BIG-IP[®] Policy Enforcement Manager[™]: Implementations

Version 11.6

Table of Contents

Legal Notices	9
Acknowledgments	11
Chapter 1: Overview	15
What is Policy Enforcement?	16
About enforcement policies	17
About enforcement policy rules	17
About subscriber provisioning through PCRF	18
Best practices for creating enforcement policies	18
About sizing considerations	19
Chapter 2: Setting Up Application Visibility	21
Overview: Setting up application visibility	22
What is application visibility?	22
Determining and adjusting traffic classifications	22
Creating a data plane virtual group	23
Examining application visibility statistics	24
Chapter 3: Configuring Intelligent Traffic Steering	27
Overview: Configuring intelligent traffic steering	28
What is traffic steering?	28
Creating a pool	28
Creating forwarding endpoints	29
Creating an enforcement policy	30
Creating custom action policies	30
Adding rules to an enforcement policy	31
Creating a rule using classification criteria	32
Creating a rule using URL categorization	33
Modifying iRule event for URL categories	34
Creating a rule using flow conditions	34
Creating a rule for forwarding traffic	36
Creating a rule for QoS	37
Creating a data plane virtual group	38
Chapter 4: Configuring Quota Management using Rating Groups	41
Overview: Configuring quota management	42
About Gy support and rating groups	42
Creating a listener for quota management	42
Creating rating groups	43

Chapter 5: About Logging Policy Enforcement Events to IPFIX Collectors	45
Overview: Configuring IPFIX logging for PEM	46
Assembling a pool of IPFIX collectors	46
Creating an IPFIX log destination	47
Creating a publisher	47
Implementation result	48
Chapter 6: Reporting Usage Data to an External Analytics Server	49
Overview: Reporting usage data to an external analytics server	
Creating a publisher	
Creating a rule for high-speed logging for session reporting	50
Creating a rule for high-speed logging for flow reporting	
Creating a high-speed logging rule for transactional reporting	
Session-based reporting format	54
Flow-based reporting format	55
Transaction-based reporting format	56
Chapter 7: Performing Radius Authentication and Accounting	59
Overview: Performing RADIUS authentication and accounting	
Creating a RADIUS AAA profile for policy enforcement	60
Creating a listener for RADIUS AAA Virtual	60
Creating policy rule for RADIUS accounting reports	61
Chapter 8: Configuring Subscriber Discovery based on DHCP	63
Configuring Subscriber Discovery based on DHCP	64
Overview: Configuring subscriber discovery based on DHCP	64
Chapter 9: Usage Monitoring Over a Gx Interface	
Overview: Usage monitoring over a Gx interface	
Creating a listener for subscriber discovery and policy provisioning	
Creating a rule for usage monitoring	73
Chapter 10: Configuring Global Application Policies with Bandwidth Control	75
Overview: Global Application Policies with Bandwidth Control	
Creating VLANs	
Creating a static bandwidth control policy	
Creating an enforcement policy	
Creating a rule for bandwidth control	
Creating a listener: example	
Chanter 11: Enforcing Bandwidth Control Provisioned by PCRF	81

Overview: Enforcing bandwidth control provisioned on PCRF	82
Creating a dynamic bandwidth control policy for PCRF	82
Creating a listener for subscriber discovery and policy provisioning	83
Implementation result	84
Chapter 12: Configuring Tiered Services with Bandwidth Control	85
Overview: Configuring tiered services with bandwidth control	86
Creating dynamic bandwidth control policies for tiered services	86
Creating enforcement policies for three tiers	87
Creating the rules for tiered bandwidth control	87
Creating a listener for subscriber discovery with RADIUS and policy provisioning with PCRF	89
Implementation result	90
Chapter 13: Configuring Service Chains	
Overview: Configuring service chains	
About services profiles	
About service chain processing	93
Creating a ICAP profile for policy enforcement	93
Creating a Request Adapt profile	93
Creating a Response Adapt profile	
Creating an internal virtual server for ICAP server	
Creating a pool	95
Creating endpoints for service chains	96
Creating dynamic service chains	
Creating an enforcement policy	
Configuring steering action policy	
Adding rules to an enforcement policy	99
Creating a rule for forwarding traffic	.100
Creating a data plane virtual group	.101
Chapter 14: Provisioning Dynamic Subscribers	
Overview: Provisioning dynamic subscribers	
Provisioning dynamic subscribers	.104
Chapter 15: Provisioning Static Subscribers	
Overview: Provisioning static subscribers	
Provisioning multiple subscribers	
Subscriber CSV file format Provisioning a file of static subscribers	
Chapter 16: Formatting Reports using PEM	.111
Overview: Creating reports using PEM	

Creating format scripts for reports	112
Chapter 17: Updating Signatures for Application Recognition	115
Overview: Updating classification signatures	116
Importing signatures manually	116
Scheduling automatic signature updates	116
Chapter 18: Creating Custom Classifications	119
Overview: Creating custom classifications	120
Determining and adjusting traffic classifications	120
Creating custom classification categories	
Creating custom classification applications	121
Creating a custom URL database	122
Using iRules with classification categories and applications	122
Modifying iRule event for URL categories	123
Classification iRule commands	123
Chapter 19: Configuring PEM with Local Traffic Policies	125
Overview: Creating local traffic policy rules for PEM	126
Modifying custom local traffic policy rules for PEM	126
Creating custom local traffic policy rules for PEM	127
Creating a virtual server for SSL traffic policy enforcement	128
Chapter 20: Configuring Policy and RADIUS Updates	131
Overview: Configuring policy and RADIUS updates	132
Configuring PEM options	132
Chapter 21: Enforcing Policy and Classification on IP Protocols	133
About enforcing policy and classification on IP protocols	134
Creating Any IP profiles for PEM	134
Updating Any IP profile	134
IPOther filter for current PEM actions	135
Chapter 22: Troubleshooting	137
PEM troubleshooting	138
Subscriber and policies active sessions	
Active sessions statistics	
Configuring subscriber activity log	141
Appendix A: IPFIX Templates for PEM Events	143
Overview: IPFIX templates for PEM events	
About IPFIX Information Elements for PEM events	144

IANA-defined IPFIX Information Elements	144
IPFIX enterprise Information Elements	144
About individual IPFIX templates for each event	146
Session logs	146
Flow logs	147
Transaction logs	

Table of Contents

Legal Notices

Publication Date

This document was published on August 20, 2014.

Publication Number

MAN-0404-05

Copyright

Copyright © 2014-2015, F5 Networks, Inc. All rights reserved.

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5 assumes no responsibility for the use of this information, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, copyright, or other intellectual property right of F5 except as specifically described by applicable user licenses. F5 reserves the right to change specifications at any time without notice.

Trademarks

AAM, Access Policy Manager, Advanced Client Authentication, Advanced Firewall Manager, Advanced Routing, AFM, Application Acceleration Manager, Application Security Manager, APM, ARX, AskF5, ASM, BIG-IP, BIG-IQ, Cloud Extender, CloudFucious, Cloud Manager, Clustered Multiprocessing, CMP, COHESION, Data Manager, DevCentral, DevCentral [DESIGN], DNS Express, DSC, DSI, Edge Client, Edge Gateway, Edge Portal, ELEVATE, EM, Enterprise Manager, ENGAGE, F5, F5 [DESIGN], F5 Certified [DESIGN], F5 Networks, F5 SalesXchange [DESIGN], F5 Synthesis, F5 Synthesis [DESIGN], F5 TechXchange [DESIGN], Fast Application Proxy, Fast Cache, FirePass, Global Traffic Manager, GTM, GUARDIAN, iApps, IBR, iCall, Intelligent Browser Referencing, Intelligent Compression, IPv6 Gateway, iControl, iHealth, iQuery, iRules, iRules OnDemand, iSession, L7 Rate Shaping, LC, Link Controller, LineRate, LineRate Systems [DESIGN], Local Traffic Manager, LROS, LTM, Message Security Manager, MobileSafe, MSM, OneConnect, Packet Velocity, PEM, Policy Enforcement Manager, Protocol Security Manager, PSM, Real Traffic Policy Builder, Sales Xchange, Scale N, SDAC (except in Japan), SDC, Signalling Delivery Controller, Solutions for an application world, Software Designed Applications Services, SSL Acceleration, StrongBox, SuperVIP, SYN Check, TCP Express, TDR, TechXchange, TMOS, TotALL, Traffic Management Operating System, Traffix (except Germany), Traffix [DESIGN] (except Germany), Transparent Data Reduction, UNITY, VAULT, vCMP, VE F5 [DESIGN], Versafe, Versafe [DESIGN], VIPRION, Virtual Clustered Multiprocessing, WebSafe, and ZoneRunner, are trademarks or service marks of F5 Networks, Inc., in the U.S. and other countries, and may not be used without F5's express written consent.

