local Traffic Manager directs a client request made to the VIP to a server
among a pool of servers, all of which are configured to respond to requests made to that address. A server
pool improves the response time by reducing the load on each server and, consequently, the time required
to process a request.

About data centers

All of the resources on your network are associated with a data center. BIG-IP® Global Traffic Manager™

(GTM™) consolidates the paths and metrics data collected from the servers, virtual servers, and links in the
data center. GTM uses that data to conduct load balancing and route client requests to the best-performing
resource based on different factors.

20

Introducing Acceleration

GTM might send all requests to one data center when another data center is down. Alternatively, GTM
might send a request to the data center that has the fastest response time. A third option might be for GTM
to send a request to the data center that is located closest to the client's source address.

Tip: The resources associated with a data center are available only when the data center is also available.

Data compression

Compression of HTTP andHTTPS traffic removes repetitive data and reduces the amount of data transmitted.
Compression provided by the Local Traffic Manager™ offloads the compression overhead from origin web
servers and allows the Local Traffic Manager to perform other optimizations that improve performance for
an HTTP or HTTPS stream.

Data deduplication

Data deduplication requires the symmetric acceleration provided by BIG-IP® Application Acceleration
Manager™ (AAM™). A client-side device sends a request to a server-side device, The server-side device
responds to the client object request by sending new data and a dictionary entry or pointer that refers to the
data to the client-side device. The client-side device stores the data and the pointer before sending it on to
the requesting client. When a user requests the data a second or subsequent time from the client-side device,
the server-side device checks for changes to the data, and then sends one or more pointers and any new data
that has not been previously sent.

Optimization of TCP connections

The BIG-IP® application acceleration provides MultiConnect functionality that decreases the number of
server-side TCP connections required while increasing the number of simultaneous client-side TCP
connections available to a browser for downloading a web page.

Decreasing the number of server-side TCP connections can improve application performance and reduce
the number of servers required to host an application. Creating and closing a TCP connection requires
significant overhead, so as the number of open server connections increases, maintaining those connections
while simultaneously opening new connections can severely degrade server performance and user response
time.

Despite the ability for multiple transactions to occur within a single TCP connection, a connection is typically
between one client and one server. A connection normally closes either when a server reaches a defined
transaction limit or when a client has transferred all of the files that are needed from that server. The BIG-IP
system, however, operates as a proxy and can pool TCP server-side connections by combiningmany separate
transactions, potentially from multiple users, through fewer TCP connections. The BIG-IP system opens
new server-side connections only when necessary, thus reusing existing connections for requests from other
users whenever possible.

The Enable MultiConnect To check box on the Assembly screen of BIG-IP applies MultiConnect
functionality to image or script objects that match the node. The Enable MultiConnect Within check box,
however, appliesMultiConnect functionality to image or script objects that are linked within HTML or CSS
files for the node.

21

BIG-IP® Acceleration: Concepts

Caching objects

Caching provides storage of data within close proximity of the user and permits reuse of that data during
subsequent requests.

Web browser objects

In one form of caching, a BIG-IP® instructs a client browser to cache an object, marked as static, for a
specified period. During this period, the browser reads the object from cache when building a web page
until the content expires, whereupon the client reloads the content. This form of caching enables the browser
to use its own cache instead of expending time and bandwidth by accessing data from a central site.

Remote web objects

In a second form of caching, a BIG-IP in a data center manages requests for web application content from
origin web servers. Operating asymmetrically, the BIG-IP caches objects from origin web servers and
delivers them directly to clients. The BIG-IP module handles both static content and dynamic content, by
processing HTTP responses, including objects referenced in the response, and then sending the included
objects as a single object to the browser. This form of caching reduces server TCP and application processing,
improves web page loading time, and reduces the need to regularly expand the number of web servers
required to service an application.

Non-web objects

In a third form of caching, a BIG-IP at a remote site, operating symmetrically, caches and serves content
to users. The BIG-IP serves content locally whenever possible, thus reducing the response time and use of
the network.

Optimization of HTTP protocol and web applications

HTTP protocol optimization achieves a high user performance level by optimally modifying each HTTP
session. Some web applications, for example, cannot return an HTTP 304 status code (Not Modified) in
response to a client request, consequently returning an object. Because the BIG-IP® proxies connections
and caches content, when a requested object is unchanged, the BIG-IP returns an HTTP 304 response instead
of returning the unchanged object, thus enabling the browser to load the content from its own cache even
when a web application hard codes a request to resend the object.

The BIG-IP improves the performance of Web applications by modifying server responses, which includes
marking an object as cacheable with a realistic expiration date. This optimization is especially beneficial
when using off-the-shelf or custom applications that impede or prevent changes to code.

Overview: BIG-IP Acceleration

The BIG-IP® provides an acceleration delivery solution designed to improve the speed at which users access
your web applications (such asMicrosoft® SharePoint, Microsoft®OutlookWebAccess, BEAAquaLogic®,
SAP® Portal, Oracle® Siebel™ CRM, Oracle® Portal, and others) and wide area network (WAN).

The BIG-IP accelerates access to your web applications by using acceleration policy features that modify
web browser behavior, as well as compress and cache dynamic and static content, decreasing bandwidth
usage and ensuring that your users receive the most expedient and efficient access to your web applications
and WAN.

22

Introducing Acceleration

Application management

To accelerate and manage access to your applications, the BIG-IP® system uses acceleration policies to
manipulate HTTP responses from origin web servers. After the BIG-IP system manipulates the HTTP
responses, it processes the responses. Therefore, the BIG-IP system processes manipulated responses, rather
than the original responses that are sent by the origin web servers.

Application monitoring

You can easily monitor your HTTP traffic and system processes by using various monitoring tools. You
can use BIG-IP® application acceleration performance reports, the BIG-IP Dashboard, and other related
statistics or logging, as necessary to acquire the information that you want.

Deployment of Distributed BIG-IP Application Acceleration

You can deploy BIG-IP application acceleration functionality to optimize HTTP traffic in a worldwide,
geographically distributed configuration.

A geographically distributed deployment consists of two or more BIG-IP devices installed on each end of
a WAN: one in the same location as the origin web servers that are running the applications to which the
BIG-IP is accelerating client access, and the other near the clients initiating the requests.

Deploying multiple BIG-IP devices achieves additional flexibility in controlling where processing takes
place. To prevent sending assembled documents over the WAN, all assembly, except PDF and image
optimization, occurs on the device that resides closest to the initiated request.

Figure 1: A distributed application acceleration deployment

Management of requests to origin web servers

Most sites are built on a collection of web servers, application servers, and database servers, together known
as origin web servers. The BIG-IP® system is installed on your network between the users of your applications
and the origin web servers on which the applications run, and accelerates your application’s response to
HTTP requests.

23

BIG-IP® Acceleration: Concepts

Origin web servers can serve all possible permutations of content, while the BIG-IP system only stores and
serves page content that clients have previously requested from your site. By transparently servicing the
bulk of common requests, the BIG-IP system significantly reduces the load on your origin web servers,
which improves performance for your site.

Once installed, the BIG-IP system receives all requests destined for the origin web server. When a client
makes an initial request for a specific object, the BIG-IP system relays the request to the origin web server,
and caches the response that it receives in accordance with the policy, before forwarding the response to
the client. The next time a client requests the same object, the BIG-IP system serves the response from
cache, based on lifetime settings within the policy, instead of sending the request to the origin web servers.

For each HTTP request that the BIG-IP system receives, the system performs one of the following actions.

DescriptionAction

Upon receiving a request from a browser or web client, the BIG-IP
system initially checks to see if it can service the request from compiled
responses in the system’s cache.

Services the request from its cache

If the BIG-IP system is unable to service the request from the system’s
cache, it sends a request to the origin web server. Once it receives a

Sends the request to the origin web
servers

response from the origin web server, the BIG-IP system caches that
response according to the associated acceleration policy rules, and
then forwards the request to the client.

The BIG-IP system relays requests directly to the origin web server,
for some predefined types of content, such as requests for streaming
video.

Relays the request to the origin
web servers

For any encrypted traffic (HTTPS) content that you do not want the
BIG-IP system to process, you can use tunneling. Note that the BIG-IP
system can cache and respond to SSL traffic without using tunnels.

Creates a tunnel to send the request
to the origin web servers

During the process of application matching, the BIG-IP system uses the hostname in the HTTP request to
match the request to an application profile that you created. Once matched to an application profile, the
BIG-IP system applies the associated acceleration policy’smatching rules in order to group the request and
response to a specific leaf node on the Policy Tree. The BIG-IP system then applies the acceleration policy’s
acceleration rules to each group. These acceleration rules dictate how the BIG-IP system manages the
request.

Management of responses to clients

The first time that a BIG-IP® system receives new content from the origin web server in response to an
HTTP request, it completes the following actions, before returning the requested object (response) to the
client.

DescriptionAction

The BIG-IP system uses compiled responses received from the
origin web server, to assemble an object in response to an HTTP
request.

Compiles an internal representation of
the object

The origin web server generates specific responses based on certain
elements in the request, such as the URI and query parameters.

Assigns a Unique Content Identifier
(UCI) to the compiled response, based
on elements present in the request The BIG-IP system includes these elements in a UCI that it creates,

so that it can easily match future requests to the correct content in
its cache. The BIG-IP system matches content to the UCI for both
the request and the compiled response that it created to service the
request.

24

Introducing Acceleration

Flow of requests and responses

The BIG-IP® system processes application requests and responses in a general sequential pattern.

Figure 2: Request and response flow

Each step is processed in the following sequence.

1. Clients, using web browsers, request pages from your site. From the client’s perspective, they are
connecting directly to your site; they have no knowledge of the BIG-IP system.

2. The BIG-IP system examines the client’s request to determine if it meets all the HTTP requirements
needed to service the request. If the request does not meet the HTTP requirements, the BIG-IP system
issues an error to the client.

3. The BIG-IP system examines the request elements and creates a UCI, and then reviews the system’s
cache to see if it has a compiled response stored under that same UCI.

If the content is being requested for the first time (there is no matching compiled response in the system’s
cache), the BIG-IP system uses the host map to relay the request to the appropriate origin web server to
get the required content.

If content with the same UCI is already stored as a compiled response in the system’s cache, the BIG-IP
system checks to see if the content has expired. If the content has expired, the BIG-IP system checks to
see if the information in the system’s cache still matches the origin web server. If it does, the BIG-IP
system moves directly to step 7. Otherwise, it performs the following step.

4. The origin web server either responds or queries the application servers or databases content.
5. The application servers or databases provide the input back to the origin web server.
6. The origin web server replies to the BIG-IP system with the requested material, and the BIG-IP system

compiles the response. If the response meets the appropriate requirements, the BIG-IP system stores the
compiled response in the system’s cache under the appropriate UCI.

7. The BIG-IP system uses the compiled response, and any associated assembly rule parameters, to recreate
the page. The assembly rule parameters dictate how to update the page with generated content.

8. The BIG-IP system directs the response to the client.

25

BIG-IP® Acceleration: Concepts

About symmetric optimization using iSession on BIG-IP systems

The BIG-IP® systems work in pairs on opposite sides of the WAN to optimize the traffic that flows between
them through an iSession™ connection. A simple point-to-point configuration might include BIG-IP systems
in data centers on opposite sides of the WAN. Other configuration possibilities include point-to-multipoint
(also called hub and spoke) and mesh deployments.

The following illustration shows an example of the flow of traffic across theWAN through a pair of BIG-IP
devices. In this example, traffic can be initiated on both sides of the WAN.

Figure 3: Example of traffic flow through a BIG-IP pair with iSession connection

Each BIG-IP device is an endpoint. From the standpoint of each BIG-IP device, it is the local endpoint.
Any BIG-IP device with which the local endpoint interacts is a remote endpoint. After you identify the
endpoints, communication between the BIG-IP pair takes place in an iSession connection between the two
devices. When you configure the local BIG-IP device, you also identify any advertised routes, which are
subnets that can be reached through the local endpoint. When viewed on a remote system, these subnets
appear as remote advertised routes.

To optimize traffic, you create iApps™ templates to select the applications you want to optimize, and the
BIG-IP system sets up the necessary virtual servers and associated profiles. The system creates a virtual
server on the initiating side of the WAN, with which it associates a profile that listens for TCP traffic of a
particular type (HTTP, CIFS, FTP). The local BIG-IP system also creates a virtual server, called an iSession
listener, to receive traffic from the other side of the WAN, and it associates a profile that terminates the
iSession connection and forwards the traffic to its destination. For some applications, the system creates an
additional virtual server to further process the application traffic.

The default iSession profile, which the system applies to application optimization, includes symmetric
adaptive compression and symmetric data deduplication.

26

Introducing Acceleration

Chapter

2
Accelerating Traffic with Acceleration Profiles

• About HTTP compression profiles
• About Web Acceleration profiles
• About iSession profiles
• About CIFS traffic optimization
• About MAPI optimization
• About TCP profiles
• About HTTP2 (experimental) profiles
• About SPDY profiles
• About NTLM profiles
• About OneConnect profiles

About HTTP compression profiles

HTTP compression reduces the amount of data to be transmitted, thereby significantly reducing bandwidth
usage. All of the tasks needed to configure HTTP compression on the BIG-IP® system, as well as the
compression software itself, are centralized on the BIG-IP system. The tasks needed to configure HTTP
compression for objects in an Application Acceleration Manager module policy node are available in the
Application AccelerationManager, but an HTTP compression profile must be enabled for them to function.

When configuring the BIG-IP system to compress data, you can:

• Configure the system to include or exclude certain types of data.
• Specify the levels of compression quality and speed that you want.

You can enable the HTTP compression option by setting theURICompression or theContent Compression
setting of theHTTPCompression profile toURI List orContent List, respectively. This causes the BIG-IP
system to compress HTTP content for any responses in which the values that you specify in the URI List
or Content List settings of an HTTP profile match the values of the Request-URI or Content-Type
response headers.

Exclusion is useful because some URI or file types might already be compressed. Using CPU resources to
compress already-compressed data is not recommended because the cost of compressing the data usually
outweighs the benefits. Examples of regular expressions that you might want to specify for exclusion are
.*\.pdf, .*\.gif, or .*\.html.

Note: The string that you specify in the URI List or the Content List setting can be either a pattern string
or a regular expression. List types are case-sensitive for pattern strings. For example, the system treats the
pattern string www.f5.com differently from the pattern string www.F5.com. You can override this
case-sensitivity by using the Linux regexp command.

HTTP Compression profile options

You can use an HTTP Compression profile alone, or with the BIG-IP® Application Acceleration Manager,
to reduce the amount of data to be transmitted, thereby significantly reducing bandwidth usage. The tasks
needed to configure HTTP compression for objects in an Application Acceleration Manager policy node
are available in the Application Acceleration Manager, but an HTTP Compression profile must be enabled
for them to function.

About Web Acceleration profiles

When used by the BIG-IP system without an associated Application Acceleration Manager application, the
Web Acceleration profile uses basic default acceleration.

When used with the Application Acceleration Manager, the Web Acceleration profile includes an ordered
list of associated Application Acceleration Manager applications, each of which defines the host names, IP
addresses, and policy that is applied to a request that matches the specified host name or IP address. You
can enable one or more Application Acceleration Manager applications in a Web Acceleration profile.

AWebAcceleration profile with multiple Application AccelerationManager applications that target different
host names can be handled by the same virtual server, or by multiple virtual servers, while simultaneously
allowing each application to apply a different policy to matching traffic.

28

Accelerating Traffic with Acceleration Profiles

The Application Acceleration Manager is enabled by configuring an Application Acceleration Manager
application and enabling it in the Web Acceleration profile.

Web Acceleration profile settings

This table describes the Web Acceleration profile configuration settings and default values.

DescriptionValueSetting

Specifies the name of the profile.No defaultName

Specifies the selected predefined or user-defined profile.Selected
predefined or

Parent Profile

user-defined
profile

Specifies the partition and path to the folder for the profile objects.CommonPartition / Path

Without a provisioned BIG-IP® Application Acceleration Manager,
this setting specifies the maximum size in megabytes (MB) reserved

100Cache Size

for the cache. When the cache reaches the maximum size, the system
starts removing the oldest entries.

With a provisioned Application Acceleration Manager, this setting
defines the minimum reserved cache size. The maximum size of the
minimum reserved cache is 64 GB (with provisioned cache
availability). An allocation of 15 GB is practical for most
implementations. The total available cache includes the minimum
reserved cache and a dynamic cache, used as necessary when the
minimum reserved cache is exceeded, for a total cache availability of
256 GB.

Specifies the maximum number of entries that can be in the cache.10000Maximum
Entries

Specifies how long in seconds that the system considers the cached
content to be valid.

3600MaximumAge

Specifies the smallest object in bytes that the system considers eligible
for caching.

500Minimum
Object Size

Specifies the largest object in bytes that the system considers eligible
for caching.

50000Maximum
Object Size

Specifies whether the system retains or excludes certain Uniform
Resource Identifiers (URIs) in the cache. The process forces the system

Not ConfiguredURI Caching

either to cache URIs that typically are ineligible for caching, or to not
cache URIs that typically are eligible for caching.

Specifies the URIs that the system either includes in or excludes from
caching.

No default valueURI List

• Pin List. Lists the URIs for responses that you want the system to
store indefinitely in the cache.

• Include List. Lists the URIs that are typically ineligible for caching,
but the system caches them. When you add URIs to the Include
List, the system caches the GET methods and other methods,
including non-HTTP methods.

• Exclude List. Lists the URIs that are typically eligible for caching,
but the system does not cache them.

29

BIG-IP® Acceleration: Concepts

DescriptionValueSetting
• Include Override List. Lists URIs to cache, though typically, they

would not be cached due to defined constraints, for example, the
Maximum Object Size setting. The default value is none. URIs in
the Include Override List list are cacheable even if they are not
specified in the Include List.

Note: You can use regular expressions to specify URIs in accordance
with BIG-IP supported meta characters.

Specifies how the system processes client-side Cache-Control
headers when caching is enabled.

AllIgnore Headers

• None. Specifies that the system honors all Cache-Control
headers.

• Cache-Control:max-age. Specifies that the system disregards a
Cache-Control:max-age request header that has a value of
max-age=0.

• All. Specifies that the system disregards all Cache-Control
headers.

Specifies, when enabled, that the system inserts Date and Age headers
in the cached entry. The Date header contains the current date and

EnabledInsert Age
Header

time on the BIG-IP® system. The Age header contains the length of
time that the content has been in the cache.

Specifies how quickly the system ages a cache entry. The aging rate
ranges from 0 (slowest aging) to 10 (fastest aging).

9Aging Rate

Lists enabled Application Acceleration Manager applications in the
Enabled field and available applications in the Available field.

No defaultAM
Applications

Meta characters

This table describes the meta characters that are supported by the BIG-IP for pattern matching.

ExampleDescriptionMeta
character

Matches any single character..

Matches the beginning of the line in a
regular expression. The BIG-IP assumes

^

that the beginning and end of line meta
characters exist for every regular
expression it sees.

The expression G.*P.* matches:Matches the end of the line. The BIG-IP
assumes that the beginning and end of

$

• GrandPlanline meta characters exist for every
regular expression it sees. • GreenPeace

• GParse
• GP

A pattern starting with the * character is the
same as using .* For example, the BIG-IP

30

Accelerating Traffic with Acceleration Profiles

ExampleDescriptionMeta
character

interprets the following two expressions as
identical.

• *Plan
• .*Plan

Matches zero or more of the patterns that
precede it.

*

The expression G.+P.* matches:Matches one or more of the patterns that
precede it.

+

• GrandPlan
• GreenPeace

Do not begin a pattern with the + character.
For example, do not use +Plan. Instead, use
.+Plan.

The expression G.?P.* matches:Matches none, or one of the patterns that
precede it.

?

• GParse
• GP

Do not begin a pattern with the ? character.
For example, do not use ?Plan. Instead, use
.?Plan.

The expression C[AHR] matches:Matches a set of characters. You can list
the characters in the set using a string
made of the characters to match.

[...]

• CAT
• CHARISMA
• CRY

You can also provide a range of characters by
using a dash. For example, the expression
AA[0-9]+ matches:

• AA269812209
• AA2

It does not, however, match AAB2.

To match any alphanumeric character, both
upper-case and lower-case, use the expression
[a-zA-Z0-9].

The expression C[^AHR].* matches:Matches any character not in the set. Just
as with the character, [...], you can

[^...]

• CLEARspecify the individual characters, or a
range of characters by using a dash (-). • CORY

• CURRENT

The expression C[^AHR].*, however, does
not match:

• CAT
• CHARISMA
• CRY

31

BIG-IP® Acceleration: Concepts

ExampleDescriptionMeta
character

The expression AA(12)+CV matches:Matches the regular expression contained
inside the parenthesis, as a group.

(...)

• AA12CV
• AA121212CV

The expression AA([de]12|[zy]13)CV
matches:

Matches either exp1 or exp2, where
exp1 and exp2 are regular expressions.

exp1 exp2

• AAd12CV
• AAe12CV
• AAz12CV
• AAy13CV

Web Acceleration Profile statistics description

This topic provides a description of Web Acceleration Profile statistics produced in tmsh.

Viewing Web Acceleration profile statistics

Statistics for the Web Acceleration Profile can be viewed in tmsh by using the following command.

tmsh show /ltm profile web-acceleration <profile_name>

Each statistic is described in the following tables.

Table 1: Virtual server statistics

DescriptionStatistic

The name of the associated virtual server.Virtual Server

Table 2: Cache statistics

DescriptionStatistic

The cache size for small objects (<4k) in cache and metastor tracking data.Cache Size (in
Bytes)

The total number of objects cached in the local cache for each TMM.Total Cached
Items

The total number of small objects (<4k) and metastor tracking data entities evicted
from cache.

Total Evicted
Items

The inter-stripe cache size for small objects (<4k) in cache and metastor tracking
data.

Inter-Stripe
Size (in Bytes)

The total number of objects in the inter-stripe caches for each TMM.Inter-Stripe
Cached Items

The total number of small objects (<4k) and metastor tracking data entities evicted
from the inter-stripe cache for each TMM.

Inter-Stripe
Evicted Items

32

Accelerating Traffic with Acceleration Profiles

Table 3: Cache Hits/Misses statistics

DescriptionStatistic

The total number of cache hits.Hits

The number of cache misses for objects that can otherwise be cached.Misses (Cacheable)

The number of cache misses for all objects.Misses (Total)

The number of inter-stripe cache hits for each TMM.Inter-Stripe Hits

The number of inter-stripe cache misses for each TMM.Inter-Stripe Misses

For LTM only, the number of cache hits for owner TMMs.
For AAM, this statistic does not apply.
Note that an increment of two can occur on first request.

Remote Hits

The number of cache misses for owner TMMs.Remote Misses

About iSession profiles

The iSession™ profile tells the system how to optimize traffic. Symmetric optimization requires an iSession
profile at both ends of the iSession connection. The system-supplied parent iSession profile isession, is
appropriate for all application traffic, and other iSession profiles have been pre-configured for specific
applications. The name of each pre-configured iSession profile indicates the application for which it was
configured, such as isession-cifs.

When you configure the iSession local endpoint on the Quick Start screen, the system automatically associates
the system-supplied iSession profile isession with the iSession listener isession-virtual it creates
for inbound traffic.

You must associate an iSession profile with any virtual server you create for a custom optimized application
for outbound traffic, and with any iSession listener you create for inbound traffic.

Screen capture showing compression settings

The following screen capture shows the pertinent compression settings.

Note: If adaptive compression is disabled, you must manually select a compression codec for iSession™

traffic. If you leave the other codecs enabled, the BIG-IP® system selects the bzip2 compression algorithm
by default, and that might not be the algorithm you want.

33

BIG-IP® Acceleration: Concepts

Figure 4: iSession profile screen with compression settings emphasized

About CIFS traffic optimization

Common Internet File System (CIFS) is a remote file access protocol that forms the basis of Microsoft®

Windows® file sharing. Various CIFS implementations (for example, Samba) are also available on other
operating systems such as Linux™. CIFS is the protocol most often used for transferring files over the
network. Using symmetric optimization, the BIG-IP® system can optimize CIFS traffic, resulting in faster
performance for transferring CIFS files, openingMicrosoft applications, and saving files. CIFS optimization
is particularly useful when two offices that are located far apart frequently need to share and exchange files.

Important: By default, Microsoft Windows clients do not require Server Message Block (SMB) signing,
except when communicating with their domain controller. If SMB signing settings have been changed, make
sure that SMB signing is optional on all servers and clients.

About MAPI optimization

Messaging Application Program Interface (MAPI) is the email protocol that Microsoft® Exchange Server
and Outlook® clients use to exchange messages. Optimization of MAPI traffic across the WAN requires a
virtual server for each Exchange-based server so that the BIG-IP® system can use the IP addresses of the
Exchange-based servers to locate MAPI traffic.

34

Accelerating Traffic with Acceleration Profiles

About TCP profiles

TCP profiles are configuration tools that help you to manage TCP network traffic. Many of the configuration
settings of TCP profiles are standard SYSCTL types of settings, while others are unique to the BIG-IP®

system.

TCP profiles are important because they are required for implementing certain types of other profiles. For
example, by implementing TCP, HTTP, Rewrite, HTML, and OneConnect™ profiles, along with a persistence
profile, you can take advantage of various traffic management features, such as:

• Content spooling, to reduce server load
• OneConnect, to pool idle server-side connections
• Layer 7 session persistence, such as hash or cookie persistence
• iRules® for managing HTTP traffic
• HTTP data compression
• HTTP pipelining
• URI translation
• HTML content modification
• Rewriting of HTTP redirections

The BIG-IP® system includes several pre-configured TCP profiles that you can use as is. In addition to the
default tcp profile, the system includes TCP profiles that are pre-configured to optimize LAN and WAN
traffic, as well as traffic for mobile users. You can use the pre-configured profiles as is, or you can create
a custom profile based on a pre-configured profile and then adjust the values of the settings in the profiles
to best suit your particular network environment.

About tcp-lan-optimized profile settings

The tcp-lan-optimized profile is a pre-configured profile type that can be associated with a virtual
server. In cases where the BIG-IP virtual server is load balancing LAN-based or interactive traffic, you can
enhance the performance of your local-area TCP traffic by using the tcp-lan-optimized profile.

If the traffic profile is strictly LAN-based, or highly interactive, and a standard virtual server with a TCP
profile is required, you can configure your virtual server to use the tcp-lan-optimized profile to enhance
LAN-based or interactive traffic. For example, applications producing an interactive TCP data flow, such
as SSH and TELNET, normally generate a TCP packet for each keystroke. A TCP profile setting such as
Slow Start can introduce latency when this type of traffic is being processed. By configuring your virtual
server to use the tcp-lan-optimized profile, you can ensure that the BIG-IP system delivers LAN-based or
interactive traffic without delay.

A tcp-lan-optimized profile is similar to a TCP profile, except that the default values of certain settings
vary, in order to optimize the system for LAN-based traffic.

You can use the tcp-lan-optimized profile as is, or you can create another custom profile, specifying
the tcp-lan-optimized profile as the parent profile.

About tcp-mobile-optimized profile settings

The tcp-mobile-optimized profile is a pre-configured profile type, for which the default values are set
to give better performance to service providers' 3G and 4G customers. Specific options in the pre-configured
profile are set to optimize traffic for most mobile users, and you can tune these settings to fit your network.

35

BIG-IP® Acceleration: Concepts

For files that are smaller than 1 MB, this profile is generally better than the mptcp-mobile-optimized
profile. For a more conservative profile, you can start with the tcp-mobile-optimized profile, and adjust
from there.

Note: Although the pre-configured settings produced the best results in the test lab, network conditions
are extremely variable. For the best results, start with the default settings and then experiment to find out
what works best in your network.

This list provides guidance for relevant settings

• Set the Proxy Buffer Low to the Proxy Buffer High value minus 64 KB. If the Proxy Buffer High is
set to less than 64K, set this value at 32K.

• The size of the Send Buffer ranges from 64K to 350K, depending on network characteristics. If you
enable the Rate Pace setting, the send buffer can handle over 128K, because rate pacing eliminates
some of the burstiness that would otherwise exist. On a network with higher packet loss, smaller buffer
sizes perform better than larger. The number of loss recoveries indicates whether this setting should be
tuned higher or lower. Higher loss recoveries reduce the goodput.

• Setting the Keep Alive Interval depends on your fast dormancy goals. The default setting of 1800
seconds allows the phone to enter low power mode while keeping the flow alive on intermediary devices.
To prevent the device from entering an idle state, lower this value to under 30 seconds.

• TheCongestion Control setting includes delay-based and hybrid algorithms, which might better address
TCP performance issues better than fully loss-based congestion control algorithms inmobile environments.
The Illinois algorithm is more aggressive, and can perform better in some situations, particularly when
object sizes are small. When objects are greater than 1 MB, goodput might decrease with Illinois. In a
high loss network, Illinois produces lower goodput and higher retransmissions. TheWoodside algorithm
relies on timestamps to determine transmission. If timestamps are not available in your network, avoid
using Woodside.

• For 4G LTE networks, specify the Packet Loss Ignore Rate as 0. For 3G networks, specify 2500.
When the Packet Loss Ignore Rate is specified as more than 0, the number of retransmitted bytes and
receives SACKs might increase dramatically.

• For the Packet Loss Ignore Burst setting, specify within the range of 6-12, if the Packet Loss Ignore
Rate is set to a value greater than 0. A higher Packet Loss Ignore Burst value increases the chance of
unnecessary retransmissions.

• For the Initial Congestion Window Size setting, round trips can be reduced when you increase the
initial congestion window from 0 to 10 or 16.

• Enabling the Rate Pace setting can result in improved goodput. It reduces loss recovery across all
congestion algorithms, except Illinois. The aggressive nature of Illinois results in multiple loss recoveries,
even with rate pacing enabled.

A tcp-mobile-optimized profile is similar to a TCP profile, except that the default values of certain
settings vary, in order to optimize the system for mobile traffic.

You can use the tcp-mobile-optimized profile as is, or you can create another custom profile, specifying
the tcp-mobile-optimized profile as the parent profile.

About mptcp-mobile-optimized profile settings

The mptcp-mobile-optimized profile is a pre-configured profile type for use in reverse proxy and
enterprise environments for mobile applications that are front-ended by a BIG-IP® system. This profile
provides amore aggressive starting point than the tcp-mobile-optimized profile. It uses newer congestion
control algorithms and a newer TCP stack, and is generally better for files that are larger than 1MB. Specific
options in the pre-configured profile are set to optimize traffic for most mobile users in this environment,
and you can tune these settings to accommodate your network.

36

Accelerating Traffic with Acceleration Profiles

Note: Although the pre-configured settings produced the best results in the test lab, network conditions
are extremely variable. For the best results, start with the default settings and then experiment to find out
what works best in your network.

The enabledMultipath TCP (MPTCP) option provides more bandwidth and higher network utilization. It
allows multiple client-side flows to connect to a single server-side flow. MPTCP automatically and quickly
adjusts to congestion in the network, moving traffic away from congested paths and toward uncongested
paths.

The Congestion Control setting includes delay-based and hybrid algorithms, which may better address
TCP performance issues better than fully loss-based congestion control algorithms in mobile environments.
Refer to the online help descriptions for assistance in selecting the setting that corresponds to your network
conditions.

The enabled Rate Pace option mitigates bursty behavior in mobile networks and other configurations. It
can be useful on high latency or high BDP (bandwidth-delay product) links, where packet drop is likely to
be a result of buffer overflow rather than congestion.

An mptcp-mobile-optimized profile is similar to a TCP profile, except that the default values of certain
settings vary, in order to optimize the system for mobile traffic.