All other product and company names herein may be trademarks of their respective owners.

Patents

This product may be protected by one or more patents indicated at: http://www.f5.com/about/guidelines-policies/patents

Export Regulation Notice

This product may include cryptographic software. Under the Export Administration Act, the United States government may consider it a criminal offense to export this product from the United States.

RF Interference Warning

This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This unit generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

Any modifications to this device, unless expressly approved by the manufacturer, can void the user's authority to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance

This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance

This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to Information Technology products at the time of manufacture.

Acknowledgments

This product includes software developed by Bill Paul.

This product includes software developed by Jonathan Stone.

This product includes software developed by Manuel Bouyer.

This product includes software developed by Paul Richards.

This product includes software developed by the NetBSD Foundation, Inc. and its contributors.

This product includes software developed by the Politecnico di Torino, and its contributors.

This product includes software developed by the Swedish Institute of Computer Science and its contributors.

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed by the Computer Systems Engineering Group at the Lawrence Berkeley Laboratory.

This product includes software developed by Christopher G. Demetriou for the NetBSD Project.

This product includes software developed by Adam Glass.

This product includes software developed by Christian E. Hopps.

This product includes software developed by Dean Huxley.

This product includes software developed by John Kohl.

This product includes software developed by Paul Kranenburg.

This product includes software developed by Terrence R. Lambert.

This product includes software developed by Philip A. Nelson.

This product includes software developed by Herb Peyerl.

This product includes software developed by Jochen Pohl for the NetBSD Project.

This product includes software developed by Chris Provenzano.

This product includes software developed by Theo de Raadt.

This product includes software developed by David Muir Sharnoff.

This product includes software developed by SigmaSoft, Th. Lockert.

This product includes software developed for the NetBSD Project by Jason R. Thorpe.

This product includes software developed by Jason R. Thorpe for And Communications, http://www.and.com.

This product includes software developed for the NetBSD Project by Frank Van der Linden.

This product includes software developed for the NetBSD Project by John M. Vinopal.

This product includes software developed by Christos Zoulas.

This product includes software developed by the University of Vermont and State Agricultural College and Garrett A. Wollman.

This product includes software developed by Balazs Scheidler (bazsi@balabit.hu), which is protected under the GNU Public License.

This product includes software developed by Niels Mueller (nisse@lysator.liu.se), which is protected under the GNU Public License.

In the following statement, "This software" refers to the Mitsumi CD-ROM driver: This software was developed by Holger Veit and Brian Moore for use with 386BSD and similar operating systems. "Similar operating systems" includes mainly non-profit oriented systems for research and education, including but not restricted to NetBSD, FreeBSD, Mach (by CMU).

This product includes software developed by the Apache Group for use in the Apache HTTP server project (http://www.apache.org/).

This product includes software licensed from Richard H. Porter under the GNU Library General Public License (© 1998, Red Hat Software), www.gnu.org/copyleft/lgpl.html.

This product includes the standard version of Perl software licensed under the Perl Artistic License (© 1997, 1998 Tom Christiansen and Nathan Torkington). All rights reserved. You may find the most current standard version of Perl at http://www.perl.com.

This product includes software developed by Jared Minch.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product contains software based on oprofile, which is protected under the GNU Public License.

This product includes RRDtool software developed by Tobi Oetiker (http://www.rrdtool.com/index.html) and licensed under the GNU General Public License.

This product contains software licensed from Dr. Brian Gladman under the GNU General Public License (GPL).

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes Hypersonic SQL.

This product contains software developed by the Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation, and others.

This product includes software developed by the Internet Software Consortium.

This product includes software developed by Nominum, Inc. (http://www.nominum.com).

This product contains software developed by Broadcom Corporation, which is protected under the GNU Public License.

This product contains software developed by MaxMind LLC, and is protected under the GNU Lesser General Public License, as published by the Free Software Foundation.

This product includes software under license from Qosmos (www.gosmos.com).

This product includes Intel QuickAssist kernel module, library, and headers software licensed under the GNU General Public License (GPL).

This product includes software licensed from Gerald Combs (gerald@wireshark.org) under the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version. Copyright ©1998 Gerald Combs.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This product includes software developed by Thomas Williams and Colin Kelley. Copyright ©1986 - 1993, 1998, 2004, 2007

Permission to use, copy, and distribute this software and its documentation for any purpose with or without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. Permission to modify the software is granted, but not the right to distribute the complete modified source code. Modifications are to be distributed as patches to the released version. Permission to distribute binaries produced by compiling modified sources is granted, provided you

- 1. distribute the corresponding source modifications from the released version in the form of a patch file along with the binaries,
- 2. add special version identification to distinguish your version in addition to the base release version number,
- 3. provide your name and address as the primary contact for the support of your modified version, and
- 4. retain our contact information in regard to use of the base software.

Permission to distribute the released version of the source code along with corresponding source modifications in the form of a patch file is granted with same provisions 2 through 4 for binary distributions. This software is provided "as is" without express or implied warranty to the extent permitted by applicable law.

This product contains software developed by Google, Inc. Copyright ©2011 Google, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This product includes software developed by Jeremy Ashkenas and DocumentCloud, and distributed under the MIT license. Copyright © 2010-2013 Jeremy Ashkenas, DocumentCloud.

This product includes gson software, distributed under the Apache License version 2.0. Copyright © 2008-2011 Google Inc.

This product includes jxrlib software, copyright ©2009 Microsoft Corp. All rights reserved. Distributed under the new BSD license.

This product includes node-uuid software, copyright © 2010-2012, Robert Kieffer, and distributed under the MIT license.

This product includes opency software, which is distributed under the Apache 2.0 license.

This product includes owasp-jave-encoder software, copyright © 2014, Jeff Ichnowski, and distributed under the New BSD license.

Chapter

1

Overview

- What is Policy Enforcement?
- About enforcement policies
- About enforcement policy rules
- About subscriber provisioning through PCRF
- Best practices for creating enforcement policies
- About sizing considerations

What is Policy Enforcement?

BIG-IP® Policy Enforcement Manager™ (PEM) facilitates mobile service providers control subscriber traffic. The system can analyze application traffic and subscriber behavior, and then enforce traffic policing rules that you define. For example, you could have the system drop all web traffic coming from certain IP addresses. You can perform QoS actions on traffic you want to be treated as high priority using DSCP marking, link QoS, or bandwidth control. You could redirect HTTP traffic destined for a particular IP address, and send it to a specific URL. Or, you could send all video traffic from certain subscribers to servers for optimization.

The BIG-IP system is inserted between the subscribers and the network they are trying to access. The system intercepts the traffic that subscribers are sending. The goal of the Policy Enforcement Manager is to apply an enforcement policy to a subscriber. To determine what kind of policy to apply to the subscriber, PEM[™] needs to obtain the subscriber identity.

The system can obtain subscriber identity by looking at RADIUS traffic (if present), or by analyzing subscriber data traffic. RADIUS provides much more information about the subscriber. Although analyzing subscriber traffic is more limited, it does provide the subscriber IP address. The system must have the subscriber IP address in order for PEM to do policy enforcement.

Here is a typical illustration of how policy enforcement works. Traffic from a mobile service provider goes to the BIG-IP system on its way to a network. In order to regulate subscribers, PEM needs to determine the policy to apply. For that reason, PEM collects subscriber identity by intercepting RADIUS traffic when subscriber logs in to the network and examines (snooping) the RADIUS Authentication and Accounting packets for details about the subscriber. PEM communicates with an external policy server, in this case, PCRF, for dynamic subscriber provisioning. Using the RADIUS information (or the IP address if no RADIUS is present) obtained from the subscriber identity, PEM queries the PCRF for the policy configuration and provisions subscribers dynamically.

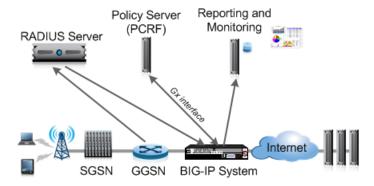


Figure 1: Diagram of policy enforcement overview

Alternatively, you can provision subscribers manually. These subscribers are called *static subscribers*. You use PEM to add static subscribers one at a time, or to import a list of subscribers. Provisioning static subscribers might require the ability to snoop RADIUS traffic but does not require a PCRF connection, as the policy assigned for static subscriber is pre-configured.

When adding static subscribers on the BIG-IP system, you provide the subscriber ID, subscriber ID type, and one or more policies to apply. You can also specify the IP address, but if it is dynamically assigned, you cannot include it. In this case, you need interception of RADIUS traffic in order to map the subscriber to the IP address. When the subscriber enters the network, the IP address from RADIUS is combined with the information already on PEM. If the static subscriber includes the IP address, no RADIUS interception is required.

About enforcement policies

An *enforcement policy* is a set of rules that determines what to do with specified types of traffic. You can configure policies on the BIG-IP[®] system using Policy Enforcement ManagerTM (PEM), or receive policy definition from a PCRF.

For a policy to take effect, it needs to be assigned, or provisioned, to a subscriber session (a subscriber and multiple IP address mapping). A subscriber session is the period of time from when a subscriber logs into the network (authenticated) and logs out, or when the session is terminated by other means. The session is identified by subscriber IP address.

PEM[™] supports the following methods for provisioning subscriber policies:

- · Subscriber policy provisioning using PCRF
- Subscriber policy provisioning using a subscriber database of static subscribers (up to 100K subscribers)
- Subscriber policy provisioning for unknown subscribers (subscribers that do not currently have policies assigned to them either dynamically or statically)
- Global policy provisioning
- Custom policy provisioning using iRules[®]

You can use more than one of the subscriber policy provisioning methods. For example, PEM provisions an unknown subscriber policy for a subscriber session, while awaiting a response from PCRF. Or, a global policy might be applied concurrently to other subscriber policies.

As with other BIG-IP modules, like Local Traffic Manager $^{\text{TM}}$, you enable PEM functionality by attaching the corresponding profile to one or more virtual servers. To simplify configuration, PEM provides a listener entity that creates the required virtual servers, enables classification, and attaches the policy enforcement profile. When you create a listener, you also define which policies to apply globally or to unknown subscribers.

Advanced users can directly create virtual servers, then configure and attach the Policy Enforcement profile. We recommend that you begin configuring PEM by using listeners instead of using the advanced method. You can get familiar with PEM configuration by examining the virtual servers, settings, and profiles that the listener creates

About enforcement policy rules

An enforcement policy is made up of a set of rules. In the policy, rules define what to do when the system receives a particular type of traffic. There are many ways you can set up a rule so that you can handle the traffic exactly as you need to. Each rule includes a condition and an action.

A rule defines conditions that the traffic must meet (or not meet) for the rule to apply. The conditions fall into the following criteria:

- *Classification criteria*, such as applications or categories of applications that the system detects. For example, a rule can apply to all webmail traffic or to a specific webmail application.
- Flow information, such as traffic associated with specific source and destination IP addresses or ports, or incoming DSCP marking. For example, a rule can apply to all traffic directed to a specific destination port.
- *URL information*, such as URL categories that the system detects. For example, the rule may categorize adult traffic and prevent access to it.
- Custom criteria, which are other conditions that you develop using iRules®

If the traffic meets the criteria in the rule, the rule specifies actions to take, such as:

- Dropping traffic
- Forwarding traffic to a specific endpoint or series of endpoints for value-added services
- Redirecting HTTP traffic to a URL
- Generating reporting data for further processing by external analytic systems
- Usage monitoring about the traffic to the PCRF so it can track mobile usage.
- Setting DSCP bits in the IP header of the traffic by marking all or marking upon the traffic exceeding a threshold
- Setting Layer 2 Quality of Service (QoS) levels for the traffic
- Enforcing rate control using a bandwidth control policy

Because rules provide so much flexibility, you need to plan what you want to do, and consider your options before you add the rules. One option is to simply classify traffic and review reports of the types of traffic your system is receiving to get more information on which to base the rules. This could be the first step when developing enforcement policies using PEM.

About subscriber provisioning through PCRF

When you are provisioning subscriber policies through PCRF, the policies are communicated using Gx interface in the form of Policy and Charging Control (PCC) rules. A PCC rule can contain the complete rule definition, or it might refer to a predefined or dynamic policy rule, as defined by the Gx protocol specification, Release 9.4. See the 3GPP TS 29.212 specification for details. When the complete rule definition is sent, it is a dynamic PCC rule; when the rule is referenced by name, it is called a predefined rule.

A predefined PCC rule on PCRF maps to an enforcement policy in PEM[™]. For example, a predefined PCC rule with the name premium-video on the PCRF applies to video traffic for premium subscribers. In PEM, you can create a policy also called premium-video with policy rules that define the enforcement action. The classification criteria for the traffic is video, and the action could be to enforce QoS for the video traffic (for example, specifying a higher bitrate).

A *dynamic PCC rule* is dynamically provisioned by the PCRF over the Gx interface. In this case, the PCC rule contains the rule definition. Therefore, in this case, you do not need to create policies on the BIG-IP® system, since the policy is totally defined on the PCRF.

Best practices for creating enforcement policies

Follow these general recommendations when creating enforcement policies:

- When creating enforcement policies you plan to apply globally or to unknown subscribers, include the word global or unknown in the policy name to distinguish these from other types of subscriber policies.
- Be cautious when developing enforcement policies to be applied globally. The policies affect all the subscribers and are applied to subscriber policies in parallel.
- When you remove or disable an enforcement policy, first be sure that it is not currently assigned to any subscribers. At least one policy must be assigned to a subscriber at all times.
- Assign the subscriber IP address when creating static subscribers that include a global or unknown subscriber policy, to ensure that the subscriber gets the entitled service faster and does not have to wait for processing of RADIUS traffic.

- If you want to use different types of steering, create separate policies and rules. For example, consider
 creating a policy that steers traffic from a source VLAN to an endpoint, and another policy to steer
 VLAN traffic to a service chain.
- Create an empty pool and use it in a forwarding endpoint if you want to route traffic or resolve policy priority conflicts between routing and steering.

These are best practices when writing policy rules:

- Be careful when you mix both L4 and L7 classification criteria in one rule; in some cases, L4 criteria takes precedence. Keep it simple: one rule, one type of criteria.
- Specify different precedence values for the rules that might conflict, to make clear in what order the rules will be evaluated.
- Do not mix different types of policy actions in the same rule; create separate rules for forwarding, reporting, Quality of Service (QoS) actions and finally, for which policy action is implemented.
- A policy (or a rule) should not direct traffic to both a forwarding endpoint and to a service chain. If both are specified, the service chain always takes precedence and is performed first, then traffic is forwarded to the endpoint.
- Dedicate certain bandwidth controllers for use only in PEM[™] QoS actions, and do not use them outside PEM
- One dynamic bandwidth controller can be applied per direction per subscriber and up to eight static bandwidth controllers can be applied, in PEM[™].

There are best practices to consider when setting up reporting in enforcement policies:

- Choosing more frequent intervals for generating periodic reporting records (particularly session-based) can greatly increase the amount of reporting data, and could potentially overload the analytics system.
- Flow-based records are generated several times during the flow life and can significantly impact the amount of reporting data sent.

Here are best practices to consider when setting up iRule action:

- If multiple PEM iRules[®] match a flow, all the iRules are processed. The priority order is as follows:
 - PEM policy priority, and it takes in to consideration if the policy is a global high precedence policy, subscriber policy or low precedence policy.
 - PEM iRule event priority and the default event priority is 500. The event priority can be changed by specifying the priority within the iRule event.
 - Rule precedence.

About sizing considerations

Currently the maximum number of applications or category IDs that PEM^{TM} can store, or report usage statistics for, is limited to 15 per subscriber. This in turn influences the rules, since the traffic statistics for each application or category ID is part of the rule's classification criteria.

When this limitation is exceeded for a given subscriber, an error message is logged into TMM log file. In addition, if the affected rule is installed by PCRF (over Gx connection), a session provisioning failure report is sent back to PCRF. The application or category IDs limitation should be taken into account when designing the subscriber and global policies for a particular PEM deployment.

Note: If you require granular reporting for large amount of traffic, your performance might be impacted.