You can use the mptcp-mobile-optimized profile as is, or you can create another custom profile,
specifying the mptcp-mobile-optimized profile as the parent profile.

About tcp-wan-optimized profile settings

The tcp-wan-optimized profile is a pre-configured profile type. In cases where the BIG-IP system is
load balancing traffic over a WAN link, you can enhance the performance of your wide-area TCP traffic
by using the tcp-wan-optimized profile.

If the traffic profile is strictly WAN-based, and a standard virtual server with a TCP profile is required, you
can configure your virtual server to use a tcp-wan-optimized profile to enhance WAN-based traffic.
For example, in many cases, the client connects to the BIG-IP virtual server over a WAN link, which is
generally slower than the connection between the BIG-IP system and the pool member servers. By configuring
your virtual server to use the tcp-wan-optimized profile, the BIG-IP system can accept the data more
quickly, allowing resources on the pool member servers to remain available. Also, use of this profile can
increase the amount of data that the BIG-IP system buffers while waiting for a remote client to accept that
data. Finally, you can increase network throughput by reducing the number of short TCP segments that the
BIG-IP® system sends on the network.

A tcp-wan-optimized profile is similar to a TCP profile, except that the default values of certain settings
vary, in order to optimize the system for WAN-based traffic.

You can use the tcp-wan-optimized profile as is, or you can create another custom profile, specifying
the tcp-wan-optimized profile as the parent profile.

About HTTP2 (experimental) profiles

You can configure the BIG-IP® Acceleration HTTP/2 profile to provide gateway functionality for HTTP
2.0 traffic, minimizing the latency of requests by multiplexing streams and compressing headers.

37

BIG-IP® Acceleration: Concepts

Important: Because the HTTP 2.0 specification is currently in a draft phase (draft 13), F5 Networks®

considers the HTTP/2 Profile functionality in this release to be experimental, primarily intended for
evaluation, and not intended for use in a production environment.

A client initiates an HTTP/2 request to the BIG-IP system, the HTTP/2 virtual server receives the request
on port 443, and sends the request to the appropriate server. When the server provides a response, the BIG-IP
system compresses and caches it, and sends the response to the client.

Note: Source address persistence is not supported by the HTTP/2 profile.

Summary of HTTP/2 profile functionality

By using the HTTP/2 profile, the BIG-IP system provides the following functionality for HTTP/2 requests.

Creating concurrent streams for each connection.
You can specify the maximum number of concurrent HTTP requests that are accepted on a HTTP/2
connection. If this maximum number is exceeded, the system closes the connection.

Limiting the duration of idle connections.
You can specify the maximum duration for an idle HTTP/2 connection. If this maximum duration is
exceeded, the system closes the connection.

Enabling a virtual server to process HTTP/2 requests.
You can configure the HTTP/2 profile on the virtual server to receive HTTP, SPDY, and HTTP/2 traffic,
or to receive only HTTP/2 traffic, based in the activation mode you select. (Note the HTTP/2 profile to
receive only HTTP/2 traffic is primarily intended for troubleshooting.)

Inserting a header into the request.
You can insert a header with a specific name into the request. The default name for the header is
X-HTTP/2.

Important: The HTTP/2 protocol is incompatible with NTLM protocols. Do not use the HTTP/2 protocol
with NTLM protocols.

About HTTP/2 profiles

Important: Subsequent versions of the HTTP/2 protocol might be incompatible with this release.

The BIG-IP® system's Acceleration functionality includes an HTTP/2 profile type that you can use to manage
HTTP/2 traffic, improving the efficiency of network resources while reducing the perceived latency of
requests and responses. The Acceleration HTTP/2 profile enables you to achieve these advantages by
multiplexing streams and compressing headers with Transport Layer Security (TLS) or Secure Sockets
Layer (SSL) security.

The HTTP/2 protocol uses a binary framing layer that defines a frame type and purpose in managing requests
and responses. The binary framing layer determines how HTTP messages are encapsulated and transferred
between the client and server, a significant benefit of HTTP 2.0 when compared to earlier versions.

All HTTP/2 communication occurs by means of a connection with bidirectional streams. Each stream
includes messages, consisting of one or more frames, that can be interleaved and reassembled using the
embedded stream identifier within each frame's header. The HTTP/2 profile enables you to specify a
maximum frame size and write size, which controls the total size of combined data frames, to improve
network utilization.

38

Accelerating Traffic with Acceleration Profiles

Multiplexing streams

You can use the HTTP/2 profile to multiplex streams (interleaving and reassembling the streams), by
specifying a maximum number of concurrent streams permitted for a single connection. Also, because
multiplexing streams on a single TCP connection compete for shared bandwidth, you can use the profile's
Priority Handling settings to configure stream prioritization and define the relative order of delivery. For
example, a Strict setting processes higher priority streams to completion before processing lower priority
streams; whereas, a Fair setting allows higher priority streams to use more bandwidth than lower priority
streams, without completely blocking the lower priority streams.

Additionally, you can specify the way that the HTTP/2 profile controls the flow of streams. The Receive
Window setting allows HTTP/2 to stall individual upload streams, as needed. For example, if the BIG-IP
system is unable to process a slow stream on a connection, but is able to process other streams on the
connection, it can use the ReceiveWindow setting to specify a frame size for the slow stream, thus delaying
that upload stream until the size is met and the receiver is able to process it, while concurrently proceeding
to process frames for another stream.

Compressing headers

When you configure the HTTP/2 profile's Header Table Size setting, you can compress HTTP headers to
conserve bandwidth. Compressing HTTP headers reduces the object size, which reduces required bandwidth.
For example, you can specify a larger table value for better compression, but at the expense of using more
memory.

HTTP/2 (experimental) profile settings

This table provides descriptions of the HTTP/2 profile settings.

DescriptionDefaultSetting

Specifies the name of the HTTP/2 profile.Name

Specifies the profile that you want to use as the parent profile. Your new
profile inherits all settings and values from the parent profile specified.

http2Parent Profile

Specifies the number of concurrent requests allowed to be outstanding
on a single HTTP/2 connection.

10Concurrent
Streams Per
Connection

Specifies the number of seconds an HTTP/2 connection is left open idly
before it is closed.

300Connection Idle
Timeout

Specifies whether an HTTP header that indicates the use of HTTP/2 is
inserted into the request sent to the origin web server.

DisabledInsert Header

Specifies the name of the HTTP header controlled by the Insert Header
Name setting.

X-HTTP/2Insert Header
Name

Specifies how a connection is established as a HTTP/2 connection.Select
Modes

Activation Modes

Used only with an Activation Modes selection of Select Modes,
specifies the extension, ALPN for HTTP/2 or NPN for SPDY, used in

ALPN
NPN

Selected Modes

the HTTP/2 profile. The order of the extensions in the Selected Modes
Enabled list ranges from most preferred (first) to least preferred (last).
Clients typically use the first supported extension. At least one HTTP/2
mode must be included in theEnabled list. The valuesALPN andNPN
specify that the TLS Application Layer Protocol Negotiation (ALPN)
and Next Protocol Negotiation (NPN) will be used to determine whether
HTTP/2 or SPDY should be activated. Clients that use TLS, but only

39

BIG-IP® Acceleration: Concepts

DescriptionDefaultSetting
support HTTP will work as if HTTP/2 is not present. The valueAlways
specifies that all connections function as HTTP/2 connections. Selecting
Always in the Activation Mode list is primarily intended for
troubleshooting.

Specifies how theHTTP/2 profile handles priorities of concurrent streams
within the same connection. Selecting Strict processes higher priority

StrictPriority Handling

streams to completion before processing lower priority streams. Selecting
Fair enables higher priority streams to use more bandwidth than lower
priority streams, without completely blocking the lower priority streams.

Specifies the receive window, which is HTTP/2 protocol functionality
that controls flow, in KB. The receive window allows the HTTP/2
protocol to stall individual upload streams when needed.

32Receive Window

Specifies the size of the data frames, in bytes, that the HTTP/2 protocol
sends to the client. Larger frame sizes improve network utilization, but
can affect concurrency.

2048Frame Size

Specifies the total size of combined data frames, in bytes, that the
HTTP/2 protocol sends in a single write function. This setting controls

16384Write Size

the size of the TLS records when the HTTP/2 protocol is used over
Secure Sockets Layer (SSL). A large write size causes the HTTP/2
protocol to buffer more data and improves network utilization.

Specifies the size of the header table, in KB. The HTTP/2 protocol
compresses HTTP headers to save bandwidth. A larger table size allows
better compression, but requires more memory.

4096Header Table Size

About SPDY profiles

You can use the BIG-IP® the BIG-IP® system SPDY (pronounced "speedy") profile to minimize latency of
HTTP requests by multiplexing streams and compressing headers. When you assign a SPDY profile to an
HTTP virtual server, the HTTP virtual server informs clients that a SPDY virtual server is available to
respond to SPDY requests.

When a client sends an HTTP request, the HTTP virtual server manages the request as a standard HTTP
request. It receives the request on port 80, and sends the request to the appropriate server. When the server
provides a response, the BIG-IP system inserts an HTTP header into the response (to inform the client that
a SPDY virtual server is available to handle SPDY requests), compresses and caches it, and sends the
response to the client.

A client that is enabled to use the SPDY protocol sends a SPDY request to the BIG-IP system, the SPDY
virtual server receives the request on port 443, converts the SPDY request into an HTTP request, and sends
the request to the appropriate server. When the server provides a response, the BIG-IP system converts the
HTTP response into a SPDY response, compresses and caches it, and sends the response to the client.

Summary of SPDY profile functionality

By using the SPDY profile, the BIG-IP system provides the following functionality for SPDY requests.

Creating concurrent streams for each connection.
You can specify the maximum number of concurrent HTTP requests that are accepted on a SPDY
connection. If this maximum number is exceeded, the system closes the connection.

40

Accelerating Traffic with Acceleration Profiles

Limiting the duration of idle connections.
You can specify the maximum duration for an idle SPDY connection. If this maximum duration is
exceeded, the system closes the connection.

Enabling a virtual server to process SPDY requests.
You can configure the SPDY profile on the virtual server to receive both HTTP and SPDY traffic, or
to receive only SPDY traffic, based in the activation mode you select. (Note that setting this to receive
only SPDY traffic is primarily intended for troubleshooting.)

Inserting a header into the response.
You can insert a header with a specific name into the response. The default name for the header is
X-SPDY.

Important: The SPDY protocol is incompatible with NTLM protocols. Do not use the SPDY protocol with
NTLM protocols. For additional details regarding this limitation, please refer to the SPDY specification:
http://dev.chromium.org/spdy/spdy-authentication.

About NTLM profiles

NT LAN Manager (NTLM) is an industry-standard technology that uses an encrypted challenge/response
protocol to authenticate a user without sending the user's password over the network. Instead, the system
requesting authentication performs a calculation to prove that the system has access to the secured NTLM
credentials. NTLM credentials are based on data such as the domain name and user name, obtained during
the interactive login process.

The NTLM profile within BIG-IP® the BIG-IP® system optimizes network performance when the system
is processing NT LAN Manager traffic. When both an NTLM profile and a OneConnect™ profile are
associated with a virtual server, the local traffic management system can take advantage of server-side
connection pooling for NTLM connections.

How does the NTLM profile work?

When the NTLM profile is associated with a virtual server and the server replies with the HTTP 401
Unauthorized HTTP response message, the NTLM profile inserts a cookie, along with additional profile
options, into the HTTP response. The information is encrypted with a user-supplied passphrase and associated
with the serverside flow. Further client requests are allowed to reuse this flow only if they present the
NTLMConnPool cookie containing the matching information. By using a cookie in the NTLM profile, the
BIG-IP system does not need to act as an NTLM proxy, and returning clients do not need to be
re-authenticated.

The NTLM profile works by parsing the HTTP request containing the NTLM type 3 message and securely
storing the following pieces of information (aside from those which are disabled in the profile):

• User name
• Workstation name
• Target server name
• Domain name
• Cookie previously set (cookie name supplied in the profile)
• Source IP address

With the information safely stored, the BIG-IP system can then use the data as a key when determining
which clientside requests to associate with a particular serverside flow. You can configure this using the
NTLM profile options. For example, if a server's resources can be openly shared by all users in that server's
domain, then you can enable the Key By NTLM Domain setting, and all serverside flows from the users of

41

BIG-IP® Acceleration: Concepts

the same domain can be pooled for connection reuse without further authentication. Or, if a server's resources
can be openly shared by all users originating from a particular IP address, then you can enable the Key By
Client IP Address setting and all serverside flows from the same source IP address can be pooled for
connection reuse.

About OneConnect profiles

The OneConnect profile type implements the BIG-IP® system's OneConnect feature. This feature can
increase network throughput by efficiently managing connections created between the BIG-IP system and
back-end pool members. You can use the OneConnect feature with any TCP-based protocol, such as HTTP
or RTSP.

How does OneConnect work?

The OneConnect feature works with request headers to keep existing server-side connections open and
available for reuse by other clients. When a client makes a new connection to a virtual server configured
with a OneConnect profile, the BIG-IP system parses the request, selects a server using the load-balancing
method defined in the pool, and creates a connection to that server. When the client's initial request is
complete, the BIG-IP system temporarily holds the connection open and makes the idle TCP connection to
the pool member available for reuse.

When another connection is subsequently initiated to the virtual server, if an existing server-side flow to
the pool member is open and idle, the BIG-IP system applies the OneConnect source mask to the IP address
in the request to determine whether the request is eligible to reuse the existing idle connection. If the request
is eligible, the BIG-IP systemmarks the connection as non-idle and sends a client request over that connection.
If the request is not eligible for reuse, or an idle server-side flow is not found, the BIG-IP system creates a
new server-side TCP connection and sends client requests over the new connection.

Note: The BIG-IP system can pool server-side connections from multiple virtual servers if those virtual
servers reference the same OneConnect profile and the same pool. Also, the re-use of idle connections can
cause the BIG-IP system to appear as though the system is not load balancing traffic evenly across pool
members.

About client source IP addresses

The standard address translation mechanism on the BIG-IP system translates only the destination IP address
in a request and not the source IP address (that is, the client node’s IP address). However, when the
OneConnect feature is enabled, allowing multiple client nodes to re-use a server-side connection, the source
IP address in the header of each client node’s request is always the IP address of the client node that initially
opened the server-side connection. Although this does not affect traffic flow, you might see evidence of
this when viewing certain types of system output.

The OneConnect profile settings

When configuring a OneConnect profile, you specify this information:

Source mask
The mask applied to the source IP address to determine the connection's eligibility to reuse a server-side
connection.

Maximum size of idle connections
The maximum number of idle server-side connections kept in the connection pool.

42

Accelerating Traffic with Acceleration Profiles

Maximum age before deletion from the pool
Themaximum number of seconds that a server-side connection is allowed to remain before the connection
is deleted from the connection pool.

Maximum reuse of a connection
The maximum number of requests to be sent over a server-side connection. This number should be
slightly lower than the maximum number of HTTP Keep-Alive requests accepted by servers in order
to prevent the server from initiating a connection close action and entering the TIME_WAIT state.

Idle timeout override
The maximum time that idle server-side connections are kept open. Lowering this value may result in
a lower number of idle server-side connections, but may increase request latency and server-side
connection rate.

OneConnect and HTTP profiles

Content switching for HTTP requests

When you assign both a OneConnect profile and an HTTP profile to a virtual server, and an HTTP client
sends multiple requests within a single connection, the BIG-IP system can process each HTTP request
individually. The BIG-IP system sends the HTTP requests to different destination servers as determined by
the load balancing method. Without a OneConnect profile enabled for the HTTP virtual server, the BIG-IP
system performs load-balancing only once for each TCP connection.

HTTP version considerations

For HTTP traffic to be eligible to use the OneConnect feature, the web server must support HTTP
Keep-Alive connections. The version of the HTTP protocol you are using determines to what extent this
support is available. The BIG-IP system therefore includes a OneConnect transformations feature within
the HTTP profile, specifically designed for use with HTTP/1.0 which by default does not enable Keep-Alive
connections. With the OneConnect transformations feature, the BIG-IP system can transform HTTP/1.0
connections into HTTP/1.1 requests on the server side, thus allowing those connections to remain open for
reuse.

The two different versions of the HTTP protocol treat Keep-Alive connections in these ways:

HTTP/1.1 requests
HTTP Keep-Alive connections are enabled by default in HTTP/1.1. With HTTP/1.1 requests, the
server does not close the connection when the content transfer is complete, unless the client sends a
Connection: close header in the request. Instead, the connection remains active in anticipation of
the client reusing the same connection to send additional requests. For HTTP/1.1 requests, you do not
need to use the OneConnect transformations feature.

HTTP/1.0 requests
HTTP Keep-Alive connections are not enabled by default in HTTP/1.0. With HTTP/1.0 requests, the
client typically sends a Connection: close header to close the TCP connection after sending the
request. Both the server and client-side connections that contain the Connection: close header
are closed once the response is sent. When you assign a OneConnect profile to a virtual server, the
BIG-IP system transforms Connection: close headers in HTTP/1.0 client-side requests to
X-Cnection: close headers on the server side, thereby allowing a client to reuse an existing connection
to send additional requests.

43

BIG-IP® Acceleration: Concepts

OneConnect and SNATs

When a client makes a new connection to a virtual server that is configured with a OneConnect profile and
a source network address translation (SNAT) object, the BIG-IP system parses the HTTP request, selects
a server using the load-balancing method defined in the pool, translates the source IP address in the request
to the SNAT IP address, and creates a connection to the server. When the client's initial HTTP request is
complete, the BIG-IP system temporarily holds the connection open and makes the idle TCP connection to
the pool member available for reuse. When a new connection is initiated to the virtual server, the BIG-IP
system performs SNAT address translation on the source IP address and then applies the OneConnect source
mask to the translated SNAT IP address to determine whether it is eligible to reuse an existing idle connection.

OneConnect and NTLM profiles

NTLanManager (NTLM) HTTP 401 responses prevent the BIG-IP® system from detaching the server-side
connection. As a result, a late FIN from a previous client connection might be forwarded to a new client
that re-used the connection, causing the client-side connection to close before the NTLM handshake
completes. If you prefer NTLM authentication support when using the OneConnect feature, you should
configure an NTLM profile in addition to the OneConnect profile.

44

Accelerating Traffic with Acceleration Profiles

Chapter

3
Managing Traffic with Bandwidth Controllers

• Overview: Bandwidth control management
• Bandwidth controllers vs. rate shaping
• About static bandwidth control policies
• About dynamic bandwidth control policies
• Example of a dynamic bandwidth control

policy

Overview: Bandwidth control management

Fine-grained bandwidth control is essential to service providers, large enterprises, and remote access services
(RAS) solutions. Bandwidth controllers on the BIG-IP® system can scale easily, work well in a distributed
environment, and are easy to configure for various networks. Depending on the type of policy you configure,
you can use bandwidth controllers to apply specified rate enforcement to traffic flows or mark traffic that
exceeds limits.

Bandwidth control policies can be static or dynamic. Through the user interface (browser or tmsh
command-line utility), when you apply a bandwidth control policy to a virtual server, packet filter, or route
domain, you can apply only one policy at a time, and that is a static policy. Using iRules®, you can combine
static and dynamic bandwidth control policies up to eight policies on a connection, but only one of the eight
policies can be a dynamic policy. A packet is transmitted only when all the attached policies allow it. The
system as a whole supports a maximum of 1024 policies.

Bandwidth controllers vs. rate shaping

Bandwidth controller is the updated version of rate shaping on the BIG-IP® system. These features are
mutually exclusive. You can configure and use either rate shaping or bandwidth controllers, but not both.
Bandwidth controllers include distributed control, subscriber fairness, and support for a maximum rate of
320 Gbps. Rate shaping is hierarchical and supports minimum bandwidth (committed information rate),
priority, and flow fairness.

About static bandwidth control policies

A static bandwidth control policy controls the aggregate rate for a group of applications or a network path.
It enforces the total amount of bandwidth that can be used, specified as the maximum rate of the resource
you are managing. The rate can be the total bandwidth of the BIG-IP® device, or it might be a group of
traffic flows.

You can assign a static bandwidth control policy to traffic using a virtual server or, alternatively, you can
assign a static bandwidth control policy to a packet filter or a route domain.

About dynamic bandwidth control policies

You can create dynamic bandwidth control policies to restrict bandwidth usage per subscriber or group of
subscribers, per application, per network egress link, or any combination of these. A dynamic bandwidth
control policy provides fairness on traffic flows, according to configurable parameters, within an upper
bandwidth limit. The BIG-IP® system activates the dynamic bandwidth control policy for each user only
when the user participates. When you create a dynamic bandwidth control policy, it acts as a policy in
waiting, until the system detects egress traffic that matches the traffic you want to control and creates an
instance of the policy. At that moment, the system applies the bandwidth control policy limits, as specified.
No bandwidth control occurs until the system detects traffic and creates an instance of the policy. With this

46

Managing Traffic with Bandwidth Controllers

feature, an Internet service provider (ISP) can create and revise a single policy that can apply to millions
of users.

The BIG-IP system can enforce multiple levels of bandwidth limits through the dynamic policy. For example,
a user could be limited by the maximum rate, a per user rate, and a per category rate (such as for an
application), all from the same dynamic policy. When the total of the maximum user rate for all the instances
exceeds the maximum rate specified in the dynamic policy, the BIG-IP system maintains fairness among
all users and spreads the limitation equally among users belonging to a dynamic policy.

You can also configure a dynamic bandwidth control policy to mark packets that exceed the maximum
per-user rate for a specified session. TheWAN router should handle the marked packets. The BIG-IP system
passes packets that conform to the maximum per-user rate without marking them. You configure marking
by using the IP Type of Service or Link Quality of Service setting. For example, a common use of QoS
marking is for Voice over IP (VoIP) traffic. VoIP is usually assigned to the Expedited Forwarding (EF)
class by using the DSCP value of 46, thus prioritized according to importance and sensitivity to loss/latency.
You can mark packets per policy or per category (within a policy). Category marking supersedes policy
marking.

The BIG-IP system uses source and destination hashes to control the way incoming traffic is distributed
among the instances of the Traffic Management Microkernel (TMM) service. Subscriber-based bandwidth
control depends on having a unique one-to-one relationship between bandwidth control policy and subscriber.
Subscribers are commonly identified using a unique IP address, and, therefore, load distribution among the
instances of TMM service must use the source IP address as the key.

This screen snippet highlights the proper setting.

Figure 5: CMP Hash setting for dynamic bandwidth control

Alternatives for identifying users and applying dynamic bandwidth control policies to traffic are using
iRules®, Policy Enforcement Manager™, or Access Policy Manager®.

Example of a dynamic bandwidth control policy

This screen is an example of a dynamic bandwidth control policy that might be created by an Internet service
provider (ISP) to manage individual mobile subscribers.

47

BIG-IP® Acceleration: Concepts

Figure 6: Example of completed dynamic bandwidth control policy screen

In the example, the ISP sets the maximum bandwidth at 200 Mbps. Of that bandwidth, a maximum of 20
Mbps is allocated to each user. Of that allocation, application traffic is apportioned, as follows.

• 20% applies to P2P
• 4 Mbps applies to video
• 1 Mpbs applies to Voice over IP (VoIP)
• 50% applies to browser traffic (HTTP)

To activate this policy, the ISP needs to create an iRule to attach the policy to a user session, and then apply
the policy to a virtual server.

The bandwidth controller is only an enforcer. For a dynamic bandwidth control policy, you also need iRules®,
Policy Enforcement Manager™, or Access Policy Manager® to identify a flow and map it to a category.

48

Managing Traffic with Bandwidth Controllers

Chapter

4
Managing Traffic with Rate Shaping

• Introduction to rate shaping
• About rate classes
• Rate class name
• Base rate
• Ceiling rate
• Burst size
• Depleting the burst reservoir
• Replenishing a burst reservoir
• About specifying a non-zero burst size
• About the direction setting
• About the parent class
• About shaping policy
• About queue method
• About drop policy

Introduction to rate shaping

The BIG-IP® system includes a feature called rate shaping. Rate shaping allows you to enforce a throughput
policy on incoming traffic. Throughput policies are useful for prioritizing and restricting bandwidth on
selected traffic patterns.

Rate shaping can be useful for an e-commerce site that has preferred clients. For example, the site might
want to offer higher throughput for preferred customers, and lower throughput for other site traffic.

The rate shaping feature works by first queuing selected packets under a rate class, and then dequeuing the
packets at the indicated rate and in the indicated order specified by the rate class. A rate class is a rate-shaping
policy that defines throughput limitations and a packet schedulingmethod to be applied to all traffic handled
by the rate class.

You configure rate shaping by creating one or more rate classes and then assigning the rate class to a packet
filter or to a virtual server. You can also use the iRules® feature to instruct the BIG-IP system to apply a
rate class to a particular connection.

You can apply a rate class specifically to traffic from a server to a client or from a client to a server. If you
configure the rate class for traffic that is going to a client, the BIG-IP system does not apply the throughput
policy to traffic destined for the server. Conversely, if you configure the rate class for traffic that is going
to a server, the BIG-IP system does not apply the throughput policy to traffic destined for the client.

About rate classes

A rate class defines the throughput limitations and packet scheduling method that you want the BIG-IP®

system to apply to all traffic that the rate class handles. You assign rate classes to virtual servers and packet
filter rules, as well as through iRules®.

If the same traffic is subject to rate classes that you have assigned from more than one location, the BIG-IP
system applies the last-assigned rate class only. The BIG-IP system applies rate classes in the following
order:

• The first rate class that the BIG-IP system assigns is from the last packet filter rule that matched the
traffic and specified a rate class.

• The next rate class that the BIG-IP system assigns is from the virtual server; if the virtual server specifies
a rate class, the rate class overrides any rate class that the packet filter selects.

• The last rate class assigned is from the iRule; if the iRule specifies a rate class, this rate class overrides
any previously-selected rate class.

Note: Rate classes cannot reside in partitions. Therefore, a user’s ability to create and manage rate classes
is defined by user role, rather than partition-access assignment.

You can create a rate class using the BIG-IP Configuration utility. After you have created a rate class, you
must assign it to a virtual server or a packet filter rule, or you must specify the rate class from within an
iRule.

50

Managing Traffic with Rate Shaping

Rate class name

The first setting you configure for a rate class is the rate class name. Rate class names are case-sensitive
and might contain letters, numbers, and underscores (_) only. Reserved keywords are not allowed.

Each rate class that you define must have a unique name. This setting is required.

To specify a rate class name, locate the Name field on the New Rate Class screen and type a unique name
for the rate class.

Base rate

The Base Rate setting specifies the base throughput rate allowed for traffic that the rate class handles. The
sum of the base rates of all child rate classes attached to a parent rate class, plus the base rate of the parent
rate class, cannot exceed the ceiling of the parent rate class. For this reason, F5 Networks® recommends
that you always set the base rate of a parent rate class to 0 (the default value).

You can specify the base rate in bits per second (bps), kilobits per second (Kbps), megabits per second
(Mbps), or gigabits per second (Gbps). The default unit is bits per second. This setting is required.

Note: These numbers are powers of 10, not powers of 2.

Ceiling rate

The Ceiling Rate setting specifies the absolute limit at which traffic is allowed to flow when bursting or
borrowing. You can specify the ceiling in bits per second (bps), kilobits per second (Kbps), megabits per
second (Mbps), or gigabits per second (Gbps). The default unit is bits per second.

If the rate class is a parent rate class, the value of the ceiling defines the maximum rate allowed for the sum
of the base rates of all child rate classes attached to the parent rate class, plus the base rate of the parent rate
class.

Note: A child rate class can borrow from the ceiling of its parent rate class.

Burst size

You use the Burst Size setting when you want to allow the rate of traffic flow that a rate class controls to
exceed the base rate. Exceeding the base rate is known as bursting. When you configure a rate class to allow
bursting (by specifying a value other than 0), the BIG-IP® system saves any unused bandwidth and uses
that bandwidth later to enable the rate of traffic flow to temporarily exceed the base rate. Specifying a burst
size is useful for smoothing out traffic patterns that tend to fluctuate or exceed the base rate, such as HTTP
traffic.

51

BIG-IP® Acceleration: Concepts

The value of theBurst Size setting defines the maximum number of bytes that you want to allow for bursting.
Thus, if you set the burst size to 5,000 bytes, and the rate of traffic flow exceeds the base rate by 1,000 bytes
per second, then the BIG-IP system allows the traffic to burst for a maximum of five seconds.

When you specify a burst size, the BIG-IP system creates a burst reservoir of that size. A burst reservoir
stores bandwidth that the BIG-IP system uses for bursting later. The burst reservoir becomes depleted as
the rate of traffic flow exceeds the base rate, and is replenished as the rate of traffic falls below the base
rate. The Burst Size value that you configure in a rate class thus represents:

• The maximum number of bytes that the rate class transmits when the traffic-flow rate exceeds the base
rate

• The maximum number of bytes that the BIG-IP system can replenish into the burst reservoir
• The amount of bandwidth initially available for bursting beyond the base rate

The burst size is measured in bytes. For example, a value of either 10000 or 10K equals 10,000 bytes. The
default value is 0.

Depleting the burst reservoir

When the rate of traffic flow exceeds the base rate, the BIG-IP® system automatically depletes the burst
reservoir, at a rate determined by the number of bytes per second that the traffic flow exceeds the base rate.

Continuing with our previous example in which traffic flow exceeds the base rate by 1,000 bytes per second,
if the traffic-flow rate only exceeds the base rate for two seconds, then 2,000 bytes are depleted from the
burst size and the maximum bytes available for bursting decreases to 3,000.

Note: In some cases, a rate class can borrow bandwidth from the burst reservoir of its parent class.

Replenishing a burst reservoir

When the rate of traffic flow falls below the base rate, the BIG-IP® system stores the unused bandwidth
(that is, the difference between the base rate and the actual traffic-flow rate) in the burst reservoir. Later,
the BIG-IP system uses this bandwidth when traffic flow exceeds the base rate. Thus, the BIG-IP system
replenishes the burst reservoir whenever it becomes depleted due to traffic flow exceeding the base rate.

The size of the burst reservoir cannot exceed the specified burst size. For this reason, the BIG-IP system
replenishes the reservoir with unused bandwidth only until the reservoir reaches the amount specified by
the Burst Size setting. Thus, if the burst size is set to 5,000, then the BIG-IP system can store only 5,000
bytes of unused bandwidth for later use when the rate of traffic flow exceeds the base rate.

Note: Specifying a burst size does not allow the rate class to exceed its ceiling.

About specifying a non-zero burst size

This example illustrates the behavior of the BIG-IP® system when you set the Burst Size setting to a value
other than 0.

52

Managing Traffic with Rate Shaping

This example shows throughput rates in units of bytes-per-second instead of the default bits-per-second.
This is only to simplify the example. You can derive bytes-per-second from bits-per-second by dividing
the bits-per-second amount by 8.

Suppose you configure the rate class settings with these values:

• Base rate: 1,000 bytes per second
• Ceiling rate: 4,000 bytes per second
• Burst size: 5,000 bytes

Consider the following scenario:

If traffic is currently flowing at 800 bytes per second
No bursting is necessary because the rate of traffic flow is below the base rate defined in the rate class.
Because the traffic is flowing at 200 bytes per second less than the base rate, the BIG-IP system can
potentially add 200 bytes of unused bandwidth to the burst reservoir. However, because no bursting has
occurred yet, the reservoir is already full at the specified 5,000 bytes, thus preventing the BIG-IP system
from storing the 200 bytes of unused bandwidth in the reservoir. In this case, the BIG-IP system simply
discards the unused bandwidth.