Real performance depends on various factors such as:

- Turning on flow reporting (both performance and memory impacted)
- Frequency of sending session based reporting

Overview

- Complexity of classification
- The number of concurrent flows per subscriber
- Over subscription

Chapter

2

Setting Up Application Visibility

Overview: Setting up application visibility

Overview: Setting up application visibility

This implementation describes how to set up the Policy Enforcement Manager $^{\text{TM}}$ (PEM) to analyze application traffic on the network, and provide statistics for application visibility. For example, you can view statistics to see what applications are being used. By monitoring your traffic, you can later create enforcement policies that are tailored for your needs.

Task summary

Determining and adjusting traffic classifications Creating a data plane virtual group Examining application visibility statistics

What is application visibility?

Policy Enforcement Manager $(PEM^{\mathbb{N}})$ gives the BIG-IP system the ability to classify both encrypted and unencrypted traffic into categories for application visibility. You can display statistics about the network traffic in graphical charts, and view classification information by application, category, protocol, virtual server, country, type of device, and so on. In-depth information and application awareness provides visibility into your network infrastructure so you can identify and monitor different types of traffic and resolve performance issues.

Application visibility is particularly useful for service providers. If your organization is using RADIUS protocol for authentication, authorization, and accounting, PEM can intercept accounting messages to retrieve additional information, for example, about mobile devices, subscribers, towers, service plans, and manufacturers.

Charts shown on the **Statistics** > **Classification** screens display the application visibility data. The classification overview is customizable so you can display the charts or tables that you want. The overview shows top statistics for the categories of which you are most interested.

Determining and adjusting traffic classifications

The BIG-IP® system classifies many categories of traffic and specific applications within those categories. You can determine which categories and applications of traffic the system can classify, and find out information about them such as their application or category ID.

- On the Main tab, click Policy Enforcement > Classification.
 The Classification screen opens showing a list of the supported classification categories.
- 2. To view the applications in each category, click the + icon next to the category.
- 3. To view or edit the properties of the application or category, click the name to open its properties screen.

Tip: Here you can view the application or category ID number.

- **4.** Adjust the properties of the application or category, if necessary.
 - In the **Description** field, you can add text to describe the application or category.
 - Set State to Enabled to use this classification, or to Disabled not to use it.
 - For categories only, set iRule Eventto Enabled if you want the system to trigger an iRule event
 when it recognizes traffic in this category, or set to Disabled if you do not.

- In the Category or Application List field, you can change which category an application is in, or which applications are in the category.
- 5. Click **Update** to save any changes.

Creating a data plane virtual group

If you want to steer specific traffic (or otherwise regulate certain types of traffic) you must first develop appropriate enforcement policies. If using a Gx interface to a PCRF, you need to create a new virtual group in listeners that connect to a PCRF.

You can create listeners that specify how to handle traffic for policy enforcement. Creating a listener performs preliminary setup on the $BIG-IP^{@}$ system for application visibility, intelligent steering, bandwidth management, and reporting.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- Click Data Plane.The Data Plane screen opens.
- Click Add Group. The New Virtual Group screen opens.
- 4. In the Name field, type a unique name for the listener.
- 5. In the **Destination Address** field, type the IP address of the virtual server. For example, 10.0.0.1 or 10.0.0.0/24.

Note: When you use an IPv4 address without specifying a prefix, the BIG-IP[®] system automatically uses a /32 prefix.

Tip: You can use a catch-all virtual server (0.0.0.0) to specify all traffic that is delivered to the BIG-IP[®] system. Configure the source and destination setting, during forwarding mode only. In the relay mode, the client does not have an IP address and the DHCP provides the client with an IP address.

The system will create a virtual server using the address or network you specify.

- **6.** For the **Service Port** setting, type or select the service port for the virtual server.
- 7. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.
- **8.** For the **VLANs and Tunnels** setting, move the VLANs and tunnels that you want to monitor from the **Available** list to the **Selected** list.
- **9.** In the Policy Provisioning area, select enforcement policies to apply to the traffic.
 - a) For Global Policy, move policies to apply to all subscribers to High Precedence or Low Precedence.

Note: For URL categorization to take effect, you need to associate the enforcement policy with a classification profile.

b) For Unknown Subscriber Policy, move policies to use if the subscriber is unknown to Selected.

The system applies the global policy to all subscribers in parallel with the subscriber policies, and must be configured with unknown subscriber policy. High-precedence global policies override conflicting subscriber policies, and low-precedence policies are overridden by conflicting subscriber policies.

10. Click Finished.

The Policy Enforcement Manager creates a listener.

When you create a listener, Policy Enforcement Manager^{IM} also creates virtual servers for each type of traffic (TCP, UDP, or both and IP), and a virtual server for HTTP traffic. The system sets up classification and assigns the appropriate policy enforcement profile to the virtual servers. If you are connecting to a RADIUS authentication server, a virtual server for RADIUS is also added.

Now you can send traffic through the network. As network traffic moves through the BIG-IP® system, the system classifies the traffic, and if you have developed policies, the system performs the actions specified by the enforcement policy rules.

Examining application visibility statistics

Before you can look at the application visibility statistics, you must have Adobe[®] Flash[®] Player installed on the computer where you plan to view them.

You can review charts that provide application visibility for traffic on your network.

- 1. On the Main tab, click **Policy Enforcement > Analytics > Overview**.

 The Overview screen opens where you can view a summary of the top classification statistics.
- **2.** Review the statistics provided. To quickly change the format of the information, click the icon to the left of the time period.

You can display information in a table, line chart, pie chart, or bar chart.

- 3. Click the time period (Last Hour, Last Day, Last Week, Last Month, or Last Year), to change the interval used for displaying content.
- **4.** To permanently change the format or content of any of the charts, click the cog on the chart, select **Settings**, and adjust the fields in the form.
- **5.** To display additional charts or tables, click the **Add Widget** link and complete the form. The chart you create becomes a permanent part of the Classification Overview screen.
- **6.** On the Main tab, click **Policy EnforcementAnalyticsStatistics**.

 The Statistics screen opens and the charts display detailed classification statistics by application.
- 7. Adjust the statistics content in any of the following ways:
 - Use the View By setting or Advanced Filters to change the type of classification data shown.
 - Use the **Time Period** setting to change the interval for which statistics are shown.
 - Use the **Expand Advanced Filters** setting to fine-tune even further which types of reports to display.
- **8.** Get detailed information in any of the following ways:
 - Point on the charts to display the details.
 - Review the Details table to see the statistics.
 - In the Details table, click the name of one of the items (application, category, protocol, and so on) to see classification details about that specific item.
 - Use the **Display method** setting to show statistics in different formats.

The easiest way to learn what classification information is available is to look at the charts and view the content and details in different ways. As you drill down into the statistics, you can locate more details and view information for a specific item.

9. To generate and export a PDF or CSV file of a report to save or email, click **Export**, select the settings, and fill in the appropriate fields.

Note: You must have an SMTP email server configured to use the email option. On the Main tab, click **System** > **Configuration** > **Device** > **SMTP**.

BIG-IP[®] Policy Enforcement Manager[™]: Implementations

You can use the classification statistics to determine, for example, the types of applications and the specific applications that clients are using. By drilling down into that information, you can find out specifically which applications are being used by a particular IP address.

Chapter

3

Configuring Intelligent Traffic Steering

 Overview: Configuring intelligent traffic steering

Overview: Configuring intelligent traffic steering

You can use the Policy Enforcement Manager^{$^{\text{TM}}$} to set up the BIG-IP^{$^{\text{R}}$} system to classify and intelligently steer traffic on the network. The system automatically sets up virtual servers for TCP and UDP traffic so that the BIG-IP system can classify the traffic and direct it to one or more steering endpoints based on traffic characteristics.

Task Summary

Creating a pool
Creating forwarding endpoints
Creating an enforcement policy
Creating custom action policies
Adding rules to an enforcement policy
Creating a rule using classification criteria
Creating a rule using URL categorization
Modifying iRule event for URL categories
Creating a rule using flow conditions
Creating a rule for forwarding traffic
Creating a rule for QoS
Creating a data plane virtual group

What is traffic steering?

Policy Enforcement Manager[™] provides the ability to intelligently steer traffic based on policy decision made using classification criteria, URL category, flow information, or custom criteria (iRule events). Steering, also called *traffic forwarding*, can help you police, control and optimize traffic.

You can forward a particular type of traffic to a pool of one or more servers designed to handle that type of traffic, or to a location closer to clients requesting a service. For example, you can send HTTP video traffic to a pool of video delivery optimization servers. You can have one policy option to classify each transaction which allows transaction aware steering. The ability to classify traffic for every transaction is called *transactional policy enforcement*. The classification per transaction is for HTTP traffic only.

You set up steering by creating an enforcement policy that defines the traffic that you want to send to a particular location or endpoint. Rules in the enforcement policy specify conditions that the traffic must match, and actions for what to do with that traffic. One of the actions you can take is to forward the traffic to a particular endpoint, called a *forwarding endpoint*.

You can create listeners to set up virtual servers and associate the enforcement policies with the traffic that is sent to them. The system also creates a Policy Enforcement profile that specifies the enforcement policy that the system uses, among other uses, for traffic steering.

Creating a pool

You can create a pool of servers that you can group together to receive and process traffic. Repeat these steps for each desired pool.

1. On the Main tab, click **Local Traffic** > **Pools**. The Pool List screen opens.

2. Click Create.

The New Pool screen opens.

- **3.** In the Name field, type a unique name for the pool.
- 4. Using the New Members setting, add each resource that you want to include in the pool:
 - a) In the Node Name field, type a name for the node portion of the pool member.
 This step is optional.
 - b) In the **Address** field, type an IP address.
 - c) In the Service Port field, type a port number, or select a service name from the list.
 - d) In the **Priority** field, type a priority number. This step is optional.
 - e) Click Add.

5. Click Finished.

The new pool appears in the Pools list.

Creating forwarding endpoints

Before you can create an endpoint, you need to create a pool that specifies where you want to direct the classified traffic.

To set up traffic steering, you need to create a forwarding endpoint, which specifies where to send the traffic. If you are configuring w-steering or service chains, you need to create multiple endpoints.

- 1. On the Main tab, click **Policy Enforcement** > **Forwarding** > **Endpoints**. The Endpoints screen opens.
- 2. Click Create.

The New Endpoint screen opens.

- 3. In the Name field, type a name for the endpoint.
- **4.** From the **Pool** list, select the pool to which you want to steer a particular type of traffic, for example, in a policy rule.
- 5. If you want to translate the destination address of the virtual server to that of the pool, from the **Address Translation** list, select **Enabled**. Otherwise, leave this setting disabled.
- **6.** If you want to translate the original destination port to another port, from the **Port Translation** list, select **Enabled**. Otherwise, leave this setting disabled.
- 7. From the **Source Port** list, select the appropriate option for the source port of the connection.

Option	Description
Preserve	Maintains the value configured for the source port, unless the source port from a particular SNAT is already in use.
Preserve Strict	Maintains the value configured for the source port. If the port is in use, the system does not process the connection. Use this setting only when (1) the port is configured for UDP traffic; (2) the system is configured for nPath routing or running in transparent mode; or (3) a one-to-one relationship exists between virtual IP addresses and node addresses, or clustered multi-processing (CMP) is disabled.
Change	Specifies that the system changes the source port.

8. To specify a SNAT pool for address translation, from the **SNAT Pool** list, select the name of an existing SNAT pool.

The steering endpoint uses the SNAT pool to implement selective and intelligent SNATs.

9. If you have multiple pool members and want specific traffic to go to the same pool member every time, from the **Persistence** list, select the appropriate IP address type:

Option

Description

Map the source IP address to a specific pool member so that subsequent traffic from this address is directed to the same pool member.

Destination Address

Map the destination IP address to a specific pool member so that subsequent traffic from this address is directed to the same pool member.

If you do not need to maintain persistence, leave **Persistence** set to **Disabled**, the default value.

10. Click Finished

You can direct traffic to the endpoint you created in the policy rules of an enforcement policy.

Creating an enforcement policy

If you want to classify and intelligently steer traffic, you need to create an enforcement policy. The policy describes what to do with specific traffic, and how to treat the traffic.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- 2. Click Create.

The New Policy screen opens.

3. In the Name field, type a name for the policy.

Tip: When creating policies you plan to apply globally or to unknown subscribers, it is a good idea to include the word global or unknown in the policy name to distinguish these from other subscriber policies.

- **4.** From the Transactional list, select **Enabled** if you want the BIG-IP system to allow policy enforcement on each HTTP transaction.
- 5. Click Finished.

Important: The system performance is significantly affected, depending on complexity of the classification and the type of policy action.

The new enforcement policy is added to the policy list.

Now you must add rules to the enforcement policy to define traffic filters and actions.

Creating custom action policies

In an enforcement policy, custom action can be defined by a Policy Enforcement Manager $^{\mathsf{TM}}$ (PEM $^{\mathsf{TM}}$) iRule.

- 1. On the Main tab, click Policy Enforcement > Policies > iRules.
- 2. Click Create.

The New iRule screen opens.

- 3. In the Name field, type a name for the new iRule.
- **4.** In the **Description** field, type a description of the new iRule.

5. In the **Definition** field, specify the TCL syntax that defines a custom iRule action, which can be later attached to a policy enforcement rule.

There can be two iRule events:

- PEM_POLICY is triggered when a policy evaluation occurs.
- RULE_INIT runs the first time the iRule is loaded or has changed.

The two new PEM iRule commands are PEM::policy initial and PEM::policy name. You can select the **Wrap Text** check box to wrap the definition text, and select the **Extend Text Area** check box to increase the field space of format scripts.

6. Click Finished.

The Policy Enforcement Manager creates a new iRule, and displays the iRule list.

- 7. To attach a custom action to a specific iRule, follow the steps:
 - a) Click Policy Enforcement > Policies.
 - b) Select a policy name.
 - c) Click a policy rule.
 - d) From the Custom Action list, select a iRule created.
- 8. Click Update.

You have created a custom action in a policy, using iRules.

Note: The iRule actions are executed at the end of all the other policy actions.

Adding rules to an enforcement policy

Before you can add rules to an enforcement policy, you need to create the policy, then reopen it.

You add rules to an enforcement policy to select the traffic you want to affect, and the actions to take. A *rule* associates an action with a specific type of traffic. So you can, for example, add a rule to select all audio-video traffic and send it to a pool of servers that are optimized to handle that type of traffic.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- **7.** From the **Modify Header** list, select **Enabled**, to modify the HTTP request header. More modify header configuration options display.
- **8.** Use the Reporting, Quota, Forwarding, Modify Header or QoS areas to specify what you want to do with the traffic that you are classifying or specify what actions you want to apply to the traffic. Other tasks describe how to do this in detail.

If you leave **Gate Status** enabled (default) and specify no other actions, the system stores traffic classification statistics on the BIG-IP system, and forwards the traffic to its destination without any further action.

- 9. Click Finished.
- 10. Repeat steps 3-8 to create as many rules as needed to handle the traffic you are interested in.

The enforcement policy includes the rules with the conditions and actions you added.

Now you need to associate the enforcement policy with the virtual server (or servers) to which traffic is directed.

Creating a rule using classification criteria

You can use Layer 7 classification criteria to define conditions that the traffic must meet (or not meet) for an enforcement policy rule to apply.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

6. On the Classification tab, in the **Classification** setting, specify Layer 7 matching criteria for the rule:

- a) From the **Match** Criteria list, select whether you want perform actions on traffic that matches (select **Match**), or does not match (select **No Match**) the criteria specified.
- b) From the Category list, select the type of traffic this rule applies to, or select Any for all traffic.
- c) Some categories have specific applications associated with them. If this one does, from the
 Application list select the application this rule applies to, or select Any for all traffic in this category.
- d) Click Add to add this match criteria to the classification.
 Add as many matching criteria as are relevant to this rule.
- 7. Use the Reporting, Quota, Forwarding, Modify Header or QoS areas to specify what you want to do with the traffic that you are classifying or specify what actions you want to apply to the traffic. Other tasks describe how to do this in detail.
 - If you leave **Gate Status** enabled (default) and specify no other actions, the system stores traffic classification statistics on the BIG-IP system, and forwards the traffic to its destination without any further action.
- 8. Click Finished.

You have created a rule that applies to traffic based on classification criteria.