If traffic climbs to 1,000 bytes per second (equal to the base rate)
Still no bursting occurs, and there is no unused bandwidth.

If traffic jumps to 2,500 bytes per second
For each second that the traffic continues to flow at 2,500 bytes per second, the BIG-IP system empties
1,500 bytes from the burst reservoir (the difference between the traffic flow rate and the base rate). This
allows just over three seconds of bursting at this rate before the burst reservoir of 5,000 bytes is depleted.
Once the reservoir is depleted, the BIG-IP system reduces the traffic flow rate to the base rate of 1,000
bytes per second, with no bursting allowed.

If traffic drops back down to 800 bytes per second
No bursting is necessary, but now the BIG-IP system can add the 200 bytes per second of unused
bandwidth back into the burst reservoir because the reservoir is empty. If traffic continues to flow at
800 bytes per second, the burst reservoir becomes fully replenished from 0 to 5,000 bytes in 25 seconds
(at a rate of 200 bytes per second). If traffic stops flowing altogether, creating 1,000 bytes per second
of unused bandwidth, then the BIG-IP system adds 1,000 bytes per second into the burst reservoir, thus
replenishing the reservoir from 0 to 5,000 bytes in only 5 seconds.

About the direction setting

Using the Direction setting, you can apply a rate class to client or server traffic. Thus, you can apply a rate
class to traffic going to a client, to a server, or to both client and server. Possible values are Any, Client,
and Server. The default value is Any.

Specifying direction is useful in cases where the nature of the traffic is directionally-biased. For example,
if you offer an FTP service to external clients, you might be more interested in limiting throughput for those
clients uploading files to your site than you are for clients downloading files from your site. In this case,
you would select Server as the direction for your FTP rate class, because the Server value only applies your
throughput restriction to traffic going from the client to the server.

53

BIG-IP® Acceleration: Concepts

About the parent class

When you create a rate class, you can use the Parent Class setting to specify that the rate class has a parent
class. This allows the child rate class to borrow unused bandwidth from the ceiling of the parent class. A
child class can borrow unused bandwidth from the ceiling of its parent, but a parent class cannot borrow
from a child class. Borrowing is also not possible between two child classes of the same parent class or
between two unrelated rate classes.

A parent class can itself have a parent, provided that you do not create a circular dependency. A circular
dependency is a relationship where a rate class is a child of itself, directly or indirectly.

If a rate class has a parent class, the child class can take unused bandwidth from the ceiling of the parent
class. The process occurs in this way:

• If the rate of traffic flow to which the child class is applied exceeds its base rate, the child class begins
to deplete its burst reservoir as described previously.

• If the reservoir is empty (or no burst size is defined for the rate class), then the BIG-IP® system takes
unused base-rate bandwidth from the ceiling of the parent class and gives it to the child class.

• If the unused bandwidth from the parent class is depleted, then the child class begins to use the reservoir
of the parent class.

• If the reservoir of the parent class is empty (or no burst size is defined for the parent class), then the
child class attempts to borrow bandwidth from the parent of the parent class, if the parent class has a
parent class.

• This process continues until there is no remaining bandwidth to borrow or there is no parent from which
to borrow.

Borrowing only allows the child to extend its burst duration; the child class cannot exceed the ceiling under
any circumstance.

Note: Although the above description uses the term “borrowing”, bandwidth that a child class borrows is
not paid back to the parent class later, nor is unused bandwidth of a child class returned to its parent class.

About shaping policy

This setting specifies a shaping policy that includes customized values for drop policy and queue method.
The default value is None.

You can create additional shaping policies using the Traffic Management shell (tmsh).

About queue method

TheQueueMethod setting determines the method and order in which the BIG-IP® system dequeues packets.

A rate class supports two queue methods:

Stochastic Fair Queue
Stochastic Fair Queueing (SFQ) is a queuing method that queues traffic under a set of many lists,
choosing the specific list based on a periodically-changing hash of the connection information. This
results in traffic from the same connection always being queued in the same list. SFQ then dequeues

54

Managing Traffic with Rate Shaping

traffic from the set of the lists in a round-robin fashion. The overall effect is that fairness of dequeuing
is achieved because one high-speed connection cannot monopolize the queue at the expense of slower
connections.

Priority FIFO
The Priority FIFO (PFIFO) queuing method queues all traffic under a set of five lists based on the Type
of Service (ToS) field of the traffic. Four of the lists correspond to the four possible ToS values (Minimum
delay, Maximum throughput, Maximum reliability, and Minimum cost). The fifth list represents traffic
with no ToS value. The PFIFO method then processes these five lists in a way that attempts to preserve
the meaning of the ToS field as much as possible. For example, a packet with the ToS field set to
Minimum cost might yield dequeuing to a packet with the ToS field set to Minimum delay.

About drop policy

The BIG-IP® system drops packets whenever the specified rate limit is exceeded. A drop policy specifies
the way that you want the system to drop packets. The default value is fred.

Note: You cannot use fred or red, if you select sfq for the Queue Method setting.

Possible values are:

fred
Specifies that the system uses Flow-based RandomEarly Detection to determine whether to drop packets,
based on the aggressiveness of each flow. If you require flow fairness across the rate class, select fred.

red
Specifies that the system randomly drops packets.

tail
Specifies that the system drops the end of the traffic stream.

You can create additional drop policies using the Traffic Management shell (tmsh).

55

BIG-IP® Acceleration: Concepts

Chapter

5
Using Acceleration Policies to Manage and Respond to
HTTP Requests

• Overview: Acceleration policies
• Overview: Policy Matching
• An example matching rule
• Overview: Policy Editor screen
• Overview: HTTP header parameters
• Reference summary for HTTP data

Overview: Acceleration policies

An acceleration policy is a collection of defined rule parameters that dictate how the BIG-IP® system handles
HTTP requests and responses. The BIG-IP system uses two types of rules to manage content: matching
rules and acceleration rules.Matching rules are used to classify requests by object type and match the request
to a specific acceleration policy. Once matched to an acceleration policy, the BIG-IP system applies the
associated acceleration rules to manage the requests and responses.

Depending on the application specific to your site, information in requests can sometimes imply one type
of response (such as a file extension of .jsp), when the actual response is a bit different (like a simple
document). For this reason, the BIG-IP system applies matching rules twice: once to the request, and a
second time to the response. This means that a request and a response can match to different acceleration
rules, but it ensures that the response is matched to the acceleration policy that is best suited to it.

Policies screen access

The Policies screen displays all of the acceleration policies available for assignment to your applications.
From the Policies screen, you can access additional screens, from which you can perform additional tasks.

Figure 7: Example Policies screen

Types of acceleration policies

There are two types of acceleration policies that you can use to speed up the access to your web applications.

58

Using Acceleration Policies to Manage and Respond to HTTP Requests

DescriptionType of policies

The BIG-IP ships with several predefined acceleration policies that are
optimized for specificweb applications, as well as four non-application specific
policies for general delivery.

Predefined acceleration
policies

You can create a user-defined policy by either copying an existing policy and
modifying or adding rules, or by creating a new acceleration policy and
specifying all new rules.

User-defined acceleration
policies

BIG-IP acceleration policies options

When configuring policies in a BIG-IP acceleration application, you can do one or more of the following
tasks.

Predefined Policies

• Use a predefined policy. Predefined policies are available when you configure a BIG-IP acceleration
application. You do not need to create them.

User-Defined Policies

• Create and use a user-defined policy by copying a predefined policy.
• Create and use a new user-defined policy

Acceleration policy selection

You can select a predefined acceleration policy that is associated with your specific application publisher
or you can use one of the predefined generic acceleration policies. Both work well for most sites that use
Java 2 Platform Enterprise Edition (J2EE) applications.

DescriptionPredefined Policy

This predefined acceleration policy is ideal for Apache HTTP servers,
Internet Information Services (IIS) web servers, WebLogic application

Generic Policy - Complete

servers, and IBMWebsphere Application Servers. HTMLpages are cached
and Intelligent Browser Referencing is enabled.

This predefined acceleration policy is ideal for Apache HTTP servers,
Internet Information Services (IIS) web servers, WebLogic application

Generic Policy - Enhanced

servers, and IBMWebsphere Application Servers. HTMLpages are cached
and Intelligent Browser Referencing is enabled for includes.

This predefined acceleration policy is ideal for High Performance policy
for Ecommerce applications that uses File Extensions instead of

Generic Policy - Extension
Based

mime-types. This application policy is ideal if response-based matching
is not required.

This predefined acceleration policy is ideal for Apache HTTP servers,
Internet Information Services (IIS) web servers, WebLogic application

Generic Policy - Fundamental

servers, and IBMWebsphere Application Servers. HTMLpages are always
proxied and Intelligent Browser Referencing is disabled.

59

BIG-IP® Acceleration: Concepts

Customization of acceleration policies

If you have a unique application for which you cannot use a predefined acceleration policy, you can create
a new, user-defined acceleration policy.

Before you can create a new acceleration policy, you need to analyze the type of traffic that your site's
applications receive, and decide how you want the BIG-IP to manage those HTTP requests and responses.
To help you do that, consider questions similar to the following.

• Which responses do I want the BIG-IP to cache?
• Are there responses for static documents that can remain in the system's cache for several days before

being refreshed?
• Which responses are dynamic documents that the BIG-IP should refresh hourly?
• Are there responses that the BIG-IP should never cache?

After you decide how you want the BIG-IP to handle certain requests for your site, you can identify the
HTTP data parameters that the BIG-IP uses to match requests and responses to the appropriate acceleration
policies.

For example, the path found on requests for static documents might be different than the path for dynamic
documents. Or the paths might be similar, but the static documents are in PDF format and the dynamic
documents are Word documents or Excel spreadsheets. These differences help you specify matching rules
that prompt the BIG-IP to match the HTTP request to the acceleration policy that will handle the request
and the response most expeditiously.

Creation of user-defined policies

You can create a user-defined acceleration policy most efficiently by copying an existing acceleration policy
and modifying its rules to meet your unique requirements. Alternatively, you can create a new user-defined
acceleration policy and define each matching rule and acceleration rule individually.

When you copy or create an acceleration policy, the BIG-IP maintains that acceleration policy as a
development copy until you publish it, at which time the BIG-IP creates a production copy. Only a production
(published) copy of an acceleration policy is available for you to assign to an application. You can make
as many changes as you like to the development copy of an acceleration policy without affecting current
traffic to your applications.

Publication of acceleration policies

When you modify rules for a user-defined acceleration policy that is currently assigned to an application,
the BIG-IP creates a development copy and continues to use the currently published (production) copy to
manage requests. The BIG-IP acceleration manager uses the modified acceleration policy to manage traffic
only after you publish it.

If you create a new acceleration policy, you must publish it before you can assign it to an application.

About the Acceleration Policy Editor role

You can use the Acceleration Policy Editor role to manage and customize acceleration policies for the
BIG-IP®. This role provides full access to acceleration features and functionality, and read-only access to
all other BIG-IP features and functionality.

60

Using Acceleration Policies to Manage and Respond to HTTP Requests

Acceleration policies exported to XML files

You can use the export feature to save an acceleration policy to an XML file. F5 Networks® recommends
that you use the export feature every time you change a user-defined acceleration policy, so that you always
have a copy of the most recent acceleration policy. You can use this file for back up and archival purposes,
or to provide to the F5 Networks® Technical Support team for troubleshooting issues.

Overview: Policy Matching

The BIG-IP® system provides the flexibility needed to accelerate Web applications by processing and
caching specific HTTP requests and responses. BIG-IP acceleration policies determine how the system
handles and matches each request and response. A Policy Tree, configurable in the Policy Editor screen,
contains branch nodes and leaf nodes that comprise a BIG-IP acceleration policy.

Leaf nodes include all of the settings (such as cache lifetime settings or proxy settings) and matching rules
that determine how similar requests are processed. Additionally, grouping multiple leaf nodes under a branch
node enables them to inherit the branch node settings.

When a request is received, the type of requested content typically determines the settings needed to process
the request. Because Content-Type and Content-Disposition headers only become available when
the BIG-IP system receives a response, the BIG-IP system provides a matching abstraction for requests
called content type to determine, based on the request’s URL and available headers, the probable or actual
content type, as well as to simplify the matching rules. For example, by default, requests with an extension
of .gif are given an object type of images that is used in the abstract content type, which is more convenient
to use in matching rules. The mapping for each abstract content type is configured as an Identifier in the
Object Types screen.

The predefined content types consist of a descriptive group name (such as documents) and an object type
name (such as msword). Matching rules can require either or both parts to match, as preferred. Many of the
default policies have a node for matching documents. Some use the object type abstraction and some use
the URL extension.

You configurematching rules from theMatching Rules screen, and configure Acceleration Rules by choosing
Acceleration Rules from the Matching Rules menu.

Matching rules for leaf nodes determine the nodes to which requests and responses apply. All matching
rules for a node must match before it can be considered to be a candidate for a best match. If more than one
candidate exists, resolution rules, based upon priority and precedence, determine the single best match.

Resolution rules when multiple nodes match

Sometimes, both precedence and priority can produce a match. When multiple nodes produce a match, the
BIG-IP must determine the best match. In some instances, priority determines the best match, in others,
precedence determines the best match, and in still others, both precedence and priority together determine
the best match.

Priority 1: An exact path match

An exact path match is one where the value set for the path parameter ends with a question mark. For
example, if you have a rule with a path parameter value of apps/srch.jsp?, the BIG-IP considers a

61

BIG-IP® Acceleration: Concepts

request of http://www.siterequest.com/apps/srch.jsp?value=computers to be an exact match,
and matches the request to the leaf node to which the rule belongs.

It is important to note that a path of / and /? are two different things. A path that includes a ? indicates
that an exact match is required.

By default, a path that you provide for a policy is a prefix. For example, if you give a parameter the path,
/a/b, the BIG-IP considers both of the following requests a match:
http://www.siterequest.com/a/b?treat=bone and
http://www.siterequest.com/a/b/c?toy=ball.

If you add a question mark to the parameter so that it is, /a/b?, the BIG-IP considers only
http://www.siterequest.com/a/b?treat=bone to be a match, because the question mark indicates
that an exact match is required.

Priority 2: A single extension node match

If no single exact path matches, but only one node matches the extension, the BIG-IP considers the request
to be an exact extension match, or best match.

For example, if you have a request matching rule that specifies an extension of jpg, the BIG-IP considers
the following request an exact extension match, and matches the request to the leaf node to which the rule
belongs.

http://www.siterequest.com/images/down.jpg

Priority 3: A single path segment match

If no single node matches an exact path or exact extension, but only one node matches a path segment, the
BIG-IP considers the request to be an exact path segment match, or best match.

Matching rules based on a path segment (the text between two slash marks) have third priority over other
parameter matches. If a single path segment matches a path segment within the path, the BIG-IP matches
the request to the leaf node to which the rule belongs.

For example, if you have a rule that specifies a path segment of a, the BIG-IP considers the following request
an exact match, and matches the request to the leaf node to which the rule belongs.

http://www.siterequest.com/a/b?treat=bone

Priority 4: Multiple extension matches

If the request does not match a single path node, a single extension node, or a single path segment node,
but multiple extension nodes match, the BIG-IP applies specific matching rules to determine the best match.

Matching rules based on multiple extension matches have a fourth priority over other parameter matches.
If multiple extension matches occur, only the following rules apply.

Table 4: Multiple extension matching rules

DescriptionParameter Match

For example, if you have a rule that specifies an extension of jpg, the rule
matches request with the longest path, specifically Node 1 of the following.

Node 1:

One matching node with a
longer path

http://www.siterequest.com/images/down.jpg

62

Using Acceleration Policies to Manage and Respond to HTTP Requests

DescriptionParameter Match

Node 2:
http://www.siterequest.com/down.jpg

For example, if you have two rules that specify the same path, but the second
rule also specifies a matching path segment, then the second rule matches

Node that matches the most
conditions, if multiple

the request to the leaf node to which the rule belongs. In this example, Node
1 in the following is matched.

Node 1:

matching nodes have the
same path length

http://www.siterequest.com/images/down.jpg Path Segment:
down(R1,2)

Node 2:
http://www.siterequest.com/images/down.jpg

For example, if you have two rules that specify the same path and include
the same number of conditions, then the node with the lowest ordinal number

Node with the lowest
ordinal number, if multiple

from the policy is matched. In this example, Node 2 in the following is
matched.

Node 1:

matching nodes have the
same path length and
number of conditions

http://www.siterequest.com/apps/search.jsp?
dog&cat&search=magic

Path: /apps/search.jsp

Path Segment: cat(L2,2)

Node 2:
http://www.siterequest.com/apps/search.jsp?
dog&cat&search=magic

Path: /apps/search.jsp

Path Segment: dog(L2,1)

Unmatched requests

If a request does not match a leaf node in the Policy Tree, there is an unmatched node in the Policy Tree,
and the BIG-IP either uses a predefined accelerator policy that manages unmatched requests and responses,
or sends the request to the origin web server for content.

It is important to keep in mind that for the BIG-IP to consider a request a match, the request must match all
the matching rules configured for a leaf node. If a request matches all the rules for a leaf node, except for
one, the BIG-IP does not consider it a match, and processes it as an unmatched request.

An example matching rule

This topic provides information about how to configure an example matching rule. For this example site,
you have three top-level nodes on the Policy Tree.

• Home. This branch node specifies the rules related to the home page.
• Applications. This branch node specifies the rules related to the applications for the site, with the

following leaf nodes.

63

BIG-IP® Acceleration: Concepts

Default. This leaf node specifies the rules related to non-search related applications.•
• Search. This leaf node specifies the rules related to your site's search application.
• Images. This branch node specifies the rules related to graphics images.

You configure matching rules for this example Policy Tree, as described in the following table.

Table 5: Application matching rules example configuration

Application matching parameterNode

Create a rule based on the Path data type. Provide the following two values for the Path
parameter.

Home

• /index.jsp

• /?

Create a rule based on the Path data type. Provide the following value for the Path parameter:
/apps.

Default

Create a rule based on the Path data type. Provide the following value for the Path parameter:
/srch.

Search

Create a rule based on the Path data type. Provide the following value for the Path parameter:
/images.

Images

Overview: Policy Editor screen

From the Policy Editor screen, you can view the matching rules and acceleration rules for user-defined and
predefined acceleration policies, as well as create or modify user-defined acceleration policies.

Figure 8: Policy Editor screen for an example acceleration policy

64

Using Acceleration Policies to Manage and Respond to HTTP Requests

Policy Editor screen parts

There are three main parts to the Policy Editor screen.

DescriptionPart

Located on the left side of the Policy Editor screen, the Policy Tree contains branch
nodes and leaf nodes, which you can modify by using the function bar. A branch node

Policy Tree

represents a group of content types (such as application generated or static) and each
leaf node represents specific content (such as images, includes, PDF documents, or
Word documents). The Policy Tree function bar includes the following options.

• Add. Use to create a new content type group (branch node) or a new content type
(leaf node).

• Rename. Use to change the name of a branch or leaf node.
• Delete. Use to remove a branch or leaf node.
• Copy. Use to copy a branch or leaf node.
• Move Up arrow. Use to change the priority of a leaf node up within the branch

node.
• MoveDown arrow. Use to change the priority of a leaf node downwithin the branch

node.

Located above the Policy Editor menu bar, the screen trail displays (horizontally) the
screens that you accessed in order to arrive at the current screen. You can click the
name of a screen in the trail to move back to a previous location.

Screen trail

Located below the screen trail, the Policy Editor menu bar contains a list from which
you selectMatching Rules (default) or Acceleration Rules.

Policy Editor
menu bar

Figure 9: Matching rules displayed from the Policy Editor

When you select Acceleration Rules, the acceleration rules menu bar appears.

Figure 10: Policy Editor menu bar displaying acceleration rules options

Policy Tree

Matching rules and acceleration rules for acceleration policies are organized on the Policy Tree, which you
access from the Policy Editor screen.

65

BIG-IP® Acceleration: Concepts

Figure 11: A Policy Tree example

Acceleration policy rule inheritance

The structure of the Policy Tree supports a parent-child relationship. This allows you to easily randomize
rules. That is, because a leaf node in a Policy Tree inherits all the rules from its root node and branch node,
you can quickly create multiple leaf nodes that contain the same rule parameters by creating a branch with
multiple leaf nodes. If you override or create new rules at the branch node level, the BIG-IP reproduces
those changes to the associated leaf nodes.

Figure 12: Rule inheritance on a Policy Tree

Nodes are defined as follows.

DescriptionNode

The root node exists only for the purpose of inheritance; the BIG-IP does not performmatching
against root nodes. The Policy Tree typically has only one root node, from which all other

Root node

nodes are created. In the example figure, the root node is Home. What distinguishes a root
node from a branch node is that a root node has no parent node.

66

Using Acceleration Policies to Manage and Respond to HTTP Requests

DescriptionNode

The branch nodes exist only for the purpose of propagating rule parameters to leaf nodes;
the BIG-IP does not perform matching against branch nodes. In the example figure, the

Branch
node

branch nodes are Applications, Images, Documents, Components, and Other. Branch
nodes can have multiple leaf (child) nodes, as well as child branch nodes.

A leaf node inherits rule parameters from its parent branch node. The BIG-IP performs
matching only against leaf nodes, and then applies the leaf node’s corresponding acceleration

Leaf node

rules to the request. Leaf nodes are displayed on the Policy Tree in order of priority. If a
request matches two leaf nodes equally, the BIG-IP matches to the leaf node with the highest
priority. In the example figure, the leaf nodes that are displaying are Default and Search.

Inheritance rule parameters

When you create a user-defined acceleration policy by copying an existing acceleration policy, you must
determine from which branch node the acceleration policy is inheriting specific rules, and decide whether
you want to change the rules at the leaf node or change the rules at the branch node. To determine inheritance
for a rule parameter, view the rule parameter’s inheritance icon.

The following example figure illustrates matching rules for the Path and Header rule parameters for a
particular leaf node.

Figure 13: Inheritance example for Path and Header parameters

The arrow icon in the Inheritance column next to the Path parameter indicates this rule was inherited from
the parent branch node. The inheritance icon next to the Header parameter does not have an arrow, indicating
that the rule was not inherited; it was created locally at the leaf node.

Because theHeader parameter rule is not inherited, you can delete the rule at the leaf node level. However,
you cannot delete the Path parameter because it was inherited from the branch node. To delete the Path
parameter rule, you must delete from its parent branch node.

For inherited rule parameters, you can determine the ancestor branch node by hovering the cursor over the
inheritance icon. When placing the cursor on the inheritance icon next to Path, the branch node Home
displays as the ancestor node, as illustrated in the following example figure.

Figure 14: Inheritance example for Path parameter

67

BIG-IP® Acceleration: Concepts

Inheritance rule parameters override

When you override an inherited setting for a rule, an override icon displays (the inheritance icon with a red
X) next to the rule setting. To see the node where the option was overridden, place your cursor over the
override icon.

For example, for the content assembly rule in the following example figure, all of the options are inherited
from the branch node, except for the Enable Intelligent Browser Referencing To option. For this node,
the rule was disabled at the leaf node. When hovering the cursor over the override icon, a message displays
next to the Content Assembly Options menu.

Figure 15: Inheritance example with overridden rule option

To see if the current leaf node inherited this overridden option, click the parent branch node and view its
rules. In the following example figure, you see that there were no rule settings overridden at the parent
branch, indicating the rule was inherited from the branch node, Home, and overridden at the leaf node.

Figure 16: Parent of leaf node example

When you follow this rule back to its grandparent, you see the rule options are not inherited from any other
node; they are set at the grandparent node and they are all enabled, as indicated in the following example
figure.

68

Using Acceleration Policies to Manage and Respond to HTTP Requests

Figure 17: Grandparent of leaf node example

If you want to enable the content compression feature at the leaf node, you can use one of the following
options.

• Override the inherited setting at the leaf node and select the Enable Content Compression check box.
• Cancel the override setting at the parent, so that the parent inherits the Enable Content Compression

setting of the grandparent, and passes that setting to the leaf node.

Keep in mind that if you cancel the override setting at the grandparent branch node, you change the settings
for all of the child leaf nodes, not just the leaf node you want to change.

Tip: Although you have the option to override rules at the leaf node level, you should set up the Policy
Tree in a logical way so that you only specify rules for branch nodes that you want all or most of its child
leaf nodes to inherit. In other words, do not set a rule for a branch node if you know that most its leaf nodes
will not use that rule.

Policy Tree modification for an acceleration policy

To customize a user-defined acceleration policy, you can modify matching rules and acceleration rules for
the branch and leaf nodes. Or, you can add new branch and leaf nodes and associated matching and
acceleration rules to the Policy Tree.

Important: You can edit only user-defined acceleration policies. You cannot edit predefined acceleration
policies.

Overview: HTTP header parameters

Much of the BIG-IP® device’s behavior is dependent on the configured rules associated with parameters in
the HTTP request headers. Although important, the presence or value of HTTP response headers does not
influence as many aspects of the BIG-IP’s behavior, because the BIG-IP receives HTTP response headers
after performing certain types of processing.

When the BIG-IP receives a new request from a client, it first reviews the HTTP request parameters to
match it to the relevant acceleration policy. After applying the associated matching rules, it sends the request
to the origin web server for content.

69

BIG-IP® Acceleration: Concepts

Before sending a response to a client, the BIG-IP can optionally insert an X-WA-Info response header to
track how it handled the request. You cannot change these informational headers, and they do not affect
processing, however, they can provide useful information for evaluating your acceleration policies.

Requirements for servicing requests

To maintain high performance, the BIG-IP® does not service an HTTP request unless the request meets the
following conditions.

• The request includes an HTTP request header that is no larger than 8192 bytes, and in the first line,
identifies its method, URI, and protocol.

• The method for the HTTP request header is a GET, HEAD, or POST method.
• The protocol for the HTTP request header is a HTTP/0.9, HTTP/1.0, HTTP/1.1, or HTTP/2.0.
• The HTTP post data on the request is no larger than 32768 bytes.
• If the request provides the Expect request header, the value is 100-continue.
• If the request provides the Content-Type request header, the value is

application/x-www-form-urlencoded.
• The request includes a Host request header identifying a targeted host that is mapped to an origin server

at your site.

If the HTTP Host request header is missing or does not have a value, the BIG-IP responds to the requesting
client with a 400-series error message. If the request violates any of the other conditions, the BIG-IP redirects
the request to the origin web servers for content.

About the HTTP request process

When a BIG-IP® device receives an HTTP request that meets the required conditions, the BIG-IP processes
the request in accordance with this sequence.

1. The BIG-IP performs policy matching against the request and retrieves the associated acceleration rules.
2. The BIG-IP evaluates the policy matching to a proxying rule, as follows:

ProcessCondition

The BIG-IP sends the request to the origin web servers as required
by the rule.

Request is matched to a
proxying rule

The BIG-IP attempts to retrieve the appropriate compiled response
from cache.

Request is not matched to a
proxying rule

3. The BIG-IP processes the attempt to retrieve the appropriate compiled response from cache, as follows:

ProcessCondition

The BIG-IP sends the request to the origin web servers for content.No compiled response resides in
cache

The BIG-IP searches for an associated content invalidations rule for
the compiled response.

Compiled response resides in
cache

4. The BIG-IP processes the resultant content invalidations rule for the compiled response, as follows:

70

Using Acceleration Policies to Manage and Respond to HTTP Requests

ProcessCondition

The BIG-IP compares the rule’s effective time against the compiled
response’s last refreshed time.

A content invalidations rule is
triggered for the compiled
response

The BIG-IP examines the compiled response’s TTL value to see if
the compiled response has expired.

A content invalidations rule is
not triggered

5. The BIG-IP processes the compiled response's last refresh time, as follows:

ProcessCondition

The BIG-IP sends the request to the origin web servers for content.The compiled response’s last
refreshed time is before the
content invalidations rule’s
triggered time

The BIG-IP examines the compiled response’s TTL value to see if
the compiled response has expired.

The compiled response’s last
refreshed time is after the
content invalidations rule’s
triggered time

6. The BIG-IP processes the compiled response’s TTL value, as follows:

ProcessCondition

The BIG-IP sends the request to the origin web servers.The compiled response has
expired

The BIG-IP services the request using the cached compiled response.The compiled response has not
expired

Requirements for caching responses

When the BIG-IP® device receives a response from the origin web server, it inspects the HTTP response
headers, applies the acceleration rules to the response, and sends the content to the client. To ensure the
most effective performance, the BIG-IP does not cache a response from the origin server, or forward it to
the originating requestor, unless it meets the following conditions.

• The request does not match to a do-not-cache proxying rule.
• The first line of the response identifies the protocol, a response code that is an integer value, and a

response text. For example: HTTP/1.1 200 (OK).
• If the Transfer-Encoding response header is used on the response, the value is chunked.
• The response is complete, based on the method and type of data contained within the response, as follows.

• HTML tags. By default, the BIG-IP considers a response in the form of an HTML page complete
only if it contains both beginning and ending HTML tags.

• Content-Length response header. If a response is anything other than an HTML page, or if you have
overridden the default behavior described in the previous bullet point, the BIG-IP considers content
complete only if the response body size matches the value specified on the Content-Length
response header.

• Chunked transfer coding. The BIG-IP accepts chunked responses that omit the final zero-length
chunk. For information about chunked transfer coding, see section 3.6 in the HTTP/1.1 specification
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.

71

BIG-IP® Acceleration: Concepts

If the BIG-IP receives a response from the origin server that does not conform to these conditions, it does
not cache the response before sending it to the client.

About the HTTP responses process

When the BIG-IP receives a response from the origin web server, the BIG-IP performs the following actions.

1. Inspects the HTTP response headers.
2. Applies the acceleration rules to the response.
3. Sends the content to the client.

Configuration of rules based on HTTP request headers

In most cases, the default values for the predefined acceleration policies are sufficient, but you can fine-tune
the BIG-IP® device's behavior by creating a user-defined acceleration policy and modifying the HTTP
request data type parameters. When you specify or modify an HTTP data type parameter for an acceleration
policy rule, you define specific HTTP data type parameter criteria that the BIG-IP uses to manage HTTP
requests. When specifying parameter criteria, you designate the following information within a rule.

• Parameter identity. This can include one or more of the following criteria.

• Parameter type
• Parameter name
• Parameter location within the HTTP request

• Parameter value or state. This can include one or more of the following parameter state and value.

• Parameter is present in the HTTP request and matches the defined value provided in the form of a
regular expression.

• Parameter is present in the HTTP request and does not match the specified value provided in the
form of a regular expression.

• Parameter is present in the HTTP request, but has no value (is an empty string).
• Parameter is not present in the HTTP request

• BIG-IP action. Where you specify the following criteria.

• Whether the BIG-IP performs an action on a match or a no match.
• The action that the BIG-IP performs, which is dictated by the rules in the associated acceleration

policy.

For example, if you specify a rule that the BIG-IP performs an action when a request does not match a
configured parameter, the rule triggers if the parameter in the request is a different value than you specified,
or if the value is empty (null). The BIG-IP does not perform the specified action if the parameter does not
appear in the request.

Specification of HTTP data type parameters for a rule

You cannot configure rules based on all HTTP data types parameters; you can only specify the parameters
that the BIG-IP uses when processing HTTP requests.

Note: Lifetime rules and responses cached rules do not use HTTP data type parameters.

TheHTTP data type parameters that the BIG-IP uses when processing HTTP requests, are defined as follows.

72

Using Acceleration Policies to Manage and Respond to HTTP Requests

Note: To specify that the parameter name is case-sensitive, enable the Values are case sensitive setting
when configuring the parameter options.