Creating a rule using URL categorization

You have the ability to enforce policies that are configured as part of the subscriber profile, based on the URL category type. Use Layer 7 criteria to define conditions that the traffic must meet (or not meet) for an enforcement policy rule to apply.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** On the URL tab, in the **URL** setting, specify Layer 7 matching criteria for the rule :
 - a) From the **Match** Criteria list, select whether you want perform actions on traffic that matches (select **Match**), or does not match (select **No Match**) the criteria specified.
 - b) From the URL Category list, select the type of traffic this rule applies to.
 - c) Click Add to add this match criteria to the classification.
 Add as many matching criteria as are relevant to this rule.

7. Use the Reporting, Quota, Forwarding, Modify Header or QoS areas to specify what you want to do with the traffic that you are classifying or specify what actions you want to apply to the traffic. Other tasks describe how to do this in detail.

If you leave **Gate Status** enabled (default) and specify no other actions, the system stores traffic classification statistics on the BIG-IP system, and forwards the traffic to its destination without any further action.

8. Click Finished.

You have created a rule that applies to traffic based on URL Category.

Modifying iRule event for URL categories

On the BIG-IP® system, you can modify iRules® Event settings for URL categories.

- On the Main tab, click Policy Enforcement > Classification.
 The Classification screen opens showing a list of the supported classification categories.
- Select an URL category. The URL Properties screen opens.
- **3.** In the **Description** field, type optional descriptive text for the application.
- 4. In the iRule Event field, select the appropriate setting.
 - To trigger an iRule event for this category of traffic, select **Enabled**. You can then create an iRule that performs an action on this type of traffic.
 - If you do not need to trigger an iRule event for this category of traffic, select **Disabled**.

Note: CLASSIFICATION:: DETECTED is the only event that is supported.

You have modified an iRule event setting for an existing URL category.

Creating a rule using flow conditions

You can use flow information to define conditions that the traffic must meet (or not meet) for an enforcement policy rule to apply.

- 1. On the Main tab, click **Policy Enforcement > Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it

has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

6. On the Flow tab, in the **Flow** setting, specify Layer 4 conditions that the traffic must meet (or not meet) for this rule to apply.

Option	Description
Match	Select whether you want to perform actions on traffic that matches (select Match) or does not match (select No Match) the criteria specified.
DSCP Marking	To match incoming traffic based on a DSCP value, type an integer from 0 to 63.
Protocol	To specify the applicable traffic by protocol, select ${\bf UDP}, {\bf TCP},$ or leave the default value of ${\bf Any}.$
IP Type	To specify the IP address type that this rule applies to, select IPv4, IPv6, or leave the default value of Any.
Source Address/Mask	To match incoming traffic based on the address or network it is coming from, type the source IP address/netmask of the network you want the rule to affect. The default value is 0.0.0.0/32.
Source Port	To match incoming traffic based on the port it is coming from, type the port number you want the rule to affect. The default value (empty) matches traffic from all ports.
Source VLAN	To match incoming traffic based on the VLAN, select a previously configured VLAN.
Destination Address/Mask	To match traffic based on the address or network it is directed to, type the source IP address/netmask of the network you want the rule to affect. The default value is 0.0.0.0/32.
Destination Port	To match incoming traffic based on the port it is directed to, type the port number you want the rule to affect. The default value (empty) matches traffic headed to all ports.

a) Click **Add** to add this match criteria to the classification.

Tip: $F5^{\$}$ recommends that you keep the matching criteria in a rule simple, adding more rules to specify additional conditions rather than including too many in one rule.

7. Use the Reporting, Quota, Forwarding, Modify Header or QoS areas to specify what you want to do with the traffic that you are classifying or specify what actions you want to apply to the traffic. Other tasks describe how to do this in detail.

If you leave **Gate Status** enabled (default) and specify no other actions, the system stores traffic classification statistics on the BIG-IP system, and forwards the traffic to its destination without any further action.

8. Click Finished.

You have created a rule that classifies traffic.

Creating a rule for forwarding traffic

You can create a rule that forwards traffic to an endpoint. For example, you might want to direct video traffic to a server that is optimized for video viewing.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- 4. In the Name field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with Gate Status disabled for a search engine and you have rule 2 with precedence 11 with Gate Status enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- In the Gate area, for Gate Status, select Enabled. Options provide several ways to forward the traffic.
- 8. In the Forwarding area, for HTTP Redirect, select Enabled, and type the URL.
- 9. From the Forwarding list, select an option where you would like to forward the traffic.

Options	Description
Route to Network	The traffic flow is forwarded to the default destination.
Forwarding to Endpoint	The flow is steered to a different destination and you can select one of the endpoints.
Forward to ICAP virtual Server	The flow is forwarded to the ICAP virtual server.

- **10.** From the **Forwarding Fallback Action** list, select **Drop** or **Continue** to specify if the connection can remain unchanged or should be dropped if the forwarding action fails.
- 11. From the ICAP Virtual Server list, select an internal virtual server that you have created, or click Create to create a new internal virtual server.
- **12.** From the **ICAP Type** list, select an ICAP adaptation type.
 - Select **Request** to send a portion of the request to the ICAP server.
 - Select **Response** to receive a portion of the response from the ICAP server.
 - Select Request and Response to have both types of adaptation.
- **13.** From the **Service Chain** list, select **Create** to direct traffic to more than one location (such as value-added services).
- 14. Click Finished.

You have created a rule that forwards traffic.

Creating a rule for QoS

Before you can create a rule for Quality of Service (QoS), you need to create a bandwidth controller to use rate control.

You can create a rule that results in a QoS action such as DSCP marking, link QoS, or rate limiting.

Note:

In the mobile market, uplink and downlink is sometimes known as forward and reverse respectively.

- On the Main tab, click Policy Enforcement > Policies.
 The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- 7. For Gate Status, select Enabled.

If you select **Disabled**, then the corresponding traffic will be dropped.

Forwarding and QoS options are displayed.

8. To set DSCP bits on the downlink traffic, for **IP Marking (DSCP)**, select **Specify**, and type a value between 0 and 63, inclusive.

The traffic that matches this rule is marked with this value.

9. To set DSCP bits on the uplink traffic, for **IP Marking (DSCP)**, select **Specify**, and type a value between 0 and 63. inclusive.

The traffic that matches this rule is marked with this value.

- 10. To set a Layer 2 Quality of Service (QoS) level in downlink packets, for L2 Marking (802.1p), select Specify, and type a value between 0 and 7, inclusive.
 - Setting a QoS level affects the packet delivery priority.
- 11. To set a Layer 2 Quality of Service (QoS) level in uplink packets, for L2 Marking (802.1p), select Specify, and type a value between 0 and 7, inclusive.

 Setting a QoS level affects the packet delivery priority.
- **12.** To apply rate control to downlink traffic, in the **Bandwidth Controller** setting, select the name of a bandwidth control policy.

Note: You can assign any previously created static or dynamic bandwidth control policies. However, F5® does not recommend using the **default-bwc-policy**, which the system provides, nor the **dynamic_spm_bwc_policy**, which you can create to enforce dynamic QoS settings provisioned by the PCRF.

Depending on the bandwidth control policy, PEM^{TM} restricts bandwidth usage per subscriber, group of subscribers, per application, per network egress link, or any combination of these.

13. To apply rate control to uplink traffic and per category of application, in the **Bandwidth Controller** setting, select the name of a bandwidth control policy.

Note: You can assign any previously created static or dynamic bandwidth control policies. However, we do not recommend using the **default-bwc-policy**, which the system provides, nor the **dynamic_spm_bwc_policy**, which you can create for communicating with the PCRF.

Depending on the bandwidth control policy, PEM restricts bandwidth usage per subscriber, group of subscribers, per application, per network egress link, per category of applications or any combination of these.

14. Click Finished.

You have created a rule that manages QoS traffic.

Creating a data plane virtual group

If you want to steer specific traffic (or otherwise regulate certain types of traffic) you must first develop appropriate enforcement policies. If using a Gx interface to a PCRF, you need to create a new virtual group in listeners that connect to a PCRF.

You can create listeners that specify how to handle traffic for policy enforcement. Creating a listener performs preliminary setup on the BIG-IP® system for application visibility, intelligent steering, bandwidth management, and reporting.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- 2. Click Data Plane.

The Data Plane screen opens.

3. Click Add Group.

The New Virtual Group screen opens.

- **4.** In the **Name** field, type a unique name for the listener.
- 5. In the **Destination Address** field, type the IP address of the virtual server. For example, 10.0.0.1 or 10.0.0.0/24.