Host

A rule that uses the host parameter is based on the value provided for the HTTP Host request header field.
This header field describes the DNS name that the HTTP request is using. For example, for the following
URL the host equates to HOST: www.siterequest.com.

http://www.siterequest.com/apps/srch.jsp?value=computers

Path

A rule that uses the path parameter is based on the path portion of the URI. The path is defined as everything
in the URL after the host and up to the end of the URL, or up to the question mark, (whichever comes first).
The following table shows examples of URLs and paths.

Table 6: Path example

PathURL

/apps/srch.jsphttp://www.siterequest.com/apps/srch.jsp?value=computers

/apps/magic.jsphttp://www.siterequest.com/apps/magic.jsp

Extension

A rule that uses the extension parameter is based on the value that follows the far-right period, in the far-right
segment key of the URL path.

For example, in the following URLs, gif, jpg, and jsp are all extensions.

• http://www.siterequest.com/images/up.gif

• http://www.siterequest.com/images/down.jpg

• http://www.siterequest.com/apps/psrch.jsp;sID=AAyB23?src=magic

Query Parameter

A rule that uses the query parameter is based on a particular query parameter that you identify by name,
and for which you provide a value to match against. The value is usually literal and must appear on the
query parameter in the request, or a regular expression that matches the request’s query parameter value.
The query parameter can be in a request that uses GET, HEAD, or POST methods.

You can also create a rule that matches the identified query parameter when it is provided with an empty
value, or when it is absent from the request. For example, in the following URL the action query parameter
provides an empty value.

http://www.siterequest.com/apps/srch.jsp?action=&src=magic

Unnamed Query Parameter

An unnamed query parameter is a query parameter that has no equal sign. That is, only the query parameter
value is provided in the URL of the request. For example, the following URL includes two unnamed query
parameters that have the value of dog and cat.

http://www.siterequest.com/apps/srch.jsp?dog&cat&src=magic

A rule that uses the unnamed query parameter specifies the ordinal of the parameter, instead of a parameter
name. The ordinal is the position of the unnamed query parameter in the query parameter portion of the
URL. You count ordinals from left to right, starting with 1. In the previous URL, dog is in ordinal 1 and
unnamed, cat is in ordinal 2 and unnamed, and src is in ordinal 3 and named magic.

73

BIG-IP® Acceleration: Concepts

Figure 18: Query parameter: ordinal 1=dog (unnamed); ordinal 2=cat (unnamed); ordinal 3=src (named
magic)

You can create a rule that matches the identified (unnamed) query parameter when it is provided with an
empty value, or when it is absent from the request. For example, in the following URL, ordinal 1 provides
an empty value.

http://www.siterequest.com/apps/srch.jsp?&cat&src=magic

Figure 19: Query parameter: ordinal 1=cat (empty); ordinal 2=src (named magic)

In the following URL, ordinal 3 is absent (dog is in ordinal 1 and src is in ordinal 2).

http://www.siterequest.com/apps/srch.jsp?dog&src=magic

Figure 20: Query parameter: ordinal 1=dog (empty); ordinal 2=src (named magic); ordinal 3 (absent)

Path Segment

A rule that uses the path segment parameter identifies one of the following values.

• Segment key
• Segment parameter

Segment key. A segment is the portion of a URI path that is delimited by a forward slash (/). For example,
in the path: /apps/search/full/complex.jsp, apps, search, full, and complex.jsp all represent
path segments. Further, each of these values are also the segment key, or the name of the segment.

Segment parameter. A segment parameter is the value in a URL path that appears after the segment key.
Segment parameters are delimited by semicolons. For example, magic, shop, and act are all segment
parameters for their respective path segments in the following path.

/apps/search/full;magic/complex.jsp;shop;act

To specify segment parameters, you must also identify segment ordinals.

Segment ordinal. To specify a segment for a rule, you must provide an ordinal that identifies the location
of the segment in the following path.

/apps/search/full;magic/complex.jsp;shop;act

You must also indicate in the rule, which way you are counting ordinals in the path: from the left or the
right (you always count starting at 1). For the example shown, /full;magic, the ordinals for this path are
as show in the following table.

Table 7: Segment ordinals example

Numbering SelectionOrdinal

Numbering Left-to-Right in the Full Path3

Numbering Right-to-Left in the Full Path2

74

Using Acceleration Policies to Manage and Respond to HTTP Requests

Cookie

A rule that uses the cookie parameter is based on a particular cookie that you identify by name, and for
which you provide a value to match against. Usually the value is literal and must appear on the cookie in
the request, or a regular expression that must match the request’s cookie that appears on the cookie HTTP
request headers. These are the same names you use to set the cookies, using the HTTP SET-COOKIE response
headers.

You can also create a rule that matches when the identified cookie is provided with an empty string or when
it is absent from the request. For example, in the following string, the following REPEAT cookie is empty.

COOKIE: REPEAT=

In the following string, the USER cookie is present and the REPEAT cookie is absent.

COOKIE: USER=334A5E4

User Agent

A rule that uses the user agent parameter is based on the value provided for the HTTP USER_AGENT in the
request header, which identifies the browser that sent the request. For example, the following USER_AGENT
request header indicates that the requesting browser is IE 5.01 running on Windows NT 5.0.

USER_AGENT: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

You do not typically base rules on the USER_AGENT request header, unless your site behaves differently
depending on the browser in use.
Referrer

A rule that uses the referrer parameter is based on the value provided for the HTTP REFERER in the request
header. (Note the misspelling of REFERER. This spelling is defined for this request header in all versions
of the HTTP specification.)

This header provides the URL location that referred the client to the page that the client is requesting. That
is, REFERER provides the URL that contains the hyperlink that the user clicked to request the page. For
example, the following REFERER request header provides the referred URL of
http://www.siterequest.com/.

REFERER: http://www.siterequest.com/

You do not typically base rules on the REFERER request header, unless you want your site’s behavior to be
dependent on the specific referrer. For example, one implementation would be for sites that provide different
branding for their pages based on the user’s web portal or search engine.
Protocol

A rule that uses the protocol parameter is based on whether the request uses the HTTP or HTTPS protocol.
For example, the following URL uses the HTTP protocol.

http://www.siterequest.com/apps/srch.jsp?value=computers

The following URL uses the HTTPS protocol.

https://www.siterequest.com/apps/srch.jsp?value=computers

Method

A rule that uses the method parameter is based on whether the request used the GET, HEAD, or POSTmethod.
Header

A rule that uses the header parameter is based on a particular header that you identify by name, and for
which you provide a value to match against. You can use an HTTP request data type header parameter to
create rules based on any request header, other than one of the recognized HTTP request data types.

75

BIG-IP® Acceleration: Concepts

The HTTP request data type header parameter you use can be standard HTTP request header fields such as
AUTHORIZATION, CACHE-CONTROL, and FROM. They can also be user or acceleration defined headers in
the form of a structured parameter.

Following are examples of HTTP request data type parameters.

• Accept: text/html, image/*

• Accept-Encoding: gzip

• Accept-Language: en-us

• CSP-Gadget-Realm-User-Pref: NM=5,PD=true,R=3326

The last header in the example depicts a structured parameter.

The format of a structured parameter in a request is similar to that used for a cookie, with a header name
that you choose, followed by a series of name=value pairs separated by commas. The header name is not
case-sensitive and in this structure, the semicolons (;) are special characters. The parser ignores anything
after a semicolon until it reaches the subsequent comma. For example, following are valid header structured
parameters.

• CSP-Global-Gadget-Pref: AT=0

• CSP-Gadget-Realm-User-Pref: NM=5,PD=true,R=3326

• CSP-User-Pref:

• E2KU=chi,E2KD=ops%u002esiterequest%u002enet,E2KM=chi

• CSP-Gateway-Specific-Config:

• PT-User-Name=chi,PT-User-ID=212,PT-Class-ID=43

• Standards: type=SOAP;SOAP-ENV:mustUnderstand="1",version=1.2

In the last line, the parser ignores SOAP-ENV:mustUnderstand="1", because it follows a semicolon.
Since version=1.2 follows the command, the parser reads it as a name=value pair. If you have metadata
that you want to include in the header, but want the BIG-IP to ignore, put it after a semicolon.

If you specify a header as a structured parameter when creating a rule, the BIG-IP module parses it into
name=value pairs when it examines the request. If you do not specify it as a structured parameter, the
BIG-IP processes it like a normal header, and treats everything after the colon (:) as the value. To define a
header as a structured parameter when you are creating or editing a rule, you specify the name using the
following syntax: headername:parmname, where headername is the name of the header and parmname
is the name of the parameter with the value that you want to affect the rule.

Using the CSP-Global-Gadget-Pref header as an example, if you want the BIG-IP to evaluate the value
for AT to determine if a configured rule should apply, specify the name of the header parameter as follows:
CSP-Global-Gadget-Pref:AT.

If you want the BIG-IP to evaluate the entire string without assigning meaning to name=value pairs, specify
the name of the header parameter as follows: CSP-Global-Gadget-Pref.

You can create a rule that matches when the identified header is provided with an empty value, or when it
is absent from the request.

In the following example, the BIG-IP considers Standards:release, empty and considers
Standards:SOAP-ENV absent, because it is ignored: Standards:
type=SOAP;SOAP-ENV:mustUnderstand="1",release=,version=1.2.
Client IP

A rule that uses the client IP parameter is based on the IP address of the client making the request. The IP
address, however, might not always be the address of the client that originated the request.

For example, if the client goes through a proxy server, the IP address is the IP address of the proxy server,
rather than the client IP address that originated the request. If several clients use a specific proxy server,
they all appear to come from the same IP address.

76

Using Acceleration Policies to Manage and Respond to HTTP Requests

Content Type

Unlike the HTTP request data types, a matching rule based on content type is specific to the content type
parameter that the BIG-IP generates for a response. You specify the regular expression that you want a
response's content type to match.

Configuration of rules based on HTTP response headers

After the BIG-IP® receives a response from the origin web server, it performs the following processes.

• Classifies the response
• Applies associated acceleration policy rules
• Assembles the response

Response headers have no effect on application matching, variation, or invalidations rules. The BIG-IP
evaluates response headers associated with caching after it compiles, but before it caches, the response.
Once the BIG-IP begins the compilation and assembly process, it then examines existing response headers
that influence assembly.

You can configure assembly, proxying, lifetime, or responses cached rules based on response headers.

Note: If you configure proxying rules based on HTTP response header parameters, you can use them only
in terms of how the BIG-IP caches the responses, because the BIG-IP has already sent the request to the
origin web servers when it reviews the response headers.

Classification of responses

After the BIG-IP® device receives a response from the origin server, and before it performs application
matching, it classifies the response based on the object types that are defined on the Object Types screen.
The BIG-IP bases this classification on the first item it finds, in the following order.

1. The file extension in the file name field of the response's Content-Disposition header.
2. The file extension in the extension field of the response's Content-Disposition header.
3. The response's Content-Type header, unless it is an ambiguous MIME type.
4. The request's path extension.

For example, if the extension in the file name field of the response's Content-Disposition header is
empty, the BIG-IP looks at the response's Content-Disposition header's file extension in the extension
field. If that has an extension, the BIG-IP attempts to match it to a defined object type. If there is no match,
the BIG-IP assigns an object type of other and uses the settings for other. The BIG-IP examines the
information in the Content-Type header only if there is no extension in the file name or extension fields
of the Content-Disposition header.

If the BIG-IP finds a match to an object type, it classifies the response with that object type, group, and
category, and uses the associated settings for compression. The object type and group under which the
response is classified is also included in the X-WA-Info response header.

Important: If you have defined a compression setting for an object from the Object Types screen, it overrides
any compression setting configured for an assembly rule for the response’s matched node.

Once it classifies the response by object type, the BIG-IP appends it as follows: group.objectType. The
BIG-IP then matches the response to a node of a Policy Tree in an acceleration policy (the first matching
process was for the request), using the new content type. In many cases, this content type is the same as the
content type for the request, and the BIG-IP matches the response to the same node as the request.

77

BIG-IP® Acceleration: Concepts

Note: The BIG-IP also matches the response to the same node as the request if there is no Content Type
parameter specified in a matching rule.

Unlike the HTTP request data types, you do not base a matching rule directly on the value of an HTTP
response data type. Instead, you base the rule on the content type parameter that the BIG-IP generates, by
specifying the regular expression that you want a request or response's content type to match, or not to
match.

Application of association acceleration policy rules

The BIG-IP® device compiles the response, and determines if it can cache it by looking for a responses
cached rule for the node that matches the response. If the response is cacheable, the BIG-IP caches a copy
of the response.

Assembly of responses

The BIG-IP® device assembles responses using the following information.

• The assembly rules specified for the node that matches the response.
• The Enable Compression setting (configured from the Object Types screen) for the object type under

which the response was classified. The options for this setting include the following.

• Policy Controlled. The BIG-IP uses the compression settings configured in the acceleration policy’s
assembly rules.

• None. The BIG-IP never compresses the response. This option overrides the compression setting in
the acceleration policy’s assembly rules. Select this option only if you want the BIG-IP to ignore
assembly rules for the specified object type.

Regular expressions and meta tags for rules

When the BIG-IP® performs patternmatching based on regular expressions, it assumes all regular expressions
are in the form of ^expression$, even if you do not explicitly set the beginning of line (^) and end of line
($) indicators. For substring searches, you enter *expression.* as a regular expression.

The string that the BIG-IP matches is dependent on the HTTP data type for which you are providing the
regular expression. Before the BIG-IP attempts to match information in an HTTP request to the HTTP
request data type parameters, it translates any escaped characters (such as %2F or %2E) back to their regular
form, such as (/ or .,).

Management of Cache-Control response headers

The HTTP Cache-Control version 1.1 header specification identifies general-header field directives for all
cachingmechanisms along the request/response chain, and is used to prevent caching behavior from adversely
interfering with the request or the response. (For additional information, see sections 13 and 14 of the
HTTP/1.1 specification at http://www.w3.org/Protocols/rfc2616/rfc2616.html.)

Directives can appear in response or request headers, and certain directives can appear in either type of
header. The HTTP Cache-Control general-header field directives typically override any default caching
algorithms.

The origin web server’s cache response directives are organized in two groups: no-cache and max-age.

78

Using Acceleration Policies to Manage and Respond to HTTP Requests

Cache-Control: no-cache directives

By default, the majority of the BIG-IP’s acceleration policies are configured to cache responses and ignore
the following HTTP Cache-Control header’s no-cache directives.

• Pragma: no-cache

• Cache-Control: no-cache

• Cache-Control: no-store

• Cache-Control: private

You can configure the BIG-IP to honor no-cache directives. However, doing so can result in a noticeable
increase in the traffic sent to the origin web server, depending on howmany users send no-cache directives
in requests.

Cache-Control: max-age directives

TheBIG-IP® system uses theHTTP Cache-Control header's max-age or s-maxage directives to determine
the TTL values for compiled responses, only when the Honor Headers From Origin Web Server check
box is selected. It uses combinations of themax_age and s_maxage settings for Origin Web Server
Headers as selected (either one or both). If theHonor Headers From OriginWeb Server settings are not
configured, then the BIG-IP system uses the WebAccelerator Cache Settings Maximum Age value.

Note: If the TTL values for the s-maxage and the max-age directives are different, the BIG-IP system
uses the TTL value for the s-maxage directive.

X-WA-Info response headers

Before sending a response to a client, the BIG-IP can optionally insert an X-WA-Info response header that
includes specific codes describing the properties and history of the object. The X-WA-Info response header
is for informational purposes only and provides a way for you to assess the effectiveness of your acceleration
policy rules.

Following is an example of an X-WA-Info header.

X-WA-Info: [V2.S11101.A13925.P76511.N13710.RN0.U3756337437].[OT/images.OG/images]

The code is divided into fields by the period (.) delimiter. Each field begins with a letter code, followed
by one or more letters or numbers. The object type and group under which the response is classified are
also included in the X-WA-Info response header.

The object type is preceded by OT and the group is preceded by OG, as in the following example.

[OT/msword.OG/documents]

When you enable the X-WA-Info Header setting for an application, the following tasks describe how to
view X-WA-Info response headers.

• Perform a packet capture of the page.
• Using an HTTP viewer utility like HttpWatch, HTTP Analyzer, or Live Headers.
• Using the Request Logging profile.

79

BIG-IP® Acceleration: Concepts

X-WA-Info response header in a symmetric deployment example

Typical X-WA-Info header in a symmetric deployment

The X-WA-Info response header in a symmetric deployment includes keywords that designate Central and
Remote devices, which can be used, as necessary, for analysis. This example shows a typical response
header, and the sequence of the X-WA-Info response header in a symmetric deployment.

X-WA-Info: [Central].[V2.S10201.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.4].[O/0.3].[EH4/19].[DH3/2].[C/D]
[Remote].[V2.S11101.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.0].[O/0.3].[EH2/5].[DH2/19].[C/D]

The Central device's X-WA-Info header is served by the Remote device, and is only updated if one the
following conditions is met.

DescriptionCondition

Condition 1 • A 200 OK response is delivered from the origin web server
• The content has expired
• The content is different from the cached object on both devices

The cache is cleared on the Remote device but not on the Central device, causing the Central
device to issue a 200 OK response to the Remote device

Condition 2

Sequence of X-WA-Info response header for symmetric devices

The following sequence shows the way in which the X-WA-Info response header updates in a symmetric
deployment, starting with a request for new content on an empty cache with a lifetime of 2 seconds.

A first request is initiated for creation of a positive cache entry on both devices (a 200 OK response from
the origin web server).

X-WA-Info: [Central].[V2.S10201.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.0].[O/0.3].[EH5/34].[DH1/0].[C/P]
[Remote].[V2.S10201.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.2].[O/0.3].[EH1/0].[DH1/0].[C/P]

A second request is initiated for caching of content on both devices (again, a 200 OK response from the
origin web server).

X-WA-Info: [Central].[V2.S10201.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.1].[O/0.3].[EH6/14].[DH3/3].[C/D]
[Remote].[V2.S10201.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.3].[O/0.3].[EH3/1].[DH3/1].[C/D]

A third request is initiated once the objects are in the cache on both devices. The content is served from the
Remote device's cache, and content is not proxied to the origin web server.

X-WA-Info: [Central].[V2.S10201.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.1].[O/0.3].[EH6/14].[DH3/3].[C/D]
[Remote].[V2.S11101.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.4].[O/0.3].[EH2/68].[DH1/2].[C/D]

Observe that the Central device's X-WA-Info header continues to use an S code of S10201.

A fourth request is initiated for the content that is now expired. The content is expired on both devices, and
a conditional GET request is sent to the origin web server.

80

Using Acceleration Policies to Manage and Respond to HTTP Requests

X-WA-Info: [Central].[V2.S10201.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.1].[O/0.3].[EH8/14].[DH3/3].[C/D]
[Remote].[V2.S10232.A53316.P67996.N37551.RN0.U3955110987].
[OT/jpeg.OG/images].[P/0.4].[O/0.3].[EH2/71].[DH1/6].[C/D]

Again, the Central device's X-WA-Info header uses an S code of S10201. The Central device is showing
the S code from the last 200 OK response delivered to the Remote device by the Central device.

V code

The V code is the first field of the X-WA-Info response header. This field code indicates the version of
the X-WA-Info response header code used in the BIG-IP® software.

DescriptionV code

Version 2 of the X-WA-Info response header code, used in BIG-IP version 11.3 software.V2

S code

The S code is the second field of the X-WA-Info response header. This field code indicates whether the
object in the HTTP response was served from the system's cache, or was sent to the original web server for
content.

A code

The A code is the third field of the X-WA-Info response header, and identifies to which application the
BIG-IP matched the request. This helps you determine which acceleration rules the BIG-IP applied to the
request.

P code

The P code is the fourth field of the X-WA-Info response header, and it indicates the acceleration policy
that the BIG-IP applied to the request.

N code

The N code is the fifth field of the X-WA-Info response header, and it identifies the application match of
a request to an acceleration policy. The request node ID matches the policy node ID.

RN code

The RN code is the sixth field of the X-WA-Info response header, and it identifies the application match
of a response to an acceleration policy. The BIG-IP can perform response-based applicationmatching against
MIME types in a response, or by matching attachment file name extensions. Request-based application
matching against extensions in the URL path is not considered a response application match; however, a
request application match appears in the N field.

A 0 (zero) RN code in the X-WA-Info response header indicates that the BIG-IP response matching did
not override the decision made in the initial request match (N-code), and that the initial request match and
the response match are the same. A nonzero RN code in the X-WA-Info response header indicates that the
response matching overrode the decision made in the initial request match, and that the initial request match
and the response match are different.

81

BIG-IP® Acceleration: Concepts

U code

The U code is the seventh field of the X-WA-Info response header and is used to verify the behavior of
variation rules. Two responses with the same U code value were served the same cache entry; two responses
with different U code values were served different cache entries.

Reference summary for HTTP data

This section provides HTTP reference data, including request data type paramenters, response status codes,
S code definitions.

HTTP request data type parameters

This table describes the HTTP request data type parameters and respective rules.

Invalidations
Rules

Proxying
Rules

Assembly
Rules

Variation
Rules

Matching
Rules

Parameter

xxxxHost

xxPath

xxExtension

xxxxxQuery parameter

xxxxxUnnamed query
parameter

xxxxxPath segment

xxxxCookie

xxxxUser Agent

xxxxReferrer

xxxxProtocol

xxxxMethod

xxxxHeader

xxxxClient IP

xContent Type

Response status codes

This table describes HTTP response codes that you can add in addition to the default 200, 201, 203, or 207
response codes.

DefinitionResponse
code

OK. The request is satisfactory.200

82

Using Acceleration Policies to Manage and Respond to HTTP Requests

DefinitionResponse
code

Created. The requested resource (server object) was created.201

Non-Authoritative Information. The transaction was satisfactory; however,
the information in the entity headers came from a copy of the resource, instead of an origin
web server.

203

Multi-Status (WebDAV). The subsequent XML message might contain separate
response codes, depending on the number of sub-requests.

207

Multiple Choices. The requested resource has multiple possibilities, each with
different locations.

300

Moved Permanently. The requested content has been permanently assigned a new
URI. The origin web server is responding with a redirect to the new location for the content.

301

Found. The requested content temporarily resides under a different URI. The redirect to
the new location might change.

302

Temporary Redirect. The requested content temporarily resides under a different
URI. The redirect to the new location might change.

307

Gone. The requested content is no longer available and a redirect is not available.410

S code definitions

This table describes the S codes, the first field of the X-WA-Info response header, which indicates whether
the object in the HTTP response was served from the system's cache, or was sent to the original web server
for content.

DescriptionDefinitionCode

Indicates that the BIG-IP was unable to determine if a
response was served from cache or sent to the origin web
server for content.

Response was served
from an unknown source.

SO

Indicates that the content was served from cache, that the
content is usually dynamic, and that the content might or
might not be assembly processed.

Response was served
from cache.

S10101

When the BIG-IP receives a request for new content, it
sends the request to the origin web server and caches the

Response was served
from the origin web

S10201

content before responding to the request. Future requests
for this content are served from cache.

server, because the
request was for new
content.

When the BIG-IP receives a request for cached content
that exceeds a lifetime rule’sMaximum Age setting, it

Response was served
from the origin web

S10202

revalidates the content with the origin web server (whichserver, because the
responds with a 200 (OK) status code). After revalidatingcached content had

expired. the content, the BIG-IP serves requests from cache, until
theMaximum Age setting is once again exceeded.

When the BIG-IP matches a request to a node with a
proxying rule set toAlways proxy requests for this node,

Response was served
from the origin web

S10203

the BIG-IP sends that request to the origin web server,
rather than serving content from cache.

server, as dictated by an
acceleration policy rule.

83

BIG-IP® Acceleration: Concepts

DescriptionDefinitionCode

If the BIG-IP receives a request that contains an HTTP
no-cache directive, the BIG-IP sends the request to the

Response was served
from the origin web

S10204

origin server and does not cache the response. In addition,server, because of
the BIG-IP does not currently support somespecific HTTP or web

service methods. vendor-specific HTTP methods (such as OPTIONS) and
some web services methods (such as SOAP). The BIG-IP
sends requests containing those methods to the origin web
server for content.

You can perform a cache invalidation manually, through
direct XMLmessaging over HTTPS on port 8443, or with

Response was served
from the origin web

S10205

an acceleration rule setting. After the BIG-IP invalidatesserver because the
cache and retrieves new content from the origin webcached content was

invalidated. server, it stores the response and serves future requests
from cache.

If a response cannot be cached, for example, because the
content is private or the header is marked as no-store,
the BIG-IP includes this code in the response to the client.

Response was served
from the origin web
server, because the
content cannot be
cached.

S10206

If an acceleration rule prompts the BIG-IP to expire
content, it sends the next request to the origin web server.

Response was served
from cache, after sending

S10232

If the origin web server indicates that the cached contenta conditional GET request
has not changed (responding with a 304 (Not Modified)to the origin web server
status code), the BIG-IP includes this code in the response
to the client.

and receiving a response
indicating that the
expired cached content
is still valid.

When a request includes an Expect: 100-continue
header, that request and its response bypass the BIG-IP,

Response bypassed the
BIG-IP.

S10413

which responds with an X-WA-Info header that includes
an S10413 field code.

Indicates that the content was served from cache, that the
content is static, and that the content came directly from

Response was served
from cache.

S11101

cache without assembly processing by the BIG-IP system.
This is the most efficient and fastest response method.

HTTP data types for regular expression strings

This table describes the HTTP data types that are supported by the BIG-IP for regular expression strings.

ExampleDefinitionHTTP data
type

HOST: www.siterequest.com

The BIG-IP matches the example HTTP Host request header to
the string www.siterequest.com.

The value set for the
HTTP Host request
header

host

84

Using Acceleration Policies to Manage and Respond to HTTP Requests

ExampleDefinitionHTTP data
type

http://www.siterequest.com/apps/
search.jsp?value=computer

For the example URI, the BIG-IP matches the string
/apps/search.

The value set for the
path portion of the URI

path

http://www.siterequest.com/apps/
search.jsp?value=computer

For the example URI, the BIG-IP matches the string jsp.

The value set for the
extension portion of the
URI

extension

http://www.siterequest.com?action=display&PDA

The BIG-IP matches the example value set for the action query
parameter to the string display.

The value set for the
identified query
parameter

query
parameter

A query parameter is matched against the requested URL, or a
Content-Type header's URL encoded string in the body of a
POST method. If the specified query parameter appears one or
more times in the request, all instances will be matched.

http://www.siterequest.com?action=display&PDA

If the value set for the unnamed query parameter in ordinal 2 is
this URI, the BIG-IP matches the string PDA.

The value set for the
identified query
parameter

unnamed
query
parameter

An unnamed query parameter is matched against the requested
URL, or a Content-Type header's URL encoded string in the
body of a POST method. The ordinal specifies the left-to-right
position of the parameter to match.

http://www.siterequest.com/apps;AAY34/search.jsp?
value=computer

If you identify the path segment in ordinal 1 for the full path
(counted from left-to-right), then you have identified the segment
key in the URL, and the BIG-IP matches the string apps.

The name of the
segment key or the
value set for the
segment parameter,
depending on what you
identify for the match

path segment

Path segments are matched against the ordered segments, separated
by a virgule (/) and terminated by the first question mark (?) or
octothorpe (#) in the URL

COOKIE: SESSIONID=TN2MM1QQL

The BIG-IP matches the string TN2MM1QQL.

The value set for the
identified cookie

cookie

USER_AGENT: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)

The BIG-IP matches the string Mozilla/4.0 (compatible;
MSIE 5.5; Windows NT 5.0).

The value set for the
HTTP USER_AGENT
request header

user agent

REFERER: http://www.siterequest.com?action=display

TheBIG-IPmatches the stringhttp://www.siterequest.com?
action=display.

The value set for the
HTTP REFERER request
header

referrer

http://www.siterequest.com

The BIG-IP matches the string http.

The protocol used for
the request

protocol

85

BIG-IP® Acceleration: Concepts

ExampleDefinitionHTTP data
type

GET /www/siterequest/index.html

The BIG-IP matches the string
/www/siterequest/index.html.

The value set for the
identified method

method

Accept-Encoding: gzip

The BIG-IP matches the string gzip

The value set for the
identified header

header

.

CLIENT-IP: 192.160.10.3

The BIG-IP matches the string 192.160.10.3.

The source IP address
for the HTTP request

client ip

Max age value for compiled responses

This table describes the max age values for compiled responses.

DescriptionDirectivePriority

The BIG-IP bases the TTL on the current time, plus the value
specified for the HTTP Cache-Control header’s s-maxage
directive. Values for this directive are expressed in seconds.

Cache-Control:
s-maxage

1

The BIG-IP bases the TTL on the current time, plus the value
specified for the HTTP Cache-Control header’s max-age
directive. Values for this directive are expressed in seconds.

Cache-Control:
max-age

2

The BIG-IP uses the TTL provided for HTTP Cache-Control
header’s entity-header field. Values for this field are expressed

Expires3

in Coordinated Universal Time (UTC time). To avoid caching
issues, the BIG-IPmust be properly synchronized with the origin
web server. For this reason, F5 Networks® recommends that
you configure a Network Time Protocol (NTP) server.

The BIG-IP bases this TTL by using the formula TTL =
curr_time + (curr_time - last_mod_ time) *
last_mod_factor.

In this formula, the variables are defined as follows:

Last-Modified4

• curr_time is the time that the response is received by the
BIG-IP.

• last_mod_ time is the time specified by this directive.
• last_mod_factor is a percentage value used to weight

the TTL you set it with a lifetime rule.

Meta characters

This table describes the meta characters that are supported by the BIG-IP for pattern matching.

ExampleDescriptionMeta
character

Matches any single character..

86

Using Acceleration Policies to Manage and Respond to HTTP Requests

ExampleDescriptionMeta
character

Matches the beginning of the line in a
regular expression. The BIG-IP assumes

^

that the beginning and end of line meta
characters exist for every regular
expression it sees.

The expression G.*P.* matches:Matches the end of the line. The BIG-IP
assumes that the beginning and end of

$

• GrandPlanline meta characters exist for every
regular expression it sees. • GreenPeace

• GParse
• GP

A pattern starting with the * character is the
same as using .* For example, the BIG-IP
interprets the following two expressions as
identical.

• *Plan
• .*Plan

Matches zero or more of the patterns that
precede it.

*

The expression G.+P.* matches:Matches one or more of the patterns that
precede it.

+

• GrandPlan
• GreenPeace

Do not begin a pattern with the + character.
For example, do not use +Plan. Instead, use
.+Plan.

The expression G.?P.* matches:Matches none, or one of the patterns that
precede it.

?

• GParse
• GP

Do not begin a pattern with the ? character.
For example, do not use ?Plan. Instead, use
.?Plan.

The expression C[AHR] matches:Matches a set of characters. You can list
the characters in the set using a string
made of the characters to match.

[...]

• CAT
• CHARISMA
• CRY

You can also provide a range of characters by
using a dash. For example, the expression
AA[0-9]+ matches:

• AA269812209
• AA2

It does not, however, match AAB2.

To match any alphanumeric character, both
upper-case and lower-case, use the expression
[a-zA-Z0-9].

87

BIG-IP® Acceleration: Concepts

ExampleDescriptionMeta
character

The expression C[^AHR].* matches:Matches any character not in the set. Just
as with the character, [...], you can

[^...]

• CLEARspecify the individual characters, or a
range of characters by using a dash (-). • CORY

• CURRENT

The expression C[^AHR].*, however, does
not match:

• CAT
• CHARISMA
• CRY

The expression AA(12)+CV matches:Matches the regular expression contained
inside the parenthesis, as a group.