Note: When you use an IPv4 address without specifying a prefix, the BIG-IP[®] system automatically uses a /32 prefix.

Tip: You can use a catch-all virtual server (0.0.0.0) to specify all traffic that is delivered to the BIG-IP[®] system. Configure the source and destination setting, during forwarding mode only. In the relay mode, the client does not have an IP address and the DHCP provides the client with an IP address.

The system will create a virtual server using the address or network you specify.

6. For the **Service Port** setting, type or select the service port for the virtual server.

- 7. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.
- **8.** For the **VLANs and Tunnels** setting, move the VLANs and tunnels that you want to monitor from the **Available** list to the **Selected** list.
- 9. In the Policy Provisioning area, select enforcement policies to apply to the traffic.
 - a) For Global Policy, move policies to apply to all subscribers to High Precedence or Low Precedence.

Note: For URL categorization to take effect, you need to associate the enforcement policy with a classification profile.

b) For Unknown Subscriber Policy, move policies to use if the subscriber is unknown to Selected.

The system applies the global policy to all subscribers in parallel with the subscriber policies, and must be configured with unknown subscriber policy. High-precedence global policies override conflicting subscriber policies, and low-precedence policies are overridden by conflicting subscriber policies.

10. Click Finished.

The Policy Enforcement Manager creates a listener.

When you create a listener, Policy Enforcement Manager[™] also creates virtual servers for each type of traffic (TCP, UDP, or both and IP), and a virtual server for HTTP traffic. The system sets up classification and assigns the appropriate policy enforcement profile to the virtual servers. If you are connecting to a RADIUS authentication server, a virtual server for RADIUS is also added.

Now you can send traffic through the network. As network traffic moves through the BIG-IP® system, the system classifies the traffic, and if you have developed policies, the system performs the actions specified by the enforcement policy rules.

Chapter

Configuring Quota Management using Rating Groups

Overview: Configuring quota management

Overview: Configuring quota management

You can use the Policy Enforcement Manager[™] to implement quota management process for prepaid subscribers per session and per application. You can provision prepaid charging per subscriber or application that communicates with the quota protocol endpoint (QPE), such as online charging system (OCS), over the 3GPP Gy interface. The Gy endpoint allows online credit control for Layer 4 to 7 service data flow-based charging. This type of policing is called quota management; this feature ensures that subscribers do not consume resources that are not authorized.

Task summary

Creating a listener for quota management Creating rating groups

About Gy support and rating groups

The Gy interface in 3GPP architecture facilitates communication between the online charging system (OCS) and the PCEF. In turn, this communication supports the advanced credit authorization and quota-specific reporting. Policy Enforcement Manager[™] provides online credit control, through user configuration, for Layer 4 to 7 service data flow-based charging.

The subscriber traffic contains consumed based on allocated quota that is based on applications, category, or a group of them and is measured in terms of volume, time, and events. A rating group, which is the same as a quota bucket, can be created. A rating group is identified by a service-identifier AVP that gathers a set of services, which has the same costs and rating type. Once you create a rating group, you can assign it to multiple rules inside the policy. For all the traffic matching the rule, quota is consumed from this bucket to make sure there is no over-subscription of resources. For example, you can have a rating group assigned to managing video traffic of 500 MB. This rating group needs to be assigned to a rule that matches the video traffic, to ensure that there is no over-subscription of subscriber video traffic.

Note: You need to assign a default rating group on your policy rule or assign a new one. The default rating group is for all traffic that does not belong to another rating group.

Creating a listener for quota management

You can create listeners that specify how to handle traffic for policy enforcement. Creating a listener does preliminary setup tasks on the BIG-IP® system for application visibility, intelligent steering, bandwidth management, and reporting. You can also connect with an online charging system (OCS) over a Gy interface.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- 2. In the Policy Provisioning and Online Charging Virtuals area, click **Add**.

 The New Configure Diameter Endpoint Provisioning and Online Charging screen opens.
- 3. In the Name Prefix field, type a unique name for the listener.
- **4.** In the **Description** field, type a description of the listener.
- 5. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.

- **6.** For the **VLANs** and **Tunnels** setting, move the VLANs and tunnels that you want to monitor from the **Available** list to the **Selected** list.
- 7. To connect to a PCRF, from the **Diameter Endpoint Provisioning** list, select **Gy** from the **Supported Apps** options.
- **8.** In the **Product Name** field, type the product name which is used to communicate with the OCS.
- 9. In the Origin Host field, type the fully qualified domain name of the OCS, for example, ocs.xnet.com.
- **10.** In the **Origin Realm** field, type the realm name or network in which the OCS resides, for example, xnet.com.
- 11. In the **Destination Host** field, type the destination host name of the OCS, for example, ocsdest.net.com.
- 12. In the Destination Realm field, type the realm name or network of the OCS, for example, net.com.
- **13.** For the **Pool Member Configuration** setting, add the OCS servers that are to be members of the Gy endpoint pool. Type the **Member IP Address** and **Port** number, then click **Add**.
- 14. In the Message Retransmit Delay field, type the number of milliseconds to wait before retransmitting unanswered messages in case of failure from the BIG-IP system to the OCS over the Gy interface. The default value is 1500.
- **15.** In the **Message Max Retransmit** field, type the maximum number of times that messages can be retransmitted from the BIG-IP system to the OCS. The default value is 2.
- **16.** In the **Fatal Grace Time** field, type the time period in seconds that a diameter connection can remain disconnected before the system terminates all sessions associated with that diameter endpoint. The default value is 500.
- 17. Click Finished.

The Policy Enforcement Manager creates a listener.

When you create a listener, the Policy Enforcement Manager^{$^{\text{TM}}$} also creates virtual servers for each type of traffic (TCP, UDP, or both), and a virtual server for HTTP traffic. The system enables classification and assigns the appropriate policy enforcement profile to the virtual servers. The system also creates a virtual server for the Gy interface with a diameter endpoint profile.

Creating rating groups

You can assign a rating group to a rule and attach it to a policy. For example, if you want to allocate quota to all the videos a subscriber uses from multiple on-demand Internet streaming media, you can specify a quota bucket that covers all the quota consumption and ensures that the consumption does not exceed the specified time or volume.

- 1. On the Main tab, click **Policy Enforcement** > **Rating Groups**. The Rating Groups List screen opens.
- 2. Click Create.
 - The New Rating Group screen opens.
- **3.** In the **Name** field, type a name for the rating group.
- **4.** In the **Description** field, type optional descriptive text for the rating group.
- **5.** In the **Rating Group ID** field, type an unique identifier (integer). This Rating Group ID is used by the quota managing endpoint, such as, Gy.
- **6.** In the **Initial Quota** setting, specify **Volume** in octets, the initial quota to receive and send from the OCS, and the total quota volume.
- 7. In the **Initial Quota** setting, specify **Time** in seconds, the initial time for quota.
- **8.** In the **Default Quota** setting, specify **Volume** in octets, the default quota to receive and send from the OCS, and the total quota volume.

Configuring Quota Management using Rating Groups

9. In the **Threshold** field, type a default threshold level you want to use for a sending quota replenishment request.

The default value is 0, which indicates that there is no threshold.

- **10.** In the **Usage Time** field, type the quota for how long the traffic can be used.
- 11. In the Consumption Time field, type the maximum idle time that is accounted as quota usage. This is the default value of quota for time and specifies time units for charging as well.
- **12.** In the **Validity Time** field, type the duration for which the quota is used, if the online charging system (OCS) does not specify the validity time.
- **13.** In the **Holding Time** field, type the holding time (in seconds), for which the quota is valid without any usage, if the time is not specified by the OCS.

Note: The default values for consumption time, validity time and holding time are used, when the OCS does not specify them.

14. From the **Breach Action** list, select the appropriate action to be taken when default quota expires or OCS does not provide new quota or breach action.

Breach Action	Description
Terminate	The system stops traffic when quota is breached.
Allow	The system allows traffic to go through even when the quota is breached.
Redirect	The system redirects traffic to the forwarding endpoint, when quota is breached.

15. From the **Request on Install** list, select **Yes** if the quota has to be requested from the Gy, when the policy is installed for a subscriber. Otherwise, select **No** for quota to be requested when one of the applications associated with the rating group is detected.