(...)

• AA12CV
• AA121212CV

The expression AA([de]12|[zy]13)CV
matches:

Matches either exp1 or exp2, where
exp1 and exp2 are regular expressions.

exp1 exp2

• AAd12CV
• AAe12CV
• AAz12CV
• AAy13CV

Advanced Debug settings for General Options

For the General Options list, this table describes Advanced controls for Debug Options.

DescriptionDefaultAdvanced
control

This setting is used for troubleshooting purposes. You should not change
this setting unless instructed to do so by an F5 Network Technical Support
Engineer.

NoneX-WA-Info
Header

• None. Disables Debug Options functionality.
• Standard. Enables the BIG-IP to insert an X-WA-Info response header,

which includes specific codes that describe the properties and history
of objects.

• Debug. Includes advanced troubleshooting parameters.

88

Using Acceleration Policies to Manage and Respond to HTTP Requests

Chapter

6
Differentiating Requests and Responses with Variation Rules

• Overview: Variation rules

Overview: Variation rules

When the BIG-IP® system caches responses from the origin web server, it uses certain HTTP request
parameters to create a Unique Content Identifier (UCI). The BIG-IP system stores the UCI in the form of
a compiled response, and uses the UCI to easily match future requests to the correct content in the module's
cache.

You can configure variation rules to add or modify the parameters on which the BIG-IP system bases its
caching process. If the BIG-IP system receives two requests that are identical except for the value of a query
parameter defined in the variation rule, it creates a different UCI for each, and caches each response under
its unique UCI.

Consider a site that receives requests from customers and partners, and wants to serve different content to
each. For this site, you could create a variation rule in which you specify that when a request contains a
version cookie set to a value of 1, the BIG-IP system serves a page specifically for customers, and when
the version cookie is set to a value of 2, it serves a page specifically for partners. For this rule, the BIG-IP
system caches the following three compiled responses.

• For content produced for Cookie: version=1.
• For content produced for Cookie: version=2.
• For content produced when the version cookie does not appear in the request.

Note: When configuring this variation rule, you must specify a value for the version cookie parameter.
If you do not, the BIG-IP system ignores the cookie's value and produces, at most, two compiled responses:
one for requests that contain the cookie, and one for requests that do not contain the cookie. The BIG-IP
system then serves the first response it caches to any subsequent requests that contain that cookie.

Cache efficiency improvement

By default, the BIG-IP includes the following HTTP request parameters in the UCI.

• Host
• Query Parameter
• Path Segment
• Cookie
• Protocol
• Header

If the content that your application serves is not dependent on the presence or value of these parameters in
an HTTP request, you should create a rule so that when the BIG-IP assembles a UCI, it does not include
those parameters.

Effective variation rules can result in a significant resource savings. For example, if your site uses a query
parameter that provides session tracking information, and your site's pages are not affected by the value set
for the session tracking query parameter, you can configure a variation rule to identify the session tracking
query parameter as not significant for content. This way, the BIG-IP caches one version of the page for any
value of the session tracking query parameter. Without a variation rule, the BIG-IP creates one unique
compiled response for every page that every user views. This results in an unnecessarily large cache.

90

Differentiating Requests and Responses with Variation Rules

User-specific content

By default, the BIG-IP does not include the following HTTP request elements in the UCI.

• Method
• Cookie
• User Agent
• Referrer
• Header
• Client IP

You must create a variation rule if the content you want to serve is dependent on one of these elements.
That is, configure a variation rule if you want to serve different content based on.

• The method that a request uses
• The state of a cookie contained in a request
• The connecting client’s IP address
• The state of the HTTP USER_AGENT, REFERER, or other request headers

If you do not create a variation rule in these situations, the BIG-IP might not provide the content you want
when servicing a request.

Definition of variation rules parameters

When you define a variation rule, you specify one of the following behaviors for a parameter.

• HTTP request elements that match the variation rule result in unique page content. The BIG-IP uses the
specified parameter and its value in the UCI it creates for the request.

• HTTP request elements that match the variation rule do not result in unique page content. The BIG-IP
ignores the value set for the specified parameter, which means that the parameter and its value are not
included in the UCI that the BIG-IP creates for the request.

Variation rules affect the UCI independently of whether the response was cached. Therefore, the BIG-IP
applies variation rules to all requests after it matches the request to a node, even when it sends the request
to the origin server for fresh content.

Value groups

A value group is a collection of values for a variation rule parameter, enabling you to define several different
parameter values for the same variation rule. Each value can prompt a different behavior by the BIG-IP
system.

For example, a matching rule based on cookie A can only specify a single set of values for the cookie,
depending on a match or a no match. For more flexibility, you could use a variation rule with a value group
for cookie A, consisting of several rules such as these examples.

• When cookie A begins with aa, the page content is the same. This rule indicates that the BIG-IP system
matches all requests to the same page if the request contains a cookie called A with a value that begins
with aa.

• When cookie A begins with bb, the page content is the same. This rule indicates that the BIG-IP system
matches all requests to the same page if the request contains a cookie called A with a value that begins
with bb. However, the page it matches is different from the page for cookie A with a value of aa.

91

BIG-IP® Acceleration: Concepts

• For all other cookie A values, page content is unique. This rule indicates that the BIG-IP system
matches all requests that contain a cookie called A with any value that does not begin with aa or bb, to
a unique page specified for each cookie value. That is, if there were three requests with three different
values for cookie A (such as ca233, ca234, ba234), the BIG-IP system would match the requests to
three different pages.

Management of conflicting rules parameters

If a request matches two or more variation rule parameters, and the parameters define conflicting behavior
(one parameter indicates that the value is significant for content and the other does not), the BIG-IP considers
the parameter significant for content. This means that the BIG-IP compiles a separate response for the
conflicting parameter value in the request.

If a request element matches a variation rule that contains conflicting named and unnamed query parameter
values, the BIG-IP considers the query parameter ambiguous because it is not clear which value the BIG-IP
should use when processing the request. For example, consider a variation rule with the parameters configured
as outlined in the following table.

Table 8: Example of conflicting query parameters

Content to ServeValue MatchParameter

different contentAll valuesAll other query parameters

same contentAll valuesUnnamed query parameter in
ordinal 1

When applying this variation rule to the request for
http://www.siterequest.com/show.jsp?computer&vendor=whiteBox, the BIG-IP could interpret
computer as either of the following.

• A query parameter named computer that has no value set for it.
• An unnamed query parameter in ordinal 1, for which the value is set to computer.

In this example, it is unclear whether the BIG-IP should use computer in the UCI, and whether the result
is a unique page. Therefore, the BIG-IP determines that the query is ambiguous, and matches the request
to the node with the highest priority on the Policy Tree.

By default the BIG-IP treats all ambiguous query parameters as a named query parameter without a value.
You can, however, override this default behavior.

92

Differentiating Requests and Responses with Variation Rules

Chapter

7
Managing Compiled Responses with Assembly Rules

• Overview: Assembly rules

Overview: Assembly rules

The BIG-IP® device manages content in the form of compiled responses in cache, which contain applets
that the BIG-IP device uses to assemble pages. The BIG-IP device determines how to assemble content by
using the following assessments from assembly rules.

• Which content assembly features to apply, such as Intelligent Browser Referencing and MultiConnect.
• How to change parameter values for embedded URLs by substituting values from the request, or by

randomly generated values.

Because the BIG-IP device performs content assembly after it matches the response to a node, it always
uses the matched response node's assembly rules, which it caches as part of the original compiled response.
If the response matches to a different node than the request, the BIG-IP device considers the assembly rules
associated with the request's node as irrelevant.

Management of content served from origin web servers

The primary purpose of the Enable Content Assembly on Proxies setting is to allow the BIG-IP® device
to compress content as required, and to manage content using the Intelligent Browser Referencing feature,
even if the content is not served from cache. Using content compression or Intelligent Browser Referencing,
without selecting the Enable Content Assembly on Proxies check box, applies compression to HTML
documents and Intelligent Browser Referencing to links in HTML documents that are served from cache,
but not to any HTML documents that bypass the cache.

Note: If a policy enables a document to be cached, but the document is not yet cached or has expired, the
BIG-IP services from the system's cache and performs content assembly even when the Enable Content
Assembly on Proxies option is disabled.

94

Managing Compiled Responses with Assembly Rules

Chapter

8
Proxying Requests and Responses

• Overview: Proxying rules

Overview: Proxying rules

In general, the BIG-IP system attempts to service all HTTP requests from the system's cache. However, if
you have certain types of content that you do not want the BIG-IP system to service from the system's cache,
you can configure proxying rules. Using proxying rules, you identify HTTP request elements that prompt
the BIG-IP system to send a request to your origin web servers for content.

You configure proxying rules from the proxying screen.

Proxying rules parameters

The proxying rule parameters consist of several components.

• Proxying Options. This setting provides the following options.

• Always proxy requests for this node. When you select this option, the BIG-IP sends all requests
that match the associated node to the origin web server for content. This option overrides any
configured proxying rules.

• Configure and use Proxy Rules for this node. When you select this option, the BIG-IP applies
configured proxy rules to requests that match the associated node.

• BIG-IP Cache Mode. You can select one of the following caching modes for the node to cache objects
defined by override rules.

• Memory & Disk Cache. When you select this setting, the BIG-IP caches objects for the selected
node to memory and disk cache.

• Memory-only Cache. When you select this setting, the BIG-IP caches objects for the selected node
only to memory. In the event of power loss, memory is cleared, providing greater security.

• Proxy Rules. For this option, you can define specific parameters for proxying rules. In general, proxy
rules options are only relevant to requests that match their node, rather than to matched responses.

• Proxy Override Rules. For this option, you can define parameters and associated conditions under
which the BIG-IP should ignore proxying rules options.

96

Proxying Requests and Responses

Chapter

9
Managing Requests and Responses with Lifetime Rules

• Overview: Lifetime rules

Overview: Lifetime rules

The length of time that a client browser, upstream device, or BIG-IP system keeps compiled content in its
cache before refreshing it is called content lifetime. Content lifetime is expressed in the form of a time to
live (TTL) value, and can vary for each cached response.

When content is in cache longer than its TTL value, the BIG-IP system considers the content expired. When
the BIG-IP system receives a request for expired content, it sends that request to the origin web servers for
fresh content, replaces the expired cached content with the fresh response, and then responds to the request.

Lifetime managed requests

The HTTP Cache-Control version 1.1 header specification identifies headers that are used to control web
entities, such as the BIG-IP. Clients that are HTTP version 1.1-compliant are capable of providing request
headers, which contain directives that control caching behavior.

If theHonor Headers In Request setting is enabled, the BIG-IP obeys any HTTP Cache-Control header
directives configured for the client. If this setting is enabled and the client includes an HTTP Cache-Control
header directive that indicates the client is not willing to accept content served from a cache, the BIG-IP
refreshes the corresponding cached content for the request, even if that content has not yet expired.

If you want to use HTTP lifetime headers, but want to be able to serve valid content that the BIG-IP cached
when applicable, you can move the no_cache list item forHonorHeaders In Request, in the BIG-IP Cache
Settings area, from the Selected list to the Available list.

Lifetime managed responses

BIG-IP lifetime rules only apply to responses; they are not relevant to requests. The BIG-IP applies lifetime
rules only to responses that it receives from the origin web server. You can define how the BIG-IP manages
cached content for responses, through the following lifetime rule settings.

DescriptionLifetime Rule Settings

These settings specify how long the BIG-IP retains cached content, how
long the BIG-IP serves cached content if the origin web server is not

WebAccelerator Cache
Settings

available, and when to expire cached content. These settings also specify
whether the BIG-IP honors the TTL values provided with the headers in
the request and provided with the headers sent from the origin web server.

These settings specify whether the client browser (or other upstream device)
should store content locally and, if so, the maximum time the browser

Client Cache Settings

should store content. They also specify whether the BIG-IP should honor
any existing no-cache directives, use custom Cache-Control directives,
or replace origin web server directives with a no-cache directive.

These settings apply to any HTTP response that matches to a leaf node for a specific acceleration policy,
for which the option is set.

98

Managing Requests and Responses with Lifetime Rules

About specifying the amount of time to store cached content

If you have certain content that rarely changes, you can increase the amount of time that the BIG-IP and
client store that content. This reduces the load on your origin web server and increases the perceived
performance of your site.

The value underWebAccelerator Cache Settings for theMaximum Age setting determines how long the
BIG-IP stores cached content. The values under Client Cache Settings for theMaximum Age and S-Max
Age settings determine how long the client stores cached content. The S-Max Age setting can only be used
for a shared cache. When the limit is met, the BIG-IP or client browser requests fresh content from the
origin web server.

Note: SpecifiedMaximum Age and S-Max Age header settings are used only when they are not provided
in a response from the origin web server, or when they are not configured to be honored by the BIG-IP.

Specifying the amount of time for the BIG-IP to store cached content

UnderWebAccelerator Cache Settings, theMaximum Age can be configured either as a heuristic value
or as a specific amount of time.

For Use HTTP Lifetime Heuristic, the%Heuristic value is a percentage of time that the BIG-IP uses to
calculate the lifetime for cached content from the last time it was refreshed. To determine the lifetime based
on this setting, the BIG-IP reviews the value for the HTTP LAST_MODIFIED response header, and computes
the cache expiration according to the value specified for the%Heuristic percentage. The formula for this
calculation is as follows: ((current time - HTTP LAST_MODIFIED response header = X) *
(lifetime heuristic)) + (current time) = content expiration

For example, if the HTTP LAST_MODIFIED response header specifies that the object was last modified at
9:00 a.m., the current time is 11:00 a.m., and the%Heuristic setting is a value of 50, then the content
expiration is 12:00 p.m.

The Use HTTP Lifetime Heuristic setting is only in effect if you are using HTTP headers to identify
content lifetime. Use this setting only if you want to use the HTTP LAST_MODIFIED response header to set
compiled response TTL values.

Note: If the origin web server does not provide an HTTP LAST_MODIFIED response header or value, the
BIG-IP will use an internal value to calculate the lifetime for cached content.

Clearing the Use HTTP Lifetime Heuristic check box enables you to configure a specific amount of time
for theMaximumAge value, with units of time ranging from Seconds throughDays. Setting theMaximum
Age value to 0 initiates a refresh for each request, preventing the BIG-IP from caching the associated content.
AMaximum Age setting of 0 can significantly reduce the load on the origin web server, especially for
large files and frequently accessed files, because the BIG-IP initiates a refresh for each request, instead of
full GET request.

Specifying the amount of time for a client to store cached content

UnderClient Cache Settings, thePreserveOriginWeb Server headers/directives to downstream devices
option and theCustom Cache-Control Directives option use theMaximum Age and S-Max Age settings
to configure a specific amount of time, with units of time ranging from Seconds through Days.

Setting theMaximum Age or S-Max Age value to 0 initiates a refresh for each request, preventing the
client from caching the associated content.

99

BIG-IP® Acceleration: Concepts

About serving cached content when origin web server content is unavailable

The BIG-IP can continue to serve content from its cache when an origin web server responds with specific
HTTP status codes. By specifying a Stand-in Period and a Stand-in Code, you can enable the BIG-IP to
provide stale content for those specific conditions.

Stand-in Period

In theWebAccelerator Cache Settings area, the value for the Stand-in Period setting identifies how long
the BIG-IP continues to serve content from cache if the origin web server responds to the BIG-IP's requests
for fresh content with an HTTP 404 (page not found), 500 (internal server error), or 504 (service unavailable)
response. If the BIG-IP cannot retrieve fresh content from the origin web server after the stand-in period
expires, or if the stand-in period is undefined, the BIG-IP provides the HTTP 404, 500, or 504 response
from the origin web server.

The stand-in period requires an origin web server response. If the origin web server is down, and provides
no response, the stand-in period is not applied.

Stand-in Code

If network failure occurs, or if the origin web server responds with certain error codes, the BIG-IP cannot
validate cache with the origin web server. However, you can configure the BIG-IP to serve stale content
during these conditions, by using theWebAccelerator Cache Settings Stand-in Code settings. The BIG-IP
serves invalid content to the client if the origin web server response code meets these conditions. If a stand-in
response code is not configured, the BIG-IP uses default values (404, 500, or 504) to determine whether
it is serving stale content.

About preserving origin web server headers and directives to downstream devices

When you select the Preserve origin web server headers/directives to downstream devices option, under
Client Cache Settings, the BIG-IP directs the client browser to store content locally on the client, in
accordance with the cache directives that are defined in the HTTP headers sent from the origin web server.

To preserve a cache control directive and send it to downstream devices, you must include the directive for
Origin Web Server Headers in the Selected list.

Note: The BIG-IP inserts an Expires header into the response when expires is selected, if the origin web
server does not include an Expires header. It does not insert an Expires header into the response when
all is selected, if the origin web server does not include an Expires header.

You can also specify aMaximumAge or an S-MaxAge value to use when these directives are not specified
by the origin web server. The BIG-IP uses the specifiedMaximum Age and S-Max Age value only when
the origin web server value is not provided.

When you add Cache-Control extensions to the Custom Cache Extensions list, the BIG-IP preserves
the specified extensions to send to the client. Unless specified, any Cache-Control extensions from the
origin web server are removed from the response.

Custom Cache-Control directives

When you select the Custom Cache-Control directives option in Client Cache Settings, the BIG-IP
enables you to do the following:

100

Managing Requests and Responses with Lifetime Rules

• Specify which origin web server headers to preserve and send to the client.
• Apply specifiedMaximum Age and S-Max Age headers to the specified origin web server headers.

Note: The specifiedMaximum Age and S-Max Age headers are used only when they are not provided
by the origin web server.

• Preserve Cache-Control extension headers sent from the origin web server.

When you add Cache-Control extension headers to the Custom Cache Extensions list, the BIG-IP
preserves the specified extensions to send to the client. Unless specified, any Cache-Control extensions
from the origin web server are removed from the response.

About replacing origin web server headers and directives with a no-cache directive

In Client Cache Settings, when you select the Replace Origin Web Server Headers/Directives with
no-cache option, the BIG-IP inserts a no-cache directive into the HTTP Cache-Control header that is
returned from the origin web server. This header instructs the client browser to not cache content.

When you add Cache-Control extensions to the Custom Cache Extensions list, the BIG-IP preserves
the specified extensions to send to the client. Unless specified, any Cache-Control extensions from the
origin web server are removed from the response.

101

BIG-IP® Acceleration: Concepts

Chapter

10
Invalidating Cached Content

• Overview: Invalidating cached content for an
application

• Overview: Invalidating cached content for a
node

Overview: Invalidating cached content for an application

You can manually invalidate cached content for one or more applications, which expires, but does not
remove, the cached content. Invalidating cached content by application is useful for troubleshooting as well
as for manually refreshing the cached content.

Overview: Invalidating cached content for a node

Cache invalidation is a powerful tool that you can use to maintain tight coherence between the content on
your origin web servers and the content that the BIG-IP system caches.

If you update content for your site at regular intervals, such as every day or every hour, you can use lifetime
rules to ensure that the system’s cache is refreshed with the same frequency. Invalidations rules, however,
allow you to expire cached content before it has reached its time to live (TTL) value, and is a good tool to
use when content updates are event-driven, such as when an item is added to a shopping cart, a request
contains a new auction bid, or a poster has submitted content on a forum thread.

When you configure invalidations rules, you define elements in a request that prompt the BIG-IP system
to invalidate and refresh specific cached content. When the BIG-IP system receives a request that matches
the parameters that you specified for the invalidations rule, it performs the following steps.

• Invalidates the cached content that it would have served.
• Sends the request to the origin web server for fresh content.
• Replaces the specified content, which it previously had in cache, with the new content it receives from

the origin web server.
• Responds to the request with the refreshed content.

You can create invalidations rules that are based on a specific parameter, for example, an invalidation rule
based on a certain cookie.

Important: Although there might be situations that require you to invalidate a significant portion of the
cache, it is important to keep in mind that such a broad invalidation process can tax the origin web server
as it attempts to respond to multiple requests for new content. For this reason, F5 Networks® recommends
that you make the invalidations rule parameters as specific as possible, whenever possible.

Invalidations triggers

The BIG-IP triggers an invalidations rule for a request, only when the following conditions exist.

• An invalidations rule is active.

You can create invalidations rules and enable or disable them at any time.

• The invalidations rule contains a path parameter for both the Request Header Matching Criteria and
the Cached Content to Invalidate settings.

If you do not want to assign a specific path, you can use a single slash (/).

• The invalidations rule has reached its effective time.

You can specify that invalidations rules are effective immediately, or you can set a time in the future.

104

Invalidating Cached Content

• The BIG-IP has refreshed the cached content that corresponds to the request, before the effective date
on the invalidations rule.

This ensures that the BIG-IP module does not invalidate a compiled response more than once, under the
same invalidations rule. A compiled response’s refresh time identifies the last time the BIG-IP refreshed
that compiled response with content from the origin web server. If the compiled response was refreshed
after the invalidations rule went into effect, the BIG-IP considers the content current.

• The request matches the configured request header matching criteria that you specified. The information
that appears on the request must match all the HTTP request data type parameters that you specified for
the Request Header Matching Criteria within the invalidations rule.

For example, the following requests are candidates for invalidation for an invalidations rule that specifies,
in the Request Header Matching Criteria, that the product query parameter must be Computers and that
the path for the request must begin with /apps.

http://www.somesite.com/apps/shop.jsp?action=show&product=Computers

http://web1.somesite.com/apps/search/simple.jsp?product=Computers&
category=desktop

While the following requests are not candidates for invalidation.

http://www.somesite.com/shop.jsp?action=show&product=Computers

http://web1.somesite.com/apps/search/simple.jsp?product=Organizers&
category=desktop

Invalidations lifetime

Invalidations rules are typically targeted at a range of compiled responses. The BIG-IP does not invalidate
a compiled response until it matches a request to the invalidations rule for that compiled response, and it
does not invalidate a range of compiled responses until it receives a request for each individual response in
the range.

By assigning an appropriate lifetime for a rule, the BIG-IP ensures that it refreshes every targeted compiled
response, before it discards the rule. The BIG-IP assigns the lifetime value for the invalidations rule by
examining the maximum lifetime values set for all compiled responses targeted by the rule, and using the
longest TTL value it finds. When the longest TTL value for the compiled responses is reached, the BIG-IP
considers those compiled responses expired and refreshes them, even if an invalidation trigger has not
occurred.

For example, if you created an invalidations rule for any requests that have either /apps or /srch in their
path, your Policy Tree would include two nodes with application matching rules set so that requests with
/apps in the path match to one node, and requests with /srch match to the other node. For this example,
the /srch node has a lifetime rule specifying a maximum age of 15 minutes, while the /apps node uses
the system’s maximum lifetime of 24 hours.

Compiled responses that the BIG-IP creates to service requests matching the /srch node have a maximum
lifetime of 15 minutes. Compiled responses that the BIG-IP creates to service requests matching the /apps
node uses a maximum lifetime of 24 hours. Based on this, the BIG-IP assigns a 24-hour lifetime for the
invalidations rule.

During the 24 hours that the rule is in effect, the BIG-IP refreshes compiled responses either because they
match an invalidations rule or because they have exceeded the set lifetime value. Either way, the BIG-IP
refreshes any content matching the invalidations rule at least once before it discards the rule.

105

BIG-IP® Acceleration: Concepts

Invalidations rules parameters

When configuring an invalidations rule, you must specify parameters for the following settings.

• Request HeaderMatching Criteria. You define the parameters that the BIG-IPmust match in a request,
in order to trigger the invalidations rule.

• Cached Content to Invalidate. You define the content to invalidate and refresh, if the BIG-IP finds
the parameters in the HTTP request header that are specified in theRequest HeaderMatching Criteria
setting.

Important: When configuring an invalidation rule, all parameters are optional except for thePath parameter.
If you do not specify the Path parameter for theRequest HeaderMatching Criteria and theCached Content
to Invalidate settings, the invalidations rule does not trigger the BIG-IP to invalidate the specified cache.
If you do not want to define a specific path, you can use a single slash (/).

Request header matching criteria

For the Request Header Matching Criteria setting, you specify the HTTP request data type parameter
that the BIG-IP must find in an HTTP request header, in order to trigger the invalidations rule. For the
BIG-IP to apply an invalidations rule, the HTTP request must match to a leaf node as well the associated
parameters specified for the Request Header Matching Criteria setting.

Not all requests that match a node that you define will trigger the invalidations rule. You can define a subset
of matching requests by specifying additional parameters for the source as part of the rule. Then, only the
defined subset of requests trigger the invalidations rule.

For example, assume that to match to a particular node, a request must include /apps/shopping in the
path and the query parameter cartmust be present. To configure the Request Header Matching Criteria
setting parameters for this node, you specify that a request must include the query parameter cart and the
value of cart must equal Add. In this case, not all requests that match the node prompt the invalidation.
The BIG-IP only invalidates requests where cart=add.

Cached content to invalidate

The BIG-IP only matches a request to an invalidation rule if it first finds the parameters set for theRequest
Header Matching Criteria setting. If it matches a request to the parameters configured for the Request
Header Matching Criteria setting, only then does the BIG-IP review the parameters set for the Cached
Content to Invalidate setting. If a match occurs, the BIG-IP invalidates the content specified, and retrieves
fresh content from the origin web server. The BIG-IP stores the fresh content in cache and services the
request. When configuring an invalidations rule, you must provide at least one parameter based on the Path
data type for the Cached Content to Invalidate setting.

106

Invalidating Cached Content

Chapter

11
Managing Object Types

• Overview: Object classification

Overview: Object classification

Before sending a response to a client, the BIG-IP system enters an informational X-WA-Info response
header into the response to describe how it handled the response. You cannot change these informational
headers, and they do not affect processing, however, they can provide useful information for evaluating the
efficiency of your acceleration policies.

Part of the information included in the X-WA-Info response header is the object type. The BIG-IP system
classifies, by object type and group, every response it receives from the origin web servers. The object type
and group classification determine how the BIG-IP system handles compression for the response.

Classification by object type

To classify a response by object type, the BIG-IP reviews the response headers and classifies the responses
based on the first information it finds. The following list defines the order for classification.

• File extension in the Content-Disposition header’s file name field
• File extension in the Content-Disposition header’s extension field
• Content-Type header in the response, unless it is an ambiguous MIME type
• Extension of the path in the request

For example, if the extension in the Content-Disposition header’s file name field is empty, then the BIG-IP
looks at the Content-Disposition header’s extension field. If Content-Disposition header’s field has an
extension, the BIG-IP checks to see if an object type is configured for the extension. If there is no match,
it assigns an object type of other, and uses the object settings for other. The BIG-IP looks at the information
in the Content-Type header only if there is no extension in the Content-Disposition header’s file name or
extension fields.

Classification by group

In addition to classifying the response by object type, the BIG-IP also classifies the response by group.

For example, in the following X-WA-Info response header the object type (OT) is defined as Microsoft
Word (msword) and the object group (OG) is documents.

X-WA-Info: [S10101.C30649.A28438.RA0.G0.U58517886].[OT/msword.OG/documents]

Management of object types

The BIG-IP offers two object types.

• Pre-defined Object Types. The BIG-IP ships with several predefined object types, most of which are
optimized for objects associated with specific applications.

• User-defined Object Types. A user-defined object type is an object type that you create and for which
you specify all of the parameters dictating how the BIG-IP manages the specified object type.

The Objects Types screen displays all of the object types that the BIG-IP system is currently applying to
your acceleration policies. From the Object Types screen, you can view the object types that the BIG-IP
is currently applying to acceleration policies, as well as access additional screens where you can perform
the following tasks.

108

Managing Object Types

• Create a user-defined object type.
• View and modify the settings for an existing user-defined or predefined object type.
• Delete a user-defined object type.

Note: You can delete only user-defined object types; you cannot delete predefined object types.

When you create a new object type or modify an existing object type, the BIG-IP system applies the object
type changes globally to all acceleration policies.

When you modify a predefined object type and save it, an information icon displays next to the display
name in the predefined object types table, indicating that the parameters for the object type are modified
from the original version that was shipped with the BIG-IP device.

109

BIG-IP® Acceleration: Concepts

Chapter

12
Caching Objects in a VIPRION Cluster

• Overview: Acceleration in a cluster

Overview: Acceleration in a cluster

A VIPRION® system provides you with the ability to cache objects either for a policy node in a cluster or
on a single cluster member. Typically, caching objects in a cluster achieves optimum acceleration for large,
static objects. Comparatively, caching objects on a single cluster member achieves optimum acceleration
for small, dynamic objects.

112

Caching Objects in a VIPRION Cluster

Chapter

13
Immediately Caching Dynamic Objects

• Overview: Caching an object on first hit

Overview: Caching an object on first hit

The BIG-IP® system provides you with the ability to cache an object on the first cache hit, that is, the first
time that an object is seen by the BIG-IP system. Typically, the BIG-IP system waits until the object is
known to be popular, allowing a limited number of hits against the original content. Caching the object on
first hit, however, causes the BIG-IP system to immediately cache the object, even if it is not popular. You
only want to apply this setting for highly dynamic objects (for example, stock quotes provided by a stock
ticker) that you want to cache for a limited time to offload the origin web server. If you use this setting on
content that omits a Content-Length header, or if the object is an HTML, JavaScript (JS), or cascading
style sheet (CSS) object, a significant degradation in performance can occur.

114

Immediately Caching Dynamic Objects

Chapter

14
Accelerating Parallel HTTP Requests

• Overview: HTTP request queuing

Overview: HTTP request queuing

You can use the BIG-IP® system to accelerate responses and reduce the number of requests sent to origin
web servers, freeing them to perform other tasks, by queuing HTTP requests.HTTP request queuing provides
the ability to queue a large number of parallel HTTP requests for the same object, and provide a cached
response to those requests, resulting in accelerated responses from the BIG-IP system and a reduction in
requests sent to origin web servers.

The BIG-IP systemmanages the queued HTTP requests in accordance with the cache status of the requested
object, that is, whether the requested object is uncached, cached and valid, cached and expired, uncacheable,
or nonexistent.

DescriptionObject cache status

When the BIG-IP system receives a large number of parallel requests
for an object that is not yet cached, it queues the requests, and then

Initial requests for an uncached
object

sends one of the requests to an origin web server. When the BIG-IP
system receives the first response, it determines whether the response
is cacheable while sending the response to the client. If the response
is cacheable, the BIG-IP system sends a second request to the origin
web server, caches the response with the object, and uses that cached
response to service the queued requests.

When the BIG-IP system receives a large number of parallel requests
for a valid cached object, it services the requests with the cached
response.

Requests for a cached object

If a cached object is expired, instead of sending all requests to the origin
web server, the BIG-IP system queues the requests, and then sends one

Requests for an expired cached
object

request to an origin web server for fresh content. When the BIG-IP
system receives the fresh response, it caches the response with the fresh
content, and uses the cached response to service the queued requests.

If a cached object requires validation, the BIG-IP system can queue
the requests, and then send one request to an origin web server for fresh

Requests for an invalidated cached
object

content. When the response is received, the BIG-IP system caches the
response with the fresh content, and uses the cached response to service
the queued requests.

Sometimes, an object cannot be cached, for example, if the object
exceeds the maximum object size or if the response includes a

Requests for an uncacheable object

no-store response header. When the BIG-IP system first receives a
large number of parallel requests for an object that cannot be cached,
instead of sending each request to an origin web server, the BIG-IP
system queues the requests, and then sends one request to an origin
web server. When the BIG-IP system receives the response, it sends
the queued requests to the origin web server. Subsequent requests for
the uncacheable object bypass the BIG-IP system and are sent directly
to the origin web server.

When the BIG-IP system receives a large number of parallel requests
for an object that does not exist or no longer exists, the BIG-IP system

Requests for a nonexistent object

can queue the requests, and then send one request to an origin web
server. When the BIG-IP system receives the response with a 404
(Not Found) status code, it services the queued requests with the
404 (Not Found) response. Note that the 404 (Not Found)

116

Accelerating Parallel HTTP Requests

DescriptionObject cache status
response is not cached, and all subsequent requests for the nonexistent
object are sent to the origin web server.

117

BIG-IP® Acceleration: Concepts

Chapter

15
Managing HTTP Traffic with the HTTP/2 Profile

• Overview: Managing HTTP Traffic with the
HTTP/2 (experimental) profile

Overview: Managing HTTP Traffic with the HTTP/2 (experimental) profile

You can configure the BIG-IP® Acceleration HTTP/2 profile to provide gateway functionality for HTTP
2.0 traffic, minimizing the latency of requests by multiplexing streams and compressing headers.

Important: Because the HTTP 2.0 specification is currently in a draft phase (draft 13), F5 Networks®

considers the HTTP/2 Profile functionality in this release to be experimental, primarily intended for
evaluation, and not intended for use in a production environment.

A client initiates an HTTP/2 request to the BIG-IP system, the HTTP/2 virtual server receives the request
on port 443, and sends the request to the appropriate server. When the server provides a response, the BIG-IP
system compresses and caches it, and sends the response to the client.

Note: Source address persistence is not supported by the HTTP/2 profile.

Summary of HTTP/2 profile functionality

By using the HTTP/2 profile, the BIG-IP system provides the following functionality for HTTP/2 requests.

Creating concurrent streams for each connection.
You can specify the maximum number of concurrent HTTP requests that are accepted on a HTTP/2
connection. If this maximum number is exceeded, the system closes the connection.

Limiting the duration of idle connections.
You can specify the maximum duration for an idle HTTP/2 connection. If this maximum duration is
exceeded, the system closes the connection.

Enabling a virtual server to process HTTP/2 requests.
You can configure the HTTP/2 profile on the virtual server to receive HTTP, SPDY, and HTTP/2 traffic,
or to receive only HTTP/2 traffic, based in the activation mode you select. (Note the HTTP/2 profile to
receive only HTTP/2 traffic is primarily intended for troubleshooting.)

Inserting a header into the request.
You can insert a header with a specific name into the request. The default name for the header is
X-HTTP/2.

Important: The HTTP/2 protocol is incompatible with NTLM protocols. Do not use the HTTP/2 protocol
with NTLM protocols.

About HTTP/2 profiles

Important: Subsequent versions of the HTTP/2 protocol might be incompatible with this release.

The BIG-IP® system's Acceleration functionality includes an HTTP/2 profile type that you can use to manage
HTTP/2 traffic, improving the efficiency of network resources while reducing the perceived latency of
requests and responses. The Acceleration HTTP/2 profile enables you to achieve these advantages by
multiplexing streams and compressing headers with Transport Layer Security (TLS) or Secure Sockets
Layer (SSL) security.

120

Managing HTTP Traffic with the HTTP/2 Profile

The HTTP/2 protocol uses a binary framing layer that defines a frame type and purpose in managing requests
and responses. The binary framing layer determines how HTTP messages are encapsulated and transferred
between the client and server, a significant benefit of HTTP 2.0 when compared to earlier versions.

All HTTP/2 communication occurs by means of a connection with bidirectional streams. Each stream
includes messages, consisting of one or more frames, that can be interleaved and reassembled using the
embedded stream identifier within each frame's header. The HTTP/2 profile enables you to specify a
maximum frame size and write size, which controls the total size of combined data frames, to improve
network utilization.

Multiplexing streams

You can use the HTTP/2 profile to multiplex streams (interleaving and reassembling the streams), by
specifying a maximum number of concurrent streams permitted for a single connection. Also, because
multiplexing streams on a single TCP connection compete for shared bandwidth, you can use the profile's
Priority Handling settings to configure stream prioritization and define the relative order of delivery. For
example, a Strict setting processes higher priority streams to completion before processing lower priority
streams; whereas, a Fair setting allows higher priority streams to use more bandwidth than lower priority
streams, without completely blocking the lower priority streams.

Additionally, you can specify the way that the HTTP/2 profile controls the flow of streams. The Receive
Window setting allows HTTP/2 to stall individual upload streams, as needed. For example, if the BIG-IP
system is unable to process a slow stream on a connection, but is able to process other streams on the
connection, it can use the ReceiveWindow setting to specify a frame size for the slow stream, thus delaying
that upload stream until the size is met and the receiver is able to process it, while concurrently proceeding
to process frames for another stream.

Compressing headers

When you configure the HTTP/2 profile's Header Table Size setting, you can compress HTTP headers to
conserve bandwidth. Compressing HTTP headers reduces the object size, which reduces required bandwidth.
For example, you can specify a larger table value for better compression, but at the expense of using more
memory.

HTTP/2 (experimental) profile settings

This table provides descriptions of the HTTP/2 profile settings.

DescriptionDefaultSetting

Specifies the name of the HTTP/2 profile.Name

Specifies the profile that you want to use as the parent profile. Your new
profile inherits all settings and values from the parent profile specified.

http2Parent Profile

Specifies the number of concurrent requests allowed to be outstanding
on a single HTTP/2 connection.

10Concurrent
Streams Per
Connection

Specifies the number of seconds an HTTP/2 connection is left open idly
before it is closed.

300Connection Idle
Timeout

Specifies whether an HTTP header that indicates the use of HTTP/2 is
inserted into the request sent to the origin web server.

DisabledInsert Header

Specifies the name of the HTTP header controlled by the Insert Header
Name setting.

X-HTTP/2Insert Header
Name

121

BIG-IP® Acceleration: Concepts

DescriptionDefaultSetting

Specifies how a connection is established as a HTTP/2 connection.Select
Modes

Activation Modes

Used only with an Activation Modes selection of Select Modes,
specifies the extension, ALPN for HTTP/2 or NPN for SPDY, used in

ALPN
NPN

Selected Modes

the HTTP/2 profile. The order of the extensions in the Selected Modes
Enabled list ranges from most preferred (first) to least preferred (last).
Clients typically use the first supported extension. At least one HTTP/2
mode must be included in theEnabled list. The valuesALPN andNPN
specify that the TLS Application Layer Protocol Negotiation (ALPN)
and Next Protocol Negotiation (NPN) will be used to determine whether
HTTP/2 or SPDY should be activated. Clients that use TLS, but only
support HTTP will work as if HTTP/2 is not present. The valueAlways
specifies that all connections function as HTTP/2 connections. Selecting
Always in the Activation Mode list is primarily intended for
troubleshooting.

Specifies how theHTTP/2 profile handles priorities of concurrent streams
within the same connection. Selecting Strict processes higher priority

StrictPriority Handling

streams to completion before processing lower priority streams. Selecting
Fair enables higher priority streams to use more bandwidth than lower
priority streams, without completely blocking the lower priority streams.

Specifies the receive window, which is HTTP/2 protocol functionality
that controls flow, in KB. The receive window allows the HTTP/2
protocol to stall individual upload streams when needed.

32Receive Window

Specifies the size of the data frames, in bytes, that the HTTP/2 protocol
sends to the client. Larger frame sizes improve network utilization, but
can affect concurrency.

2048Frame Size

Specifies the total size of combined data frames, in bytes, that the
HTTP/2 protocol sends in a single write function. This setting controls

16384Write Size

the size of the TLS records when the HTTP/2 protocol is used over
Secure Sockets Layer (SSL). A large write size causes the HTTP/2
protocol to buffer more data and improves network utilization.

Specifies the size of the header table, in KB. The HTTP/2 protocol
compresses HTTP headers to save bandwidth. A larger table size allows
better compression, but requires more memory.

4096Header Table Size

122

Managing HTTP Traffic with the HTTP/2 Profile

Chapter

16
Managing HTTP Traffic with the SPDY Profile

• Overview: Managing HTTP traffic with the
SPDY profile

• SPDY profile settings

Overview: Managing HTTP traffic with the SPDY profile

You can use the BIG-IP® Acceleration SPDY (pronounced "speedy") profile to minimize latency of HTTP
requests by multiplexing streams and compressing headers. When you assign a SPDY profile to an HTTP
virtual server, the HTTP virtual server informs clients that a SPDY virtual server is available to respond to
SPDY requests.

When a client sends an HTTP request, the HTTP virtual server, with an assigned iRule, manages the request
as a standard HTTP request. It receives the request on port 80, and sends the request to the appropriate
server. When the BIG-IP provides the request to the origin web server, the virtual server's assigned iRule
inserts an HTTP header into the request (to inform the client that a SPDY virtual server is available to handle
SPDY requests), compresses and caches it, and sends the response to the client.

A client that is enabled to use the SPDY protocol sends a SPDY request to the BIG-IP system, the SPDY
virtual server receives the request on port 443, converts the SPDY request into an HTTP request, and sends
the request to the appropriate server. When the server provides a response, the BIG-IP system converts the
HTTP response into a SPDY response, compresses and caches it, and sends the response to the client.

Note: Source address persistence is not supported by the SPDY profile.

Summary of SPDY profile functionality

By using the SPDY profile, the BIG-IP system provides the following functionality for SPDY requests.

Creating concurrent streams for each connection.
You can specify the maximum number of concurrent HTTP requests that are accepted on a SPDY
connection. If this maximum number is exceeded, the system closes the connection.

Limiting the duration of idle connections.
You can specify the maximum duration for an idle SPDY connection. If this maximum duration is
exceeded, the system closes the connection.

Enabling a virtual server to process SPDY requests.
You can configure the SPDY profile on the virtual server to receive both HTTP and SPDY traffic, or
to receive only SPDY traffic, based in the activation mode you select. (Note that setting this to receive
only SPDY traffic is primarily intended for troubleshooting.)

Inserting a header into the request.
You can insert a header with a specific name into the request. The default name for the header is X-SPDY.

Important: The SPDY protocol is incompatible with NTLM protocols. Do not use the SPDY protocol with
NTLM protocols. For additional details regarding this limitation, please refer to the SPDY specification:
http://dev.chromium.org/spdy/spdy-authentication.

Task summary

SPDY profile settings

This table provides descriptions of the SPDY profile settings.

124

Managing HTTP Traffic with the SPDY Profile

DescriptionDefaultSetting

Type the name of the SPDY profile.Name

Specifies the profile that you want to use as the parent profile. Your new
profile inherits all settings and values from the parent profile specified.

spdyParent Profile

Specifies how many concurrent requests are allowed to be outstanding
on a single SPDY connection.

10Concurrent
Streams Per
Connection

Specifies how many seconds a SPDY connection is left open idly before
it is closed.

300Connection Idle
Timeout

Specifies how a connection is established as a SPDY connection. The
value NPN specifies that the Transport Layer Security (TLS) Next

NPNActivation Mode

Protocol Negotiation (NPN) extension determines whether the SPDY
protocol is used. Clients that use TLS, but only support HTTP will work
as if SPDY is not present. The valueAlways specifies that all connections
must be SPDY connections, and that clients only supporting HTTP are
not able to send requests. Selecting Always in the Activation Mode list
is primarily intended for troubleshooting.

Specifies whether an HTTP header that indicates the use of SPDY is
inserted into the request sent to the origin web server.

DisabledInsert Header

Specifies the name of the HTTP header controlled by the Insert Header
Name setting.

X-SPDYInsert Header
Name

Used only with an Activation Mode selection of NPN, specifies the
protocol and protocol version (http1.1, spdy2, spdy3, spdy3.1, or All

All
Versions
Enabled

Protocol Versions

Version Enabled) used in the SPDY profile. The order of the protocols
in the Selected Versions Enabled list ranges from most preferred (first)
to least preferred (last). Adding http1.1 to the Enabled list allows
HTTP1.1 traffic to pass. If http1.1 is not added to theEnabled list, clients
that do not support http1.1 are blocked. Clients typically use the first
supported protocol. At least one SPDY version must be included in the
Enabled list.

Specifies how the SPDY profile handles priorities of concurrent streams
within the same connection. Selecting Strict processes higher priority

StrictPriority Handling

streams to completion before processing lower priority streams. Selecting
Fair enables higher priority streams to use more bandwith than lower
priority streams, without completely blocking the lower priority streams.

Specifies the receive window, which is SPDY protocol functionality that
controls flow, in KB. The receive window allows the SPDY protocol to

32Receive Window

stall individual upload streams when needed. This functionality is only
available in SPDY3.

Specifies the size of the data frames, in bytes, that the SPDY protocol
sends to the client. Larger frame sizes improve network utilization, but
can affect concurrency.

2048Frame Size

Specifies the total size of combined data frames, in bytes, that the SPDY
protocol sends in a single write function. This setting controls the size

16384Write Size

of the TLS records when the SPDY protocol is used over Secure Sockets
Layer (SSL). A large write size causes the SPDY protocol to buffer more
data and improves network utilization.

125

BIG-IP® Acceleration: Concepts

Chapter

17
Accelerating Requests and Responses with Intelligent
Browser Referencing

• Overview: Reducing conditional GET
requests with Intelligent Browser Referencing

• Intelligent Browser Referencing example
• Advanced IBR settings for general options

Overview: Reducing conditional GET requests with Intelligent Browser
Referencing

You can increase the efficiency of the client's web browser's local cache and improve perceived access to
your site by enabling the Intelligent Browser Referencing (IBR) feature, which reduces or eliminates requests
to your site for relatively static content, such as images and cascading style sheet (CSS) files.

About conditional GET requests

When an origin web server sends a response, the client's browser stores the response in its local cache. If
the cached object expires, the browser makes subsequent requests for that content using a conditional GET
request in the form of an extra request header field, such as If-Modified-Since. If the requested object
is different from the content that the browser has cached, the origin web server sends a fresh copy of the
object to the browser. Otherwise, the browser uses the object that is cached locally.

Although it is faster than serving the entire object each time the browser requests it, conditional GET requests
can add up to a significant amount of traffic for your site. For example, if your site has several images for
each page, clients might perceive a slow response time because of the large number of conditional GET
requests for the image objects.

About Intelligent Browser Referencing for HTML

You can use the Enable Intelligent Browser Referencing To setting to manage the web browser's cache
in two ways.

• By serving qualifying content with the expiration time set long enough that it is unlikely that the browser
re-requests the content in the near future.

• By using an IBR tag (such as wa) to append a unique value into qualifying links or URLs for web pages
that match the node. This value is a hash of the object and, as such, uniquely identifies the corresponding
content stored in the system's cache.

The Enable Intelligent Browser Referencing Within setting uses an IBR tag (such as wa) to append a
unique value to qualifying links and URLs within web pages that match the node.

For an HTML page, the BIG-IP® device applies IBR to the following elements and statements.

• Image tags:

• Script tags: <script src="...">

• Link tags: <link href="...">

• Forms whose input type is an image: <form><input type="image” src="..."></form>

About Intelligent Browser Referencing for cascading style sheet files

You can use the Enable Intelligent Browser Referencing To setting to prompt the BIG-IP® device to rewrite
links to cascading style sheet (CSS) files on a node.

• It can serve qualifying content with the expiration time set long enough that it is unlikely that the browser
re-requests the content in the near future.

128

Accelerating Requests and Responses with Intelligent Browser Referencing

Note: If you also select the Enable Intelligent Browser Referencing Within check box, the adaptive
IBR lifetime for the BIG-IP application supersedes the default IBR lifetime.

• It can use an IBR tag (such as wa) to append a unique value to qualifying links or URLs for style sheets
that match the node. This value is a hash of the object and, as such, is guaranteed to uniquely identify
the corresponding content stored in the system's cache.

When enabled, the Enable Intelligent Browser Referencing Within setting manages responses for URLs to
images and for URLs to CSS files that are externally linked or imported by a CSS file in two ways.

• By using the adaptive IBR lifetime specified in the BIG-IP application, which supersedes and is shorter
than a standard IBR lifetime, enabling assembly of linked image files before all of the image files are
cached, and enabling the embedded image files to refresh before a client uses stale image files from the
browser's cache.

• By using an IBR tag (such as wa) to append a unique hash value to qualifying links or URLs to images
and CSS files externally linked within CSS files.

Note: The Enable Intelligent Browser Referencing Within check box applies only to CSS files that are
externally linked from an HTML or CSS file, and does not apply to embedded or inline CSS elements within
an HTML file. An HTML file can link to an external CSS file by means of the LINK element or an @import
statement in the STYLE element. A CSS file can link to an external CSS file by means of an @import statement
in the STYLE element.

Within externally linked CSS files, the BIG-IP device applies IBR to the following elements and statements.

• Link tags: <link rel=stylesheet href="style.css" type="text/css">

• Import statements:

@import url("style.css");
@import url(style.css);
@import "style.css";
@import style.css;

About the adaptive Intelligent Browser Referencing lifetime

When you enable Intelligent Browser Referencing for a policy node, an application can apply IBRAdaptive
Lifetime (typically shorter than a standard IBR lifetime) to the CSS file. This enables the assembly of linked
image files before all of the image files are cached, and allows the embedded image files to refresh before
a client uses stale image files from a browser's cache. You should consider the shortest lifetime needed for
an image file when configuring adaptive IBR lifetime settings. You can adjust the IBR Adaptive Lifetime
setting for an application on the Applications screen.

Intelligent Browser Referencing example

For this Intelligent Browser Referencing (IBR) example, you have three top-level nodes on the Policy Tree
as follows:

• Home. This branch node specifies the rules related to the home page.
• Applications. This branch node specifies the rules related to the applications for the site, with the

following leaf nodes:

• Default. This leaf node specifies the rules related to non-search related applications.

129

BIG-IP® Acceleration: Concepts

• Search. This leaf node specifies the rules related to your site’s search application.

• Images. This branch node specifies the rules related to graphics images.

For this example, your site serves a simple page that consists of two image files that appear like this:

<html>
<head><title>example page</title></head>
<body>

<p>The images that your site serves:</p>
<p></p>
<p></p>

</body>
</html>

When the IBR tag (in this example, wa) is enabled, the BIG-IP® device modifies the page like this:

<html>
<head><title>example page</title></head>
<body>

<p>The images that your site serves:</p>
<p></p>
<p></p>

</body>
</html>

The IBR tag that the BIG-IP device appends to each image source URL is a hash of the image that is stored
in cache. In addition, the browser receives a long expiration time for each of the image files.

As a result, the client browser conducts subsequent requests for the page with multiple actions:

• Performing a conditional GET request for the base page.
• Obtaining the embedded images directly from cache if the IBR tag matches.
• Requesting new images from the BIG-IP device.

If an image on the page is modified, the BIG-IP device changes the IBR tag for the image and informs the
client of the change. When the client performs a subsequent conditional GET request for the base page and
receives the refreshed page, it compares the image, and notes the difference between
image1.jpeg;wa4RR87M90 and image1.jpeg;waRG2076ND. This difference prompts the client to
re-request the image from the BIG-IP device.

Advanced IBR settings for general options

For the General Options list, this table describes the Advanced settings and strings for the IBR Options
area.

DescriptionDefaultAdvanced control

Specifies a string that the BIG-IP® device appends to a unique value
for qualifying links or URLs embedded in your web pages.

Note: If you change the IBR prefix, test thoroughly to ensure that
your application functions properly.

;waIBR Prefix

Specifies the lifetime for an Intelligent Browser Referencing (IBR)
link or URL. Units of time range from Seconds throughMonths.

26WeeksIBR Default
Lifetime

130

Accelerating Requests and Responses with Intelligent Browser Referencing

DescriptionDefaultAdvanced control

Specifies the lifetime for an adaptive IBR link or URL within an
externally linked CSS file. Units of time range from Seconds through
Months.

Note: Verify that theEnable Intelligent Browser ReferencingWithin
check box is selected before you apply an adaptive IBR lifetime.

10 DaysIBR Adaptive
Lifetime

131

BIG-IP® Acceleration: Concepts

Chapter

18
Accelerating JavaScript and Cascading Style Sheet Files

• Overview: Accelerating cascading style
sheet, JavaScript, and inline image files

Overview: Accelerating cascading style sheet, JavaScript, and inline image
files

You can improve acceleration by reducing the number and sizes of cascading style sheet (CSS) and JavaScript
files transferred across a network, and by improving the ability for browsers to render content. The BIG-IP®

system uses inlining and concatenation of CSS and JavaScript files to reduce the number and sizes of files
transferred across a network, thus improving the acceleration of traffic, and uses minification and reordering
to improve the speed that browsers render content.

Task summary

About minification of JavaScript and cascading style sheet content

Minification removes extraneouswhite spaces, comments, and unnecessary special characters from JavaScript
and cascading style sheet (CSS) files, which reduces the file sizes. The BIG-IP® system supports two types
of minification: minifying linked JavaScript and CSS files, and minifying embedded JavaScript and CSS
content within HTML pages. The BIG-IP system caches only the minified documents.

Note: Minification of a continuous JavaScript comment or section of white spaces, either embedded in an
HTML file or in a stand-alone JavaScript file, only applies to a continuous comment or section of white
spaces that is less than 1024 bytes. If this content exceeds 1024 bytes, then that content is not minified.

About reordering cascading style sheet and JavaScript URLs and content

Reordering cascading style sheet (CSS) and JavaScript links within an HTML document can accelerate the
perceived time in which a browser renders a web page. Although the actual time required to download the
page remains approximately the same, the perceived time to display the page is faster.

When a CSS link appears at the top of the page, preceding the </head> element, a browser can progressively
render the page to quickly display the content, especially beneficial for users who access content-rich pages
by means of slower Internet connections.

When a JavaScript link appears at the end of the page, preceding the </body> element, a browser can
download multiple components in parallel for each hostname and accelerate the perceived page rendering.
You can specify each JavaScript link that you prefer to relocate to the end of the page, and, consequently,
accelerate the perceived page rendering. Exceptions to reordering JavaScript information include JavaScript
URLs and scripts that use document.write to insert content for the page.

About inlining documents and image data

Inlining replaces specified URLs to JavaScript and cascading style sheet (CSS) files with an inline copy of
the document, and replaces specified URLs to external images with image data.

Within an HTML document, a specified link to an external JavaScript or CSS file is replaced with the style
sheet content.

134

Accelerating JavaScript and Cascading Style Sheet Files

If a client requests an HTML document for which the response header contains a Cache-Control:
private, Cache-Control: no-store, or Vary: User-Agent header, the BIG-IP® system removes
the inline content from the response, and caches the inline content.

Note: In order for content to be inlined, the inlined content must expire later than the parent content.

Inlining Conventions

When you use inlining functionality, the following conventions provide best results.

• Inlining objects typically include stable objects that change infrequently, objects that remain unchanged
for several weeks.

• The file size for an inlining object is typically small, less than 2 KB.
• When an inlined object changes on the origin web server, the respective URL resource entry must be

updated on the URL Resources page.
• For a user-defined acceleration policy that includes inlining functionality, you will want to use the default

HTTP lifetime settings.
• On the Lifetime screen, configure the settings as follows:

• The duration of WebAccelerator Cache Settings must be less than Client Cache Settings.
• The expiration times for the inlined-content Client Cache Settings must occur concurrently with or

after the parent Client Cache Settings.

About concatenation of JavaScript and cascading style sheet files

Concatenation combines a specified list of JavaScript (JS) or Cascading Style Sheet (CSS) files into a single
concatenated file, which reduces the number of requests and responses, and the time required to transfer
serialized files.

For each user-defined policy, you can specify lists of JS URLs and lists of CSS URLs for concatenation.
Listings in each URL list appear in the specified order.

During the process of concatenation, the first JS and CSS URL within the HTML file that is specified in a
JS or CSS URL list is replaced with the optimized URL, and each subsequent specified JS and CSS URL
is removed. The TTL of a concatenated response is determined by the earliest expiration of the concatenated
objects.

About DNS prefetching

DNS prefetching for HTTP

DNS prefetching improves page load time on HTML5 compliant browsers by resolving domain names to
an IP address prior to a browser requesting content from third parties. When DNS pre-fetching headers are
inserted by the BIG-IP® system, HTML5-compliant browsers can do DNS resolution of dynamic links in
the background while other items are being downloaded. This feature allows users to configure lists of DNS
prefetch domains by inserting the following link tag in the head of an HTML document:

<link rel="dns-prefetch" href="http://www.siterequest.com// ">

DNS prefetching for HTTPS

By default, DNS prefetching is always turned off for pages served in HTTPS to avoid leaking information
about which particular document is served. Turning on Force Injection on HTTPS enables DNS prefetching
specifically for the domains listed in a domain list. Turning on HTTPS Automatic Page Prefetch turns on

135

BIG-IP® Acceleration: Concepts

DNS prefetching for the entire document served. Force Injection on HTTPS must be enabled in order to
enable HTTPS Automatic Page Prefetch. Administrators are able to configure turning on and off DNS
prefetching when serving over an HTTPS connection by inserting the following head tag:

<meta http-equiv="x-dns-prefetch-control" content="on">

Note: Turning on prefetch header insertion does not interfere with JavaScript or CSS transformations.

136

Accelerating JavaScript and Cascading Style Sheet Files

Chapter

19
Establishing Additional TCP Connections with MultiConnect

• Overview: Accelerating requests and
responses with MultiConnect

Overview: Accelerating requests and responses with MultiConnect

Most web browsers create a limited number of persistent TCP connections when requesting data, which
restricts the amount of content a client can receive at one time. You can provide faster data downloads to
your clients using the BIG-IP® device's MultiConnect feature.

TheMultiConnect feature enables you to specify unique subdomains that prompt the browser to open more
persistent TCP connections (up to five per HTTP subdomain and five per HTTPS subdomain generated by
the BIG-IP device). The origin web servers never get a request from these additional subdomains; they are
used exclusively on externally linked URLs or links that request images or scripts and are only for requests
or responses between the client and the BIG-IP device. If the BIG-IP device needs to send a request to the
origin server, it removes the subdomain prefixes before sending the request.

The BIG-IP device uses the MultiConnect feature only on the following types of links:

• Image tags:

• Script tags: <script src="...">

• Forms whose input type is an image: <form><input type="image” src="..."></form>

Optimization of TCP connections

The BIG-IP® application acceleration provides MultiConnect functionality that decreases the number of
server-side TCP connections required while increasing the number of simultaneous client-side TCP
connections available to a browser for downloading a web page.

Decreasing the number of server-side TCP connections can improve application performance and reduce
the number of servers required to host an application. Creating and closing a TCP connection requires
significant overhead, so as the number of open server connections increases, maintaining those connections
while simultaneously opening new connections can severely degrade server performance and user response
time.

Despite the ability for multiple transactions to occur within a single TCP connection, a connection is typically
between one client and one server. A connection normally closes either when a server reaches a defined
transaction limit or when a client has transferred all of the files that are needed from that server. The BIG-IP
system, however, operates as a proxy and can pool TCP server-side connections by combiningmany separate
transactions, potentially from multiple users, through fewer TCP connections. The BIG-IP system opens
new server-side connections only when necessary, thus reusing existing connections for requests from other
users whenever possible.

The Enable MultiConnect To check box on the Assembly screen of BIG-IP applies MultiConnect
functionality to image or script objects that match the node. The Enable MultiConnect Within check box,
however, appliesMultiConnect functionality to image or script objects that are linked within HTML or CSS
files for the node.

MultiConnect example

For this example, your site serves a simple page (http://www.siterequest.com/index.htm) that
consists of several image files. The page that your site serves appears as follows:

<html>
<head><title>example page</title></head>
<body>

138

Establishing Additional TCP Connections with MultiConnect

<p>The images that your site serves:</p>
<p></p>
<p></p>
<p></p>
<p></p>
</body>

</html>

An additional subdomain prefix of wa is configured for the host map and the MultiConnect feature enabled,
so the BIG-IP® device modifies the page and serves it as follows:

<html>
<head><title>example page</title></head>
<body>
<p>The images that your site serves:</p>
<p></p>
<p></p>
<p></p>
<p></p>

</body>
</html>

139

BIG-IP® Acceleration: Concepts

Chapter

20
Serving Specific Hyperlinked Content with Parameter Value
Substitution

• Overview: Serving specific hyperlinked
content with parameter value substitution

Overview: Serving specific hyperlinked content with parameter value
substitution

Some requested pages include hyperlinks that vary according to the request to provide dynamic information.
For example, you can configure parameter value substitution so that a request with a query parameter called
shopper produces HTML output with its embedded hyperlinks varying the value for shopper. Thus, when
a query parameter contains identification information for a site's visitors, it prompts the BIG-IP® device to
serve different content for the request, based on the specific visitor.

Conversely, if parameter value substitution is not configured, the BIG-IP device uses the value that it cached
for the original request, for all subsequent requests after the first, even if the subsequent requests have
different values that the origin web server used in the response.

About configuring value substitution parameters for an assembly rule

When you configure parameter value substitution, you specify a source definition and a target definition.
You also have the option to provide a URL prefix for the target, to limit the URLs to which the BIG-IP®

device performs the substitution.

Source definition

When you define a source definition, you specify the source of the value that you want the BIG-IP device
to embed in the URL, in place of the cached (target) value. Typically, the source is a certain request element,
such as a query parameter. However, you can define another source type, such as a random number, by
using number randomizer. When you define the source, you identify the parameter by data type and name
or location in the request.

If you use the request URL as the source, the BIG-IP device uses the entire absolute or relative request URL
as the value to substitute.

Target definition

A target definition specifies the element in a URL that is replaced with the value from the source definition.
The target is a specific element in the URL, such as a particular query parameter, the value for which the
BIG-IP device replaces during substitution. When you define the target, you identify the parameter by data
type and name or location in the URL, for example, by using a query parameter, an unnamed query parameter,
or a path segment.

Although you can specify the same request element for both the source and the target, the parameter specified
for the source is located in the request URL and the parameter specified for the target is located in the
embedded URL in the cached page.

By default, the BIG-IP device performs substitution on all embedded URLs in which the identified target
appears. You have the option to limit which URLs embedded in a page are targeted for substitution by
specifying a prefix that an embedded URL must match before the BIG-IP device performs substitution.

Example: Substitution of request URL with target URL

The BIG-IP device substitutes the request URLwith the target URL, including it as the url query parameter
in the embedded URL of the cached page.

In this example, the following request URL is used as a source definition:
http://www.siterequest.com/apps/something.jsp?entity=orange.

142

Serving Specific Hyperlinked Content with Parameter Value Substitution

The request URL is then substituted with the following target URL: <a
href=”http://www.siterequest.com/anotherthing.jsp?
url=http://www.siterequest.com/apps/something.jsp? entity=orange&....”>

About using number randomizer for parameter value substitution

When configured, the assembly rule's number randomizer setting generates a random number and places it
in a targeted location in the embedded URL. When the BIG-IP® device compiles the response, it examines
the target location to see the length of the string used for the value. On subsequent page requests, the BIG-IP
replaces that value with a random number of the same length.

This setting is generally used for sites that use an Internet advertisement agency, which requires random
numbers to be placed on URLs that request ads as a way to interrupt traditional caches. By requiring a
random number, Internet advertisement agencies force this traffic to their site.

For example, consider a cached page that includes the following embedded URL:

• <a href src=”http://www.siterequest.com/getAd?entity=45&...”>

You can configure random value substitution so that the BIG-IP sets random values set for the entity query
parameter for subsequent pages as follows:

• <a href src=”http://www.siterequest.com/getAd?entity=45&...”>

• <a href src=”http://www.siterequest.com/getAd?entity=11&...”>

• <a href src=”http://www.siterequest.com/getAd?entity=87&...”>

A parameter value substitution example

The following examples show requests with and without parameter value substitution.

An example without parameter value substitution

This example describes a standard sequence without parameter value substitution to serve a cached page.

An original request generates a cached page.

Original page request

http://www.siterequest.com/apps/shopping.jsp? shopper=AAnb35vnM09&.... URL in
cached page <a href=”http://www.siterequest.com/apps/shoppingCart.jsp?
shopper=AAnb35vnM09&....”link

For subsequent requests of the example page, the BIG-IP® device still serves the cached page.

Subsequent request

http://www.siterequest.com/apps/shopping.jsp? shopper=SNkj90qcL47&....

URL in cached page

<a href=”http://www.siterequest.com/apps/shoppingCart.jsp?
shopper=AAnb35vnM09&....”link

Because parameter value substitution is not defined, the BIG-IP continues to serve the cached page for
subsequent requests.

143

BIG-IP® Acceleration: Concepts

An example with parameter value substitution

If you configure parameter value substitution for an assembly rule, the BIG-IP changes the targeted
parameter's value on the page that it serves from cache, so that the parameter you specify appears on the
URL embedded in that page.

When you use parameter value substitution in assembly rules, you identify the value as a dynamic source
definition in an HTTP request or number randomizer, and specify that when the BIG-IP serves the page, it
embeds the named value into the appropriate location in the page's URL.

Therefore, for the example URL, when you define a parameter value substitution, the BIG-IP substitutes
the original cached value for the shopper attribute with the value in the request.

An original request generates a cached page.

BIG-IP embedded URL in cached pageRequest URLRequest

<a href=”http://www.siterequest.com/
apps/shoppingCart.jsp?
shopper=AAnb35vnM09&....”link

http://www.siterequest.com/
apps/shopping.jsp?
shopper=AAnb35vnM09&....

Original
request

For subsequent requests of the example page, the BIG-IP substitutes the original cached value for the
shopper attribute, replacing it with the value in the request.

BIG-IP embedded URL in cached pageRequest URLRequest

<a href=”http://www.siterequest.com/
apps/shoppingCart.jsp?
shopper=SNkj90qcL47&....”link

http://www.siterequest.com/
apps/shopping.jsp?
shopper=SNkj90qcL47&....

Subsequent
request

When parameter value substitution is defined, the BIG-IP substitutes the original cached value with the
value from the requested page for subsequent requests, providing the ability to serve the appropriate specific
content.

144

Serving Specific Hyperlinked Content with Parameter Value Substitution

Chapter

21
Accelerating Access to PDF Content

• Overview: Accelerating access to PDF
content with PDF linearization

Overview: Accelerating access to PDF content with PDF linearization

Large PDF files can provide a slow response in displaying content when the entire file must download
before a requested page can be accessed. The BIG-IP® device provides the ability to display a requested
page more quickly by using PDF linearization (optimization). PDF linearization prepares the PDF file for
byte serving, which enables the BIG-IP device to provide individual pages to a client when it receives
byte-range requests.

All PDF files are constructed in one of two formats:

• Nonlinear. A nonlinear (not optimized) PDF file typically provides slower access to specific pages than
a linear PDF file because a page-offset index for the document's pages is omitted. For example, PDF
files that are created for high quality print output are often nonlinear.

• Linear. A linear (optimized) PDF file, in comparison, provides faster access to specific pages because
a page-offset index for the document's pages is written at the beginning, enabling a web browser to send
byte-range requests to access and display initial or specific pages before the entire file is downloaded.

When you enable PDF linearization, the BIG-IP device provides a linear PDF file, thus allowing expedient
access to a requested page.

146

Accelerating Access to PDF Content

Chapter

22
Accelerating Images with Image Optimization

• Overview: Accelerating images with image
optimization

Overview: Accelerating images with image optimization

You can configure image optimization in a BIG-IP® policy to reduce the size of image files, for example,
by removing unnecessarymetadata, by changing the format, or by increasing compression, and, consequently,
accelerate the transfer of image objects across a network.

When an image object is matched to a policy node, it is modified in accordance with the acceleration rules
of the policy. Configurable acceleration rules for an image object include several parameters.

Note: Image optimization only benefits raster images. Vector images, such as SVG files, benefit little from
image optimization, but can benefit from file compression. You can use file compression to improve the
performance of vector images.

Optimization of image format

An image of a supported format can be converted into any other supported format, although features of the
original format that are not supported by the target format are lost upon conversion. For example, conversion
of an animated GIF or multipage TIFF into a PNG only converts the first image from the original animated
GIF or multipage TIFF into the PNG. Similarly, an original file loses transparency upon conversion if the
target format does not support transparency.

The number of bytes after conversion typically varies from the number of bytes before conversion. Ideally,
you will want to convert a file to produce a smaller file size; however, a requested conversion occurs even
if the output produces a larger file size, except for conversion to PNG which only occurs if the converted
file is smaller.

Typically, converting a GIF into a PNG, or converting a large PNG into a JPEG, depending upon the selected
JPEG quality factor (level of compression), produces a smaller file size. Conversely, converting a supported
format into a TIFF often produces an increase in file size. F5 Networks® recommends examination of
converted file sizes for different formats to optimize performance with a reduced file size.

If the BIG-IP® device converts an image into a different format, it generates a correct Content-Type
header, but it does not change the URL (which might include a file extension) in the HTML page that refers
to the image.

Optimization with JPEG-XR

Application Acceleration Manager™ now recognizes and converts images to JPEG-XR. JPEG-XR is an
image format that offers both lossless and lossy compression with better quality per byte than JPEG.
JPEG-XR is useful for compressing existing JPEG, GIF, PNG, or TIFF images. Compressed images can
be significantly smaller in percentage compared to PNG or JPEG. When enabled, Application Acceleration
Manager™ will convert the images only when the request comes from a browser that supports JPEG-XR.
JPEG-XR is supported natively in some browsers and in others, through plug-ins.

Browsers that support JPEG-XR:

• Internet Explorer 9+
• Internet Explorer Mobile

148

Accelerating Images with Image Optimization

Optimization with WebP

Application Acceleration Manager™ now recognizes and converts images to WebP. WebP is an image
format developed by Google that offers both lossless and lossy compression with better quality per byte
than JPEG.WebP is useful for compressing existing JPEG, GIF, PNG, or TIFF images. Compressed images
can be significantly smaller in percentage compared to PNG or JPEG. When enabled, Application
Acceleration Manager™ will convert the images only when the request comes from a browser that supports
WebP. WebP is supported natively in some browsers and in others, through plug-ins.

Browsers that support WebP:

• Chrome 9+
• Opera 12+
• Opera Mobile 11+
• Android Ice-Cream Sandwich 4.0+

Optimization with file compression

When an optimized image is a JPEG, you can set a quality level that ranges from 1 (low quality andmaximum
compression) through 100 (high quality and minimum compression).

Absolute compression specifies the quality level directly. A practical value for the quality level is from 30
to 100. You can perform absolute compression of a higher-quality JPEG into a lower-quality JPEG, but
not the reverse.

If the original image is JPEG, and, therefore has a quality factor, relative compression specifies the new
quality as a percentage relative to the original quality.

Optimization of headers

A JPEG image might contain an optional exchangeable image format (EXIF) header, which includes
metadata, such as a date, time, author, copyright, camera model, exposure settings, global positioning
coordinates, and possibly a color profile. This optional header can vary considerably in size, and does not
affect display of the image (unless it contains a color profile). The EXIF header can be a significant fraction
of the image; consequently, removing it can be advantageous.

Note: If necessary, you can preserve copyright metadata when you strip other metadata from the EXIF
header, by selecting the Strip EXIF keeps copyright check box.

You can select one of the following options for the EXIF header.

• Don't Strip EXIF. The EXIF header is not changed.
• Always Strip EXIF. The EXIF header is always removed from the JPEG file.
• Strip EXIF if safe. The EXIF header is always removed, unless the header includes a color profile.
• Apply color profile, then strip EXIF. After the color profile is applied, the EXIF header is always

removed. Use this option to convert the image to the default color profile, so that the EXIF header can
be safely removed.

149

BIG-IP® Acceleration: Concepts

Optimization of sampling factor

Because human eyes perceive small changes in brightness, but not small changes in color, you can frequently
use an average color for two adjacent pixels, horizontally (2x1), vertically (1x2), or both (2x2), thus improving
compression with insignificant changes in quality.

You can use one of the following options to optimize the sampling factor.

• Preserve. The sampling factor matches the brightness and color values of the original file.
• 1x1. Provides the same sampling factor for the brightness and color values.
• 2x1. Averages color values for horizontal pixels.
• 1x2. Averages color values for vertical pixels.
• 2x2. Averages color values for vertical and horizontal pixels.

Optimization with progressive encoding

With baseline encoding (default), a browser renders a JPEG image from the top to the bottom as the image
file downloads. However, you can sometimes improve optimization of JPEG images larger than about 10
kilobytes by using progressive encoding, which quickly renders a low-quality version of the entire image,
and continuously improves the quality as the image file downloads. For larger image files or slow network
connections, users can view rendered images faster with progressive encoding.

Optimization of color values

Reducing the number of colors in a PNG image to 256 optimally chosen color values can significantly
reduce the file size with minimal degradation in the quality of the image. Because GIF images already have
a maximum of 256 colors, you should not use this option when converting GIF images to PNG images.

150

Accelerating Images with Image Optimization

Chapter

23
Accelerating Video Streams with Video Delivery Optimization

• About video delivery optimization
• About the video Quality of Experience profile
• About mean opinion score

About video delivery optimization

BIG-IP® video delivery optimization provides you with the ability to retrieve and accelerate on-demand
video stream from an origin web server. The BIG-IP system sends client requests for the video stream to
an origin web server, caches the response video segments, and sequentially sends optimized video responses
to all authorized users.

Additionally, video delivery optimization enables you to associate video advertisements with a video stream,
providing the ability to preroll advertisements, or to insert advertisements as specified by a video
advertisement policy.

About caching video segments by location

You can configure BIG-IP® devices in asymmetrical deployments, symmetrical deployments, or both to
optimize performance needs, positioning BIG-IP devices in accordancewith higher-demand, lower-bandwidth
locations within the network.

About caching popular content

A BIG-IP® device manages popular video content by evaluating several aspects, including the proximity
of clients, number of requests, performance of the network, and defining values of the video segments. You
can modify the resultant evaluation by changing theCache Priority setting in the Responses Cached screen
for a BIG-IP acceleration policy.

About video delivery optimization cache priority

You can define a caching priority level for video segments, which is useful in specifying a higher caching
priority for popular video segments, by using the Cache Priority setting in the Responses Cached screen.

About globally configuring video delivery optimization

Optimizing video in a global network improves the video performance across significant distances. When
you implement video delivery optimization in a symmetric deployment, the system caches video segments
on the device closest to the client, reducing the latency and improving the quality of the video.

About video delivery optimization bit rate selection

You can specify a maximum bit rate for video delivery optimization, which limits the maximum bit rate
that is available to the user. When you configure different maximum bit rates, you can designate those
specific bit rates to different types or levels of users. For example, you could create a policy node for each
level of user and assign a different maximum bit rate to each node. A value of 0 indicates that the bit rate
is unconstrained.

152

Accelerating Video Streams with Video Delivery Optimization

About the video Quality of Experience profile

The BIG-IP® system's video Quality of Experience (QoE) profile enables you to assess an audience's video
session or overall video experience, providing an indication of customer satisfaction. The QoE profile uses
static information, such as bitrate and duration of a video, and video metadata, such as URL and content
type, in monitoring video streaming. Additionally, the QoE profile monitors dynamic information, which
reflects the real-time network condition.

By considering both the static video parameters and the dynamic network information, the user experience
can be assessed and defined in terms of a single mean opinion score (MOS) of the video session, and a level
of customer satisfaction can be derived. QoE scores are logged in the ltm log file, located in /var/log,
which you can evaluate as necessary.

Note that for QoE to properly process video files, the video web servers must be compliant with supported
video MIME types, for example, the following MIME types.

SuffixMIME Type

.f4vvideo/mp4

.mp4video/mp4

.flvvideo/x-flv

.m4vvideo/x-m4v

.m4vvideo/quicktime

.m3u8application/x-mpegURL

.tsvideo/mp2t

About mean opinion score

The video Quality of Experience (QoE) profile provides a mean opinion score (MOS), derived from static
and dynamic parameters associated with a video stream. The following table summarizes the resultant
values.

DescriptionQualityMOS

Indicates a superior level of quality, with imperceptible degradation in the video
stream.

Excellent5

Indicates an above-average level of quality, with perceptible degradation that is
acceptable.

Good4

Indicates an average level of quality, with perceptible degradation that detracts from
the video experience.

Fair3

Indicates a below-average level of quality, with perceptible degradation that
significantly detracts from the video experience.

Poor2

Indicates a substandard level of quality, with perceptible degradation that proves to
be significantly inferior and potentially unacceptable.

Bad1

153

BIG-IP® Acceleration: Concepts

Chapter

24
Compressing Content from an Origin Web Server

• Overview: Enabling content compression
from an origin web server

Overview: Enabling content compression from an origin web server

The BIG-IP® device can request gzip-encoded or deflate-encoded content from the origin web server to
accelerate responses. When the Enable Assembly Compression OWS check box is selected (enabled),
the BIG-IP® device sends an Accept-Encoding: gzip,deflate header to the origin web server. The
origin web server complies only if it supports the compression mode; otherwise, the origin web server
provides uncompressed content.

This functionality occurs independently of selecting (enabling) the Enable Content Compression check
box, which sets the compression for the response that the BIG-IP device sends back to the client.

156

Compressing Content from an Origin Web Server

Chapter

25
Accelerating Responses with Metadata Cache Responses

• Overview: Using Metadata cache responses
to accelerate responses

• Advanced Metadata Cache Options for
General Options

Overview: Using Metadata cache responses to accelerate responses

Responses from origin web servers include entity tags (ETags), which are arbitrary strings attached to a
document that specify some characteristic of the document, such as a version, serial number, or checksum
of content. A changed document includes a different ETag, enabling a client's GET request to use an
If-None-Match conditional header to acquire a new copy of the document. Because not all web applications
generate ETags consistently, the BIG-IP device creates its own ETag for each cached document that is based
on a signature, or checksum, of the document's content. The BIG-IP device stores content signatures in the
Metadata cache for other optimizations, including Intelligent Browser Referencing.

BIG-IP applications provide options to always or never send metadata. All BIG-IP applications share the
same Metadata cache.

BIG-IP policies cache ETag headers, which include the following:

• Request URL
• Content signature of the response body
• Application name for the matching request
• Metadata, including the expiration time, read time, and update time for content

Advanced Metadata Cache Options for General Options

For the General Options list, this table describes the Advanced settings and strings forMetadata Cache
Options.

DescriptionDefaultAdvanced control

This setting determineswhether and how the BIG-IP performsMetadata
caching for responses.

AlwaysSend Metadata

• Never. The BIG-IP does not cache Metadata headers.
• Always. The BIG-IP always caches Metadata headers before

sending them to a client.

Specifies the size in megabytes (MB) for the maximumMetadata cache
size.

25Metadata Cache Max
Size

158

Accelerating Responses with Metadata Cache Responses

Chapter

26
Accelerating Traffic with a Local Traffic Policy

• About classifying types of HTTP traffic with
a local traffic policy

• Local traffic policy matching Strategies
settings

• Local traffic policy matching Requires profile
settings

• Local traffic policy matching Controls settings
• Local traffic policy matching Conditions

operands
• Local traffic policy matching Actions

operands

About classifying types of HTTP traffic with a local traffic policy

An application that runs on a virtual server accelerates all HTTP traffic. You can, however, use a local
traffic policy to classify types of HTTP traffic for the BIG-IP® system to accelerate, by specifying hosts,
paths, headers, and cookies.

Important: Although you can use a local traffic policy to classify the types of HTTP traffic to accelerate,
the local traffic policy overrides theWeb Acceleration profile on the virtual server. Acceleration of HTTP
traffic with the BIG-IP system should primarily be configured through aWeb Acceleration profile, instead
of a local traffic policy.

Local traffic policy matching Strategies settings

This table summarizes the strategies used for traffic policy matching.

DescriptionMatching strategy

A first-match strategy executes the actions for the first rule in the Rules list that
matches.

First-match strategy

A best-match strategy selects and executes the actions of the rule in the Rules list
with the best match, as determined by the following factors.

Best-match strategy

• The number of conditions and operands that match the rule.
• The length of the matched value for the rule.
• The priority of the operands for the rule.

Note: In a best-match strategy, when multiple rules match and specify an action,
conflicting or otherwise, only the action of the best-match rule is executed. A
best-match rule can be the lowest ordinal, the highest priority, or the first rule that
matches in the Rules list.

An all-match strategy executes the actions for all rules in the Rules list that match.

Note: In an all-match strategy, when multiple rules match, but specify conflicting
actions, only the action of the best-match rule is executed. A best-match rule can

All-match strategy

be the lowest ordinal, the highest priority, or the first rule that matches in the Rules
list.

Local traffic policy matching Requires profile settings

This table summarizes the profile settings that are required for local traffic policy matching.

DescriptionRequires Setting

Specifies that the policy matching requires an HTTP profile.http

Specifies that the policy matching requires a Client SSL profile.ssl

160

Accelerating Traffic with a Local Traffic Policy

DescriptionRequires Setting

Specifies that the policy matching requires a TCP profile.tcp

Local traffic policy matching Controls settings

This table summarizes the controls settings that are required for local traffic policy matching.

DescriptionControls Setting

Provides controls associated with acceleration functionality.acceleration

Provides controls associated with caching functionality.caching

Provides controls associated with classification.classification

Provides controls associated with HTTP compression.compression

Provides controls associated with forwarding functionality.forwarding

Provides controls associated with request-adaptation functionality.request-adaptation

Provides controls associated with response-adaptation functionality.response-adaptation

Provides controls associated with server-ssl functionality.server-ssl

Local traffic policy matching Conditions operands

This table summarizes the operands for each condition used in policy matching.

DescriptionSelectors and
Parameters

Valid EventsTypeOperand

Requires a Client SSL profile for
policy matching.

string/numberclient-ssl •• cipherrequest
• •response cipher-bits

• protocol

Returns <username>:
<password> or parts of it.

stringhttp-basic-auth •• passwordrequest
• username

Returns the value of a particular
cookie or cookie attribute.

stringhttp-cookie •• allrequest

• name

Returns the value of a particular
header.

stringhttp-header •• allrequest
• response • name (required)

Provides all or part of the HTTP
Host header.

string/numberhttp-host •• allrequest
• host
• port

Provides the HTTP method.stringhttp-method •• allrequest

161

BIG-IP® Acceleration: Concepts

DescriptionSelectors and
Parameters

Valid EventsTypeOperand

Provides all or part of the HTTP
Referer header.

string/numberhttp-referer •• allrequest
• extension
• host
• path
• path-segment

• index (required)

• port
• query-parameter

• name (required)

• query-string
• scheme
• unnamed-query-

parameter

• index (required)

Sets the selected setting of a
particular cookie or cookie
attribute.

stringhttp-set-cookie •• domainresponse

• name (required)

• expiry

• name (required)

• path

• name (required)

• value

• name (required)

• version

• name (required)

Returns the HTTP status line or
part of it.

string/numberhttp-status •• allresponse
• code
• text

Provides all or part of the request
URI.

string/numberhttp-uri •• allrequest
• extension
• host
• path
• path-segment

• index (required)

• port
• query-parameter

• name (required)

• query-string
• scheme

162

Accelerating Traffic with a Local Traffic Policy

DescriptionSelectors and
Parameters

Valid EventsTypeOperand

• unnamed-query-
parameter

• index (required)

Provides HTTP/1.1 a number.string/numberhttp-version •• responserequest
• response • all

• major
• minor
• protocol

Requires a TCP profile for policy
matching.

numbertcp •• mssrequest
• response • internal true

• port

• internal true
• local true

• route-domain

• internal true

• rtt

• internal true

• vlan

• internal true

• vlan-id

• internal true

Local traffic policy matching Actions operands

This table summarizes the actions associated with the conditions of the rule used in policy matching.

ActionValid EventsTypeTarget

string/numberacceleration • disable• request
• enable

stringcache • disable• request
• •response enable

• pin true

stringcompress • disable• request
• •response enable

stringdecompress • disable• request

163

BIG-IP® Acceleration: Concepts

ActionValid EventsTypeTarget
• response • enable

stringforward • reset• request
• select

• clone-pool
• member
• nexthop
• node
• pool
• rateclass
• snat
• snatpool
• vlan
• vlan-id

stringhttp-cookie • insert• request

• name (required)
• value (required)

• remove

• name (required)

string/numberhttp-header • insert• request
• response • name (required)

• value (required)

• remove

• name (required)

• replace

• name (required)
• value (required)

stringhttp-host •• replacerequest

• value

stringhttp-referer • insert• request

• value (required)

• remove
• replace

• value

stringhttp-reply •• request redirect
• response • location (required)

164

Accelerating Traffic with a Local Traffic Policy

ActionValid EventsTypeTarget

string/numberhttp-set-cookie • insert• response

• name (required)
• domain
• path
• value (required)

• remove

• name (required)

string/numberhttp-uri •• replaceresponse

• path
• query-string
• value

string/numberlog •• request write
• response • message (required)

string/numberpem •• request classify
• response • application

• category
• defer
• protocol

string/numberrequest-adapt • disable• request
• •response enable

string/numberresponse-adapt • disable• request
• •response enable

string/numberserver-ssl • disable• request
• enable

string/numbertcl •• request set-variable
• response • name (required)

• expression (required)

string/numbertcp-nagle • disable• request
• enable

165

BIG-IP® Acceleration: Concepts

Chapter

27
Accelerating Traffic with Intelligent Client Cache

• About intelligent client cache

About intelligent client cache

Intelligent Client Cache (ICC) is a web acceleration technique for mobile and desktop browsers that support
HTML5. ICC uses HTML5 local storage to build a cache of documents and resources. It does this either
by replacing the link to CSS/JavaScript/Image by inlining them into the HTML document, or by replacing
the link to CSS/JavaScript/Image by adding reference to content that might already be in the client's local
storage. Local storage is a simple key-value storage in HTML5 and is shared across all browser windows
and tabs. Most common implementations allow 5-10 MB per domain. Client-side JavaScript code tracks
the resources cached and interacts with the server-side code to ensure that only changed resources are
downloaded on subsequent requests.

Browsers that support web storage:

• Internet Explorer version 8+
• FireFox version 3.6+
• Opera 10.5+
• Chrome 5+
• Safari 4+
• iOS 3.2+
• Android 2.1+

168

Accelerating Traffic with Intelligent Client Cache

Chapter

28
Using Forward Error Correction to Mitigate Packet Loss

• Overview: Using forward error correction
(FEC) to mitigate packet loss

Overview: Using forward error correction (FEC) to mitigate packet loss

The BIG-IP® system performs forward error correction (FEC) by adding redundancy to the transmitted
information. FEC provides a loss correction facility for all IP-based protocols optimized by Application
AccelerationManager™. All iSession™ traffic can benefit from FEC loss mitigation, which is preferred over
aggressive TCP retransmission in shared network environments.

To implement forward error correction, the BIG-IP system aggregates packets for a specified amount of
time, divides the load into the specified number of equal packets (source packets), and adds the specified
number of redundant (repair) packets. With adaptive FEC, the system adjusts these numbers as it measures
the link error rate.

If you are configuring FEC on a central BIG-IP device for a server that does not initiate traffic, you can
configure a FEC tunnel with an undefined remote address. You then configure a separate FEC tunnel from
each remote BIG-IP device that handles client-initiated traffic to the central BIG-IP device. You can also
configure a FEC tunnel between the local BIG-IP device and any other BIG-IP device that has a FEC tunnel
with an undefined remote address.

Figure 21: FEC configuration between BIG-IP devices

In addition to configuring FEC between two BIG-IP systems, you can configure FEC between an edge
client and a BIG-IP system that has Access Policy Manager® licensed. Consult the Access Policy Manager
(APM®) documentation for information about configuring the client access deployment.

Note: Before you can configure forward error correction (FEC), you must have licensed and provisioned
Application Acceleration Manager (AAM™).

About forward error correction (FEC)

Forward error correction (FEC) is an acceleration technique for all kinds of traffic, including TCP and
UDP traffic on lossy networks. FEC controls data transmission errors over unreliable or noisy communication
channels.With FEC, the sender encodesmessages with an extra error-correcting code (ECC). The redundancy
allows the receiver to detect a limited number of errors that might occur anywhere in the message, and often
to correct these errors without retransmission.

Packet loss occurs when one or more packets traveling across a network fail to reach their destination.
Packet loss can be caused by a number of factors that inevitably result in highly noticeable performance
issues, particularly with realtime protocols, streaming technologies, voice-over-IP, online gaming, and video
conferencing. Some network transport protocols, such as TCP, provide for reliable delivery of packets. In
the event of packet loss, the receiver might ask for retransmission, or the sender automatically resends any
segments that have not been acknowledged. Although TCP can recover from packet loss, retransmitting
missing packets causes the overall throughput of the connection to decrease. Error correction occurs without
the need for a reverse channel to request retransmission of data, but at the cost of a fixed, higher forward
channel bandwidth. Therefore, FEC ismost useful in situations where retransmissions are costly or impossible.

170

Using Forward Error Correction to Mitigate Packet Loss

Chapter

29
Using the Request Logging Profile

• Overview: Configuring a Request Logging
profile

• Request Logging profile settings
• Request Logging parameters

Overview: Configuring a Request Logging profile

The Request Logging profile gives you the ability to configure data within a log file for HTTP requests and
responses, in accordance with specified parameters.

Task summary
Perform these tasks to log HTTP request and response data.

About the Request Logging profile

Many sites perform traffic analysis against the HTTP log files that their web servers generate. With the
Request Logging profile, you can specify the data and the format for HTTP requests and responses that you
want to include in a log file. If you prefer, you can tailor the information that appears in the logs so that the
logs work seamlessly with whatever analysis tools you use for your origin web server's HTTP log files.

Standard log formats

Log headers appear in the lines at the top of a log file. You can use log headers to identify the type and
order of the information written to each line in the log file. Some log analysis software also uses log headers
to determine how to parse a log file.

There are three common conventions for log headers shown here.

DescriptionConvention

Apache™ web servers use this option. By default, Apache web servers write access logs
in a format that is identical to the NCSA Common format.

No header line

Netscape® servers, and their descendants (such as the iPlanet™ Enterprise Server) write a
log header line that is unique to this family of servers. These servers generally use either

NCSA
Common or

the NCSA Common or Combined log format, and the log header lines are composed of
keywords. For example:

#format=%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%]

Combined
headers

Most Microsoft® Internet Information Services (IIS) web servers write log files in the
extended log file format, which is defined by a W3C working draft.

W3C headers

The logging information that is commonly used by origin web servers consists of the following conventions:

• NCSA Common (no log header)
• NCSA Common (Netscape log header)
• NCSA Combined (no log header)
• NCSA Combined (Netscape log header)
• W3C Extended

NCSA Common log format example

This is the NCSA Common log format syntax:

172

Using the Request Logging Profile

host rfc931 username [date:time UTC_offset]
"method URI?query_parameters protocol" status bytes

Here is an example that uses this syntax:

125.125.125.2 - - [03/Apr/2011:23:44:03 -0600]
"GET /apps/example.jsp?sessionID=34h76 HTTP/1.1" 200 3045

NCSA Combined log format example

This is the NCSA Combined log format syntax:

host rfc931 username [date:time UTC_offset]
"method URI?query_parameters protocol" status bytes
"referrer" "user_agent" "cookie"

Here is an example that uses this syntax:

125.125.125.2 - - [03/Apr/2011:23:44:03 -0600]
"GET /apps/example.jsp?sessionID=34h76 HTTP/1.1" 200 3045
"http://www.siterequest.com" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"
"UserID=ssarette;Category=PDA;Selection=Various"

W3C Extended log format example

This is the W3C extended log format syntax:

date time rfc931 username host method URI query_parameters
status bytes request_length time_taken protocol user_agent cookie referrer

Following is an example that uses this syntax:

2011-04-03 23:44:03 205.47.62.112 - 125.125.125.2
GET /apps/example.jsp sessionID=34h76 200 3045 124 138
HTTP/1.1 Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.0
UserID=ssarette;Category=PDA;Selection=Various http://www.siterequest.com

Request Logging profile settings

With the Request Logging profile, you can specify the data and the format for HTTP requests and responses
that you want to include in a log file.

General Properties

DescriptionValueSetting

Specifies the name of the profile.No defaultName

Specifies the selected predefined or
user-defined profile.

Selected predefined or user-defined
profile

Parent Profile

173

BIG-IP® Acceleration: Concepts

Request Settings

DescriptionValueSetting

Enables logging for requests.DisabledRequest Logging

Specifies the directives and entries to be logged.Template

Specifies the protocol to be used for high-speed logging of
requests.

UDPHSL Protocol

Defines the pool associated with the virtual server that is
logged.

NonePool Name

Enables the ability to respond when an error occurs.DisabledRespond On Error

Specifies the response text to be used when an error occurs.

For example, the following response text provides content
for a 503 error.

<html>

NoneError Response

<head>
<title>ERROR</title>
</head>
<body>
<p>503 ERROR-Service Unavailable</p>
</body>
</html>

When enabled, and logging fails, drops the request and closes
the connection.

DisabledClose On Error

Enables the ability to log any errors when logging requests.DisabledLog Logging Errors

Defines the format for requests in an error log.NoneError Template

Defines the protocol to be used for high-speed logging of
request errors.

UDPHSL Error Protocol

Specifies the name of the error logging pool for requests.NoneError Pool Name

Response Settings

DescriptionValueSetting

Enables logging for responses.DisabledResponse Logging

Defines whether to log the specified settings for
responses by default.

EnabledLog By Default

Specifies the directives and entries to be logged.NoneTemplate

Specifies the protocol to be used for high-speed logging
of responses.

UDPHSL Protocol

Defines the pool name associated with the virtual server
that is logged.

NonePool Name

Enables the ability to log any errors when logging
responses.

DisabledLog Logging Errors

Defines the format for responses in an error log.NoneError Template

174

Using the Request Logging Profile

DescriptionValueSetting

Defines the protocol to be used for high-speed logging
of response errors.

UDPHSL Error Protocol

Specifies the name of the error logging pool for
responses.

NoneError Pool Name

Request Logging parameters

This table lists all available parameters fromwhich you can create a customHTTP Request Logging profile.
These are used to specify entries for the Template and Error Template settings For each parameter, the
system writes to the log the information described in the right column.

Table 9: Request logging parameters

Log file entry descriptionParameter

An entry for the slot number of the blade that handled the request.BIGIP_BLADE_ID

An entry of Cached status: true, if the response came from BIG-IP®
cache, or Cached status: false, if the response came from the server.

BIGIP_CACHED

An entry for the configured host name of the unit or chassis.BIGIP_HOSTNAME

An entry for the IP address of a client, for example, 192.168.74.164.CLIENT_IP

An entry for the port of a client, for example, 80.CLIENT_PORT

A two-character entry for the day of the month, ranging from 1 (note the
leading space) through 31.

DATE_D

An entry that spells out the name of the day.DATE_DAY

A two-digit entry for the day of the month, ranging from 01 through 31.DATE_DD

A three-letter entry for the day, for example, Mon.DATE_DY

A date and time entry in an HTTP format, for example, Tue, 5 Apr 2011
02:15:31 GMT.

DATE_HTTP

A two-digit month entry, ranging from 01 through 12.DATE_MM

A three-letter abbreviation for a month entry, for example, APR.DATE_MON

An entry that spells out the name of the month.DATE_MONTH

A date and time entry in an NCSA format, for example,
dd/mm/yy:hh:mm:ss ZNE.

DATE_NCSA

A two-digit year entry, ranging from 00 through 99.DATE_YY

A four-digit year entry.DATE_YYYY

The name of the httpclass profile that matched the request, or an empty
entry if a profile name is not associated with the request.

HTTP_CLASS

A flag summarizing the HTTP1.1 keep-alive status for the request:: aY
if the HTTP1.1 keep-alive header was sent, or an empty entry if not.

HTTP_KEEPALIVE

An entry that defines the HTTP method, for example, GET, PUT, HEAD,
POST, DELETE, TRACE, or CONNECT.

HTTP_METHOD

175

BIG-IP® Acceleration: Concepts

Log file entry descriptionParameter

An entry that defines the HTTP path.HTTP_PATH

The text following the first ? in the URI.HTTP_QUERY

The complete text of the request, for example, $METHOD $URI $VERSION.HTTP_REQUEST

The numerical response status code, that is, the status response code
excluding subsequent text.

HTTP_STATCODE

The complete status response, that is, the number appended with any
subsequent text.

HTTP_STATUS

An entry for the URI of the request.HTTP_URI

An entry that defines the HTTP version.HTTP_VERSION

An NCSA Combined formatted log string, for example, $NCSA_COMMON
$Referer ${User-agent} $Cookie.

NCSA_COMBINED

An NCSA Common formatted log string, for example, $CLIENT_IP - -
$DATE_NCSA $HTTP_REQUEST $HTTP_STATCODE $RESPONSE_SIZE.

NCSA_COMMON

The elapsed time in milliseconds (ms) between receiving the request and
sending the response.

RESPONSE_MSECS

An entry for the size of response in bytes.RESPONSE_SIZE

The elapsed time in microseconds (µs) between receiving the request and
sending the response.

RESPONSE_USECS

An entry for the IP address of a server, for example, 10.10.0.1.SERVER_IP

An entry for the port of a server, for example, 80.SERVER_PORT

An entry for the self IP address of the BIG-IP-originated connection to the
server when SNAT is enabled, or an entry for the client IP address when
SNAT is not enabled.

SNAT_IP

An entry for the port of the BIG-IP-originated connection to the server when
SNAT is enabled, or an entry for the client port when SNAT is not enabled.

SNAT_PORT

A twelve-hour request-time qualifier, for example, AM or PM.TIME_AMPM

A compact twelve-hour time entry for request-time hours, ranging from 1
through 12.

TIME_H12

A twelve-hour time entry for hours, for example, 12 AM.TIME_HRS

A twelve hour entry for request-time hours, ranging from 01 through 12.TIME_HH12

An entry for a compact request time of H:M:S, for example, 12:10:49.TIME_HMS

A twenty-four hour entry for request-time hours, ranging from 00 through
23.

TIME_HH24

A two-digit entry for minutes, ranging from 00 through 59.TIME_MM

An entry for the request-time fraction in milliseconds (ms).TIME_MSECS

An entry for the time zone, offset in hours from GMT, for example, -11.TIME_OFFSET

A two-digit entry for seconds, ranging from 00 through 59.TIME_SS

A UNIX time entry for the number of seconds since the UNIX epoch, for
example, 00:00:00 UTC, January 1st, 1970.

TIME_UNIX

An entry for the request-time fraction in microseconds (µs).TIME_USECS

176

Using the Request Logging Profile

Log file entry descriptionParameter

An entry for the current Olson database or tz database three-character time
zone, for example, PDT.

TIME_ZONE

An entry for the IP address of a virtual server, for example, 192.168.10.1.VIRTUAL_IP

An entry for the name of a virtual server.VIRTUAL_NAME

An entry for the name of the pool containing the responding server.VIRTUAL_POOL_NAME

An entry for the port of a virtual server, for example, 80.VIRTUAL_PORT

The name of the Secure Network Address Translation pool associated with
the virtual server.

VIRTUAL_SNATPOOL_NAME

An entry that defines the name of the BIG-IP® acceleration application that
processed the request.

WAM_APPLICATION_NAM

An entry that specifies a diagnostic string (X-WA-Info header) used by
BIG-IP acceleration to process the request.

WAM_X_WA_INFO

Undelineated strings return the value of the respective header.NULL

177

BIG-IP® Acceleration: Concepts

Chapter

30
Monitoring BIG-IP Acceleration Application Performance

• Overview: Monitoring the performance of a
BIG-IP acceleration application

• Overview: ROI reports

Overview: Monitoring the performance of a BIG-IP acceleration application

The BIG-IP's performance reports provide information about page requests, the frequency of those requests,
and how well the BIG-IP system serviced those requests from cache. Additionally, performance reports
provide information about the acceleration application, policy, policy node, HTTP response status, S-code,
size range of the response, response object type, and ID of the BIG-IP system or browser making the request.

The BIG-IP system provides three types of performance reports.

• Traffic Reports. These reports display the number of requests (hits) received, and responses served,
by the BIG-IP system.

• Byte Reports. These reports display the bytes of content that the BIG-IP system has sent in response
to requests.

• Response Reports. These reports display the average amount of time it takes the BIG-IP system to
respond to a request from the client.

You can use these performance reports to evaluate your acceleration policies, adjusting them as required
to maximize client access to your applications. The individual performance reports display content according
to the persistent parameters that you select for the filter. You can also save performance reports to a specified
file type so that you can import them into specific applications.

Note: Enabling performance monitoring for a BIG-IP acceleration application can degrade overall
performance and should only be used temporarily.

Advanced performance monitor settings for general options

For the General Options list, this table describes the Advanced settings and strings for Performance
Monitor Options.

DescriptionDefaultAdvanced control

Specifies whether performance monitoring for this application is
enabled. Enabling performancemonitoring onmany applications might
affect the overall performance of the BIG-IP.

DisabledPerformance
Monitor

Specifies the period, in days, that the performance data must be
preserved.

30Data Retention
Period

Overview: ROI reports

You can evaluate the benefits and performance improvements of acceleration functionality for an application
by examining ROI statistics. Acceleration ROI Statistics provide data on compression, caching, minification,
inlining, image optimization, and Intelligent Browser Referencing (IBR), which you can assess to determine
the current acceleration performance, and, based on those results, refine the acceleration performance.

180

Monitoring BIG-IP Acceleration Application Performance

About Byte Savings reports

Byte Savings reports provide statistics for cached objects that are either optimized or simply cached, as a
means to minimize the traffic sent to a client. Byte Savings reports include four types of reports: Caching
Bytes Saved, Compression Bytes Saved, Image Optimization Bytes Saved, and Minification Bytes Saved.

Caching Bytes Saved reports

Cache Bytes Saved reports provide statistics about the number of kilobytes served from cache, describing
the reduction in bandwidth between the origin web server and the BIG-IP® system.

Compression Bytes Saved reports

Compression Bytes Saved reports provide statistics about the reduction in kilobytes sent to the client, when
BIG-IP system performs compression instead of the origin web server.

Image Optimization Bytes Saved reports

Image Optimization Bytes Saved reports provide statistics about optimized images in kilobytes, which
reduces the sizes of images sent to the client.

Minification Bytes Saved reports

Minification Bytes Saved reports provide statistics about minified JavaScript and cascading style sheet
(CSS) objects in kilobytes, reducing the sizes of objects sent to the client.

About Caching Requests Saved reports

Caching Requests Saved reports provide statistics about the number of requests that are served from cache,
which reduces the load for the origin web server.

About IBR Savings reports

IBR Savings reports provide statistics about Intelligent Browser Referencing (IBR) links that have been
sent or received from a client. IBR Saving reports include two types of reports: Client IBR'd Links and
Client IBR'd Links Received reports.

Client IBR'd Links reports

Client IBR'd Links reports provide statistics about the number of IBR links that have been sent to a client.
You will want to use the statistics for this setting in combination with the Client IBR'd Links Received
statistics, to determine the number of links that eliminated unnecessary conditional GET requests by
increasing the content expire time.

Client IBR'd Links Received

Client IBR'd Links Received reports provide statistics about the number of IBR links that have been received
from a client. You will want to use the statistics for this setting in combination with the Client IBR'd Links
statistics, to determine the number of links that eliminated unnecessary conditional GET requests by
increasing the content expire time.

181

BIG-IP® Acceleration: Concepts

About Inlined Links reports

Inlined Links reports provide statistics about the number of links that become inlined when sending a
response to a client, reducing the number of GET requests from the client.

About ICC Savings reports

ICC Savings reports provide statistics about links that Intelligent Client Cache (ICC) functionality provides
for a client. ICC Savings reports include two types of reports: ICC Inlined Links and ICC Referenced Links
reports.

ICC Inlined Links

ICC Inlined Links reports provide statistics about the number of links that become inlined for a client by
ICC functionality, reducing the number of GET requests from the client.

ICC Referenced Links

ICC Referenced Links reports provide statistics about the number of links referencing content that might
exist in the client's local storage, added by ICC functionality.

182

Monitoring BIG-IP Acceleration Application Performance

Chapter

31
Managing Deduplication

• What is symmetric data deduplication?
• Which codec do I choose?

What is symmetric data deduplication?

Application Acceleration Manager™ (AAM™) uses symmetric data deduplication to reduce the amount of
bandwidth consumed across a WAN link for repeated data transfers. This feature is available only with an
Application Acceleration Manager™ (AAM™) license.

With data deduplication, the system performs pattern matching on the transmitted WAN data, rather than
caching. If any part of the transmitted data has already been sent, BIG-IP® system replaces the previously
transmitted data with references. As data flows through the pair, each device records the byte patterns and
builds a synchronized dictionary. If an identical pattern of bytes traverses the WAN more than once, the
BIG-IP closest to the sender replaces the byte pattern with a reference to it, compressing the data. When
the reference reaches the other side of the WAN, the remote BIG-IP device replaces the reference with the
data, restoring the data to its original format.

Which codec do I choose?

Symmetric data deduplication (SDD) offers two versions, called codecs. SDD v3 is appropriate for most
AAM™ installations, particularly in large networks, such as hub and spoke, or mesh deployments. SSD v2
is an alternative for installations with fewer than eight high-speed links, such as for data replication between
data centers.

For deduplication to occur, the same codec must be selected on both iSession endpoints. If the selected
codecs do not match, deduplication does not occur, although other symmetric optimization features, such
as compression, still take place.

184

Managing Deduplication

Chapter

32
About Discovery

• About discovery on BIG-IP AAM systems

About discovery on BIG-IP AAM systems

To simplify configuration, particularly in large networks, BIG-IP® systems licensed and provisioned for
acceleration perform two types of discovery.

• Dynamic discovery of remote endpoints occurs when the local BIG-IP system detects a remote iSession
endpoint on the other side of the WAN.

• Local subnet discovery occurs, for example, when a client request to a server triggers the server-side
BIG-IP device to discover and display the subnet that is connected to the server.

About subnet discovery

An advertised route is a subnet that can be reached through a iSession™ connection. After the iSession
connection is configured between two BIG-IP® devices, they automatically exchange advertised route
specifications between the endpoints. The local endpoint needs to advertise the subnets to which it is
connected so that the remote endpoint can determine the destination addresses for which traffic can be
optimized. Advertised routes configured on the local endpoint become remote advertised routes on the
remote endpoint; that is, the BIG-IP device on the other side of the WAN.

When a BIG-IP device is deployed in a large scale network with large number of servers, and many of them
belong to different subnets, manually configuring local optimization subnets can be very time consuming.
Subnet Discovery is designed to ease such configuration challenges. With local subnet discovery, instead
of requiring manual configuration of local subnets for traffic optimization, the BIG-IP system automatically
discovers the local optimization subnet when traffic flows from a BIG-IP device on one side of the WAN
to a BIG-IP device on the other side.

Note: A TCP request from the client to the server is the action that triggers discovery, not a ping between
two endpoints.

About dynamic discovery of remote endpoints

Dynamic discovery is a process through which the BIG-IP® system identifies and adds remote endpoints
automatically. The process occurs when the BIG-IP device receives traffic that is matched by a virtual server
with an iSession™ profile, but does not recognize the remote destination. When a BIG-IP device receives a
request destined for a location on the network behind the BIG-IP device on the other side of the WAN, the
first BIG-IP device sends out TCP options or ICMP probes to discover, authenticate, and initiate
communication with the new remote endpoint.

Note: A TCP request from the client to the server is the action that triggers discovery, not a ping between
two endpoints.

186

About Discovery

Index

A

acceleration
introduction 20

acceleration policies
about 58
creating user-defined 60
customization 60
exported to XML files 61
inheritance rule parameters 67
inheritance rule parameters override 68
Policy Tree modification 69
publication 60
rule inheritance 66
screen access 58
types 58

acceleration policy
selection 59

Acceleration Policy Editor role
BIG-IP access 60

advertised routes
description 186

Application Acceleration Manager
enabling 28

applications
management 23
monitoring 23

applications advanced settings
performance monitor options 180

Applications advanced settings
Debug Options 88
Metadata Cache Options 158

Applications screen Advanced settings
IBR options 130

assembly rules
management of content served from origin web servers
94
overview 94

B

bandwidth controllers
compared with rate shaping 46

bandwidth control policies
dynamic, about 46
dynamic, example of 47
overview 46
static, about 46

base rate 51
base throughput rate 51
BIG-IP acceleration policies

options 59
BIG-IP Application Acceleration

introduction 22
burst reservoir

depleting 52
replenishing 52

burst size 51–52

Byte Savings reports
about 181

C

Cache-Control headers
management 78
max-age directives 79
no-cache directives 79

cached content
serving when web server is unavailable 100

Cache on first hit setting
using 114

caching
about 22

Caching Bytes Saved reports
about 181

Caching Requests Saved reports 181
cascading style sheet files

inlining 134
minification 134
optimization 134
reordering 134

Cascading Style Sheet files
about concatenation 135

ceiling rate 51
CIFS optimization

about 34
Client IBR'd Links Received reports

about 181
Client IBR'd Links reports

about 181
codec

choosing for deduplication 184
color values

minimizing 150
compression

configuring for symmetric optimization 33
enabling from origin web server 156

Compression Bytes Saved reports
about 181

concatenation
and Cascading Style Sheet files 135
and JavaScript files 135

connection pooling
with OneConnect 42

CSS files
See also Cascading Style Sheet files

inlining 134
minification 134
optimization 134
reordering 134
See also Cascading Style Sheet files

custom cache-control directives
using 100

187

Index

D

data centers
about 20

data compression
about 21

data deduplication
about 21

deduplication
choosing a codec 184
described 184

discovery
and advertised routes 186
description 186
of local subnets 186
of remote endpoints 186

distributed BIG-IP application acceleration
deployment 23

DNS prefetching 135
drop policy 55
dynamic bandwidth control policies, See bandwidth control
policies
dynamic discovery

for BIG-IP systems 186

E

ETag
including in metadata 158

F

FEC, See forward error correction (FEC)
forward error correction (FEC)

about 170
overview 170

H

header format
optimizing 149

HTTP/2 (experimental) profile settings
defined 39, 121
listed 39, 121

HTTP/2 profile
about 38, 120
overview 38, 120

HTTP2 profile
overview 37, 120

HTTP Compression profile
about 28
options 28

HTTP data type
regular expression strings 84
request parameters 82

HTTP data type parameters
specification for a rule 72–73
specification of client IP 76
specification of content type 77
specification of cookie 75
specification of extension 73
specification of header 75

HTTP data type parameters (continued)
specification of host 73
specification of method 75
specification of path 73
specification of path segment 74
specification of protocol 75
specification of query parameter 73
specification of referrer 75
specification of user agent 75

HTTP protocol
optimization 22

HTTP request
about process 70
using parameters 69

HTTP request latency
minimizing 40

HTTP request logging
about 172
and code elements 175
and profile settings 173

HTTP request logging profile, overview 172
HTTP request queuing

overview 116
HTTP requests

configuration of rules 72
requirements for servicing 70

HTTP response
about process 72

HTTP responses
configuration of rules 77
requirements for caching 71

HTTP traffic
managing with HTTP2 profile 37
managing with SPDY profile 124

I

IBR
about adaptive lifetime 129
about conditional GET requests 128
for CSS 128
for HTML 128

IBR Savings reports
about 181

ICC 168
ICC Inlined Links reports

about 182
ICC Referenced Links reports

about 182
ICC Savings reports

about 182
image format

optimizing 148–149
image optimization

for color values 150
for format 148–149
for headers 149
for progressive encoding 150
for sampling factor 150
overview 148

Image Optimization Bytes Saved reports
about 181

188

Index

images
optimizing 148–149

Inlined Links reports
about 182

inlining
cascading style sheet files 134
CSS files 134
JavaScript files 134

Intelligent Browser Referencing
about adaptive lifetime 129
about conditional GET requests 128
example 129
for CSS 128
for HTML 128
overview 128
task summary 82

Intelligent Client Cache
about 168

invalidation
for an application 104

invalidations rules
cached content 106
lifetime 105
overview 104
parameters 106
request header matching criteria 106
triggers 104

iSession
and symmetric optimization 26

iSession profiles
about 33
modifying compression 33

J

JavaScript files
about concatenation 135
inlining 134
minification 134
optimization 134
reordering 134

JPEG-XR 148
JS files, See JavaScript files

L

LAN traffic optimization
and TCP protocol 35

latency
minimizing 40

lifetime managed responses
about 98

lifetime rules
about 98

load balancing on servers
about 20

local traffic policy
accelerating traffic 159
using to classify types of HTTP traffic 160

local traffic policy matching
actions operands settings 163
controls settings 161

local traffic policy matching (continued)
operands settings 161
requires settings 160
strategies settings 160

M

managed requests
about 98

MAPI optimization
about 34

max age
about 99
compiled responses value 86

mean opinion score, See MOS
meta characters

pattern matching 30, 86
Metadata responses

about using 158
meta tags

using on rules 78
minification

cascading style sheet files 134
CSS files 134
JavaScript files 134

Minification Bytes Saved reports
about 181

monitoring performance
about 180

MOS
and Video Quality of Experience 153

MPTCP
and mobile traffic optimization 36

MultiConnect
example 138
overview 138

N

no-cache directive
inserting into header 101

NTLM
and OneConnect 44

NTLM profile type
defined 41

O

object
classification 108

object type
classification 108
classification by group 108

object types
management 108

OneConnect
and NTLM 44

OneConnect profile type
defined 42

optimization
cascading style sheet files 134
CSS files 134

189

Index

optimization (continued)
JavaScript files 134

optimized images
accelerating 148–149

origin web server directives
preserving to downstream devices 100

origin web server headers
preserving to downstream devices 100

P

packet loss
mitigating with FEC 170

parameters
for HTTP request logging 175
for request logging 175

parameter value substitution
about number randomizer 143
about parameters 142
example 143
serving specific content 142

parent class 54
passwords

and NTLM profiles 41
pattern matching

meta characters 30, 86
PDF linearization

overview 146
performance monitoring

about 180
Policy Editor screen

overview 64
parts 65
viewing Policy Tree 65

policy matching
configuration example 63
controls settings 161
overview 61
requires settings 160
resolution rules when multiple nodes match 61

policy matching resolution rules
exact path match 61
multiple extension matches 62
single extension node match 62
single path segment match 62
unmatched requests 63

prefetching, See DNS prefetching
profile

about HTTP request logging 172
about Request Logging 172

profiles
about HTTP Compression 28
about iSession 33
about MAPI 34
about TCP 35
about Web Acceleration 28
Web Acceleration settings 29

profile settings
for HTTP/2 (experimental) 39, 121

profile types
for HTTP/2 38, 120

progressive encoding
optimizing 150

proxying rules
descriptions of parameters 96
overview 96

Q

QoE, See video Quality of Experience
queue method setting

using priority FIFO 54
using stochastic fair queue 54

R

rate class
about 50
and queue method 54

rate class name 51
rate shaping

and base rate 51
and burst size 51–52
and ceiling rate 51
and direction setting 53
and parent class 54
and policy 54
compared with bandwidth controllers 46
definition 50

regular expressions
using on rules 78

remote endpoints
about discovery of 186

reordering
cascading style sheet files 134
CSS files 134
JavaScript files 134

request latency
minimizing 40

request logging, and code elements 175
request logging profile

and standard log formats 172
for NCSA Combined 173
for NCSA Common 172
for W3C Extended 173
overview 172
settings 173

Request Logging profile
about 172

requests
flow 25
management 23

response codes
caching behavior 82
S codes defined 83

responses
application of policy rules 78
assembly 78
classification 77
flow 25
management 24

ROI reports
about byte savings 181

190

Index

ROI reports (continued)
about Caching Bytes Saved reports 181
about Caching Requests Saved 181
about Client IBR'd Links Received reports 181
about Client IBR'd Links reports 181
about Compression Bytes Saved reports 181
about IBR savings 181
about ICC savings 182
about Image Optimization Bytes Saved reports 181
about Inlined Links reports 182
about Minification Bytes Saved reports 181
overview 180

rules
meta tags 78
regular expressions 78

S

sampling factor
optimizing 150

S code
definitions 83
S10101 83
S10201 83
S10202 83
S10203 83
S10204 83
S10205 83
S10206 83
S10232 83
S10413 83
S11101 83
SO 83

server connections
pooling of 42

shaping policy 54
source IP addresses

and OneConnect 42
SPDY profile

overview 124
SPDY protocol

purpose of 40
static bandwidth control policies, See bandwidth control policies
subnets

about discovery of 186
symmetric data deduplication

described 184
symmetric optimization

overview 26

T

TCP connections
about optimization 21, 138

TCP express
optimizing mobile traffic 35–36

TCP profiles
about 35
and mobile traffic optimization 35–36
optimized for LANs 35

TCP profiles (continued)
optimized for WANs 37

throughput policy 50

U

user credentials
and NTLM profiles 41

V

variation rules
cache efficiency improvement 90
defintion of rules parameters 91
management of conflicting rules parameters 92
overview 90
user-specific content 91
value groups 91

video delivery optimization
about 152
about bit rate selection 152
about cache scoring 152
about caching popular content 152
about caching video segments 152
about global configuration 152

video quality of experience
about 153

video Quality of Experience
and mean opinion score 153
and MOS 153

VIPRION
about acceleration in a cluster 112

W

WAN traffic optimization
and TCP protocol 37

Web Acceleration profile
about 28
settings 29

Web Acceleration Profile
tmsh statistics description 32

web application
optimization 22

Webp 149

X

X-WA-Info response headers
about 79
about symmetric deployment 80
A code 81
N code 81
P code 81
RN code 81
S code 81
U code 82
V code 81

191

Index

192

Index

	Table of Contents
	Legal Notices
	Acknowledgments
	Introducing Acceleration
	Overview: Introduction to acceleration
	Origin web server load balancing
	About data centers
	Data compression
	Data deduplication
	Optimization of TCP connections
	Caching objects
	Optimization of HTTP protocol and web applications

	Overview: BIG-IP Acceleration
	Application management
	Application monitoring
	Deployment of Distributed BIG-IP Application Acceleration
	Management of requests to origin web servers
	Management of responses to clients
	Flow of requests and responses
	About symmetric optimization using iSession on BIG-IP systems

	Accelerating Traffic with Acceleration Profiles
	About HTTP compression profiles
	HTTP Compression profile options

	About Web Acceleration profiles
	Web Acceleration profile settings
	Meta characters
	Web Acceleration Profile statistics description

	About iSession profiles
	Screen capture showing compression settings

	About CIFS traffic optimization
	About MAPI optimization
	About TCP profiles
	About tcp-lan-optimized profile settings
	About tcp-mobile-optimized profile settings
	About mptcp-mobile-optimized profile settings
	About tcp-wan-optimized profile settings

	About HTTP2 (experimental) profiles
	About HTTP/2 profiles
	HTTP/2 (experimental) profile settings

	About SPDY profiles
	About NTLM profiles
	About OneConnect profiles
	OneConnect and HTTP profiles
	OneConnect and SNATs
	OneConnect and NTLM profiles

	Managing Traffic with Bandwidth Controllers
	Overview: Bandwidth control management
	Bandwidth controllers vs. rate shaping
	About static bandwidth control policies
	About dynamic bandwidth control policies
	Example of a dynamic bandwidth control policy

	Managing Traffic with Rate Shaping
	Introduction to rate shaping
	About rate classes
	Rate class name
	Base rate
	Ceiling rate
	Burst size
	Depleting the burst reservoir
	Replenishing a burst reservoir
	About specifying a non-zero burst size
	About the direction setting
	About the parent class
	About shaping policy
	About queue method
	About drop policy

	Using Acceleration Policies to Manage and Respond to HTTP Requests
	Overview: Acceleration policies
	Policies screen access
	Types of acceleration policies
	BIG-IP acceleration policies options
	Acceleration policy selection
	Customization of acceleration policies
	Creation of user-defined policies
	Publication of acceleration policies
	About the Acceleration Policy Editor role
	Acceleration policies exported to XML files

	Overview: Policy Matching
	Resolution rules when multiple nodes match
	Priority 1: An exact path match
	Priority 2: A single extension node match
	Priority 3: A single path segment match
	Priority 4: Multiple extension matches

	Unmatched requests

	An example matching rule
	Overview: Policy Editor screen
	Policy Editor screen parts
	Policy Tree
	Acceleration policy rule inheritance
	Inheritance rule parameters
	Inheritance rule parameters override
	Policy Tree modification for an acceleration policy

	Overview: HTTP header parameters
	Requirements for servicing requests
	About the HTTP request process
	Requirements for caching responses
	About the HTTP responses process
	Configuration of rules based on HTTP request headers
	Specification of HTTP data type parameters for a rule
	Host
	Path
	Extension
	Query Parameter
	Unnamed Query Parameter
	Path Segment
	Cookie
	User Agent
	Referrer
	Protocol
	Method
	Header
	Client IP
	Content Type

	Configuration of rules based on HTTP response headers
	Classification of responses
	Application of association acceleration policy rules
	Assembly of responses

	Regular expressions and meta tags for rules
	Management of Cache-Control response headers
	Cache-Control: no-cache directives
	Cache-Control: max-age directives

	X-WA-Info response headers
	X-WA-Info response header in a symmetric deployment example
	V code
	S code
	A code
	P code
	N code
	RN code
	U code

	Reference summary for HTTP data
	HTTP request data type parameters
	Response status codes
	S code definitions
	HTTP data types for regular expression strings
	Max age value for compiled responses
	Meta characters
	Advanced Debug settings for General Options

	Differentiating Requests and Responses with Variation Rules
	Overview: Variation rules
	Cache efficiency improvement
	User-specific content
	Definition of variation rules parameters
	Value groups
	Management of conflicting rules parameters

	Managing Compiled Responses with Assembly Rules
	Overview: Assembly rules
	Management of content served from origin web servers

	Proxying Requests and Responses
	Overview: Proxying rules
	Proxying rules parameters

	Managing Requests and Responses with Lifetime Rules
	Overview: Lifetime rules
	Lifetime managed requests
	Lifetime managed responses
	About specifying the amount of time to store cached content
	About serving cached content when origin web server content is unavailable
	About preserving origin web server headers and directives to downstream devices
	Custom Cache-Control directives
	About replacing origin web server headers and directives with a no-cache directive

	Invalidating Cached Content
	Overview: Invalidating cached content for an application
	Overview: Invalidating cached content for a node
	Invalidations triggers
	Invalidations lifetime
	Invalidations rules parameters
	Request header matching criteria
	Cached content to invalidate

	Managing Object Types
	Overview: Object classification
	Classification by object type
	Classification by group
	Management of object types

	Caching Objects in a VIPRION Cluster
	Overview: Acceleration in a cluster

	Immediately Caching Dynamic Objects
	Overview: Caching an object on first hit

	Accelerating Parallel HTTP Requests
	Overview: HTTP request queuing

	Managing HTTP Traffic with the HTTP/2 Profile
	Overview: Managing HTTP Traffic with the HTTP/2 (experimental) profile
	About HTTP/2 profiles
	HTTP/2 (experimental) profile settings

	Managing HTTP Traffic with the SPDY Profile
	Overview: Managing HTTP traffic with the SPDY profile
	SPDY profile settings

	Accelerating Requests and Responses with Intelligent Browser Referencing
	Overview: Reducing conditional GET requests with Intelligent Browser Referencing
	About conditional GET requests
	About Intelligent Browser Referencing for HTML
	About Intelligent Browser Referencing for cascading style sheet files
	About the adaptive Intelligent Browser Referencing lifetime

	Intelligent Browser Referencing example
	Advanced IBR settings for general options

	Accelerating JavaScript and Cascading Style Sheet Files
	Overview: Accelerating cascading style sheet, JavaScript, and inline image files
	About minification of JavaScript and cascading style sheet content
	About reordering cascading style sheet and JavaScript URLs and content
	About inlining documents and image data
	About concatenation of JavaScript and cascading style sheet files
	About DNS prefetching

	Establishing Additional TCP Connections with MultiConnect
	Overview: Accelerating requests and responses with MultiConnect
	Optimization of TCP connections
	MultiConnect example

	Serving Specific Hyperlinked Content with Parameter Value Substitution
	Overview: Serving specific hyperlinked content with parameter value substitution
	About configuring value substitution parameters for an assembly rule
	About using number randomizer for parameter value substitution
	A parameter value substitution example

	Accelerating Access to PDF Content
	Overview: Accelerating access to PDF content with PDF linearization

	Accelerating Images with Image Optimization
	Overview: Accelerating images with image optimization
	Optimization of image format
	Optimization with JPEG-XR
	Optimization with WebP
	Optimization with file compression
	Optimization of headers
	Optimization of sampling factor
	Optimization with progressive encoding
	Optimization of color values

	Accelerating Video Streams with Video Delivery Optimization
	About video delivery optimization
	About caching video segments by location
	About caching popular content
	About video delivery optimization cache priority
	About globally configuring video delivery optimization
	About video delivery optimization bit rate selection

	About the video Quality of Experience profile
	About mean opinion score

	Compressing Content from an Origin Web Server
	Overview: Enabling content compression from an origin web server

	Accelerating Responses with Metadata Cache Responses
	Overview: Using Metadata cache responses to accelerate responses
	Advanced Metadata Cache Options for General Options

	Accelerating Traffic with a Local Traffic Policy
	About classifying types of HTTP traffic with a local traffic policy
	Local traffic policy matching Strategies settings
	Local traffic policy matching Requires profile settings
	Local traffic policy matching Controls settings
	Local traffic policy matching Conditions operands
	Local traffic policy matching Actions operands

	Accelerating Traffic with Intelligent Client Cache
	About intelligent client cache

	Using Forward Error Correction to Mitigate Packet Loss
	Overview: Using forward error correction (FEC) to mitigate packet loss
	About forward error correction (FEC)

	Using the Request Logging Profile
	Overview: Configuring a Request Logging profile
	About the Request Logging profile
	Standard log formats
	NCSA Common log format example
	NCSA Combined log format example
	W3C Extended log format example

	Request Logging profile settings
	Request Logging parameters

	Monitoring BIG-IP Acceleration Application Performance
	Overview: Monitoring the performance of a BIG-IP acceleration application
	Advanced performance monitor settings for general options

	Overview: ROI reports
	About Byte Savings reports
	About Caching Requests Saved reports
	About IBR Savings reports
	About Inlined Links reports
	About ICC Savings reports

	Managing Deduplication
	What is symmetric data deduplication?
	Which codec do I choose?

	About Discovery
	About discovery on BIG-IP AAM systems
	About subnet discovery
	About dynamic discovery of remote endpoints

	Index