Chapter

5

About Logging Policy Enforcement Events to IPFIX Collectors

Overview: Configuring IPFIX logging for PEM

Overview: Configuring IPFIX logging for PEM

You can configure the BIG-IP[®] system to log information about Policy Enforcement ManagerTM (PEMTM) processes and send the log messages to remote IPFIX collectors.

The BIG-IP system supports logging of PEM events over the IPFIX protocol. IPFIX logs are raw, binary-encoded strings with their fields and field lengths defined by IPFIX templates. *IPFIX collectors* are external devices that can receive IPFIX templates and use them to interpret IPFIX logs.

The configuration process involves creating and connecting the following configuration objects:

Object	Reason
Pool of IPFIX collectors	Create a pool of IPFIX collectors to which the BIG-IP system can send IPFIX log messages.
Destination	Create a log destination to format the logs in IPFIX templates, and forward the logs to the IPFIX collectors.
Publisher	Create a log publisher to send logs to a set of specified log destinations.

Task summary

Perform these tasks to configure IPFIX logging of PEM processes on the BIG-IP® system.

Note: Enabling IPFIX logging impacts BIG-IP system performance.

Assembling a pool of IPFIX collectors Creating an IPFIX log destination Creating a publisher

Assembling a pool of IPFIX collectors

Before creating a pool of IPFIX collectors, gather the IP addresses of the collectors that you want to include in the pool. Ensure that the remote IPFIX collectors are configured to listen to and receive log messages from the BIG-IP® system.

These are the steps for creating a pool of IPFIX collectors. The BIG-IP system can send IPFIX log messages to this pool.

- 1. On the Main tab, click Local Traffic > Pools. The Pool List screen opens.
- 2. Click Create.
 - The New Pool screen opens.
- 3. In the Name field, type a unique name for the pool.
- **4.** Using the **New Members** setting, add the IP address for each IPFIX collector that you want to include in the pool:
 - a) Type the collector's IP address in the **Address** field, or select a node address from the **Node List**.
 - b) Type a port number in the Service Port field.
 By default, IPFIX collectors listen on UDP or TCP port 4739 and Netflow V9 devices listen on port 2055, though the port is configurable at each collector.

- c) Click Add.
- 5. Click Finished.

Creating an IPFIX log destination

A log destination of the **IPFIX** type specifies that log messages are sent to a pool of IPFIX collectors. Use these steps to create a log destination for IPFIX collectors.

- 1. On the Main tab, click **System > Logs > Configuration > Log Destinations**. The Log Destinations screen opens.
- 2. Click Create.
- 3. In the Name field, type a unique, identifiable name for this destination.
- 4. From the **Type** list, select **IPFIX**.
- 5. From the **Protocol** list, select **IPFIX** or **Netflow V9**, depending on the type of collectors you have in the pool.
- **6.** From the **Pool Name** list, select an LTM[®] pool of IPFIX collectors.
- 7. From the **Transport Profile** list, select **TCP**, **UDP**, or any customized profile derived from TCP or UDP.
- **8.** The **Template Retransmit Interval** is the time between transmissions of IPFIX templates to the pool of collectors. The BIG-IP system only retransmits its templates if the **Transport Profile** is a **UDP** profile.
 - An *IPFIX template* defines the field types and byte lengths of the binary IPFIX log messages. The logging destination sends the template for a given log type (for example, NAT44 logs or customized logs from an iRule) before sending any of those logs, so that the IPFIX collector can read the logs of that type. The logging destination assigns a template ID to each template, and places the template ID into each log that uses that template.
 - The log destination periodically retransmits all of its IPFIX templates over a UDP connection. The retransmissions are helpful for UDP connections, which are lossy.
- 9. The **Template Delete Delay** is the time that the BIG-IP device should pause between deleting an obsolete template and re-using its template ID. This feature is helpful for systems that can create custom IPFIX templates with iRules.
- 10. The Server SSL Profile applies Secure Socket Layer (SSL) or Transport Layer Security (TLS) to TCP connections. You can only choose an SSL profile if the Transport Profile is a TCP profile. Choose an SSL profile that is appropriate for the IPFIX collectors' SSL/TLS configuration.
 - SSL or TLS requires extra processing and therefore slows the connection, so we only recommend this for sites where the connections to the IPFIX collectors have a potential security risk.
- 11. Click Finished.

Creating a publisher

A publisher specifies where the BIG-IP® system sends log messages for IPFIX logs.

- 1. On the Main tab, click **System > Logs > Configuration > Log Publishers**. The Log Publishers screen opens.
- 2. Click Create.
- 3. In the Name field, type a unique, identifiable name for this publisher.

About Logging Policy Enforcement Events to IPFIX Collectors

- **4.** Use the Log Destinations area to select an existing IPFIX destination (perhaps along with other destinations for your logs): click any destination name in the **Available** list, and click << to move it to the **Selected** list.
- 5. Click Finished.

Implementation result

Now you have an implementation in which the BIG-IP $^{\otimes}$ system logs messages about PEM $^{^{TM}}$ session, flow and transation reporting and sends the log messages to a pool of IPFIX collectors.

Chapter

6

Reporting Usage Data to an External Analytics Server

 Overview: Reporting usage data to an external analytics server

Overview: Reporting usage data to an external analytics server

In Policy Enforcement Manager^{$^{\text{TM}}$}, you can create a rule within an enforcement policy that instructs the system to send usage data in high-speed logging (HSL) format to an external analytics server. The rule specifies what type of reporting data you are interested in; one of the actions it can take with the traffic is to send the information collected about it for processing to a centralized analytics server.

The system sends the information as a set of comma-separated values by means of SYSLOG transport. You can choose to use the session-based, flow-based or transactional reporting format, depending on the level of granularity you need.

For example, a rule might collect session-based information about all audio and video traffic. You can specify how often to log the data and set the destination as an HSL server or pool.

Transactional Policy Enforcement, provides the ability to report each of the HTTP transaction and sends the report to a HSL publisher. Each transaction report information is specific to that transaction only. The transactional reports are used for analytics and high level granularity for application and subscriber visibility.

Task summary

Creating a publisher
Creating a rule for high-speed logging for session reporting
Creating a rule for high-speed logging for flow reporting
Creating a high-speed logging rule for transactional reporting

Creating a publisher

Before you create a publisher, you have to create a HSL pool that needs to be associated to a destination. Ensure that at least one destination associated with a pool of remote log servers exists on the $BIG-IP^{\circledast}$ system.

Create a publisher to specify where the BIG-IP system sends log messages for specific resources.

- 1. On the Main tab, click **System** > **Logs** > **Configuration** > **Log Publishers**. The Log Publishers screen opens.
- 2. Click Create.
- 3. In the Name field, type a unique, identifiable name for this publisher.
- For the **Destinations** setting, select a destination from the **Available** list, and click << to move the
 destination to the **Selected** list.

Note: If you are using a formatted destination, select the destination that matches your log servers, such as Remote Syslog, Splunk, or ArcSight.

5. Click Finished.

Creating a rule for high-speed logging for session reporting

Before you can create a high-speed logging (HSL) rule, you need to create a publisher that defines the destination server or pool where the HSL logs are sent.

In an enforcement policy, a rule can specify that session statistics about the traffic affected by the rule are sent to an external high-speed logging server.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- 7. From the **Reporting** list, select **Enabled**.
- 8. From the **Report Granularity** list, select **Session** to log details about subscribers and application sessions.
- **9.** In the **Volume Threshold** setting, specify in octets, the threshold to send HSL reporting records. You can send reporting data from uplink traffic, to downlink traffic and the total traffic volume before logging the information.
- 10. In the **Destination** setting, specify where to send the usage monitoring data:
 - In the **Gx** field select **Enabled** for the BIG-IP system to send usage monitoring data over a Gx interface. You can then type a string for the **Gx Monitoring Key** that is used for usage monitoring.

Note: When you select **Session** in the **Report Granularity** field, the **Gx** field appears.

- From the **HSL** list, select the name of the publisher that specifies the server or pool of remote HSL servers to send the logs and select the format script of the report from the **Format Script** list.
- Select the **RADIUS Accounting** option from the destination. From the **RADIUS AAA Virtual** list, select the RADIUS AAA virtual that you have created before.

Note: If you are using a formatted destination, select the publisher that matches your log servers, such as Remote Syslog, Splunk, or ArcSight.

Note: There are no Format Scripts for transactional reporting.

- 11. In the Interval field, type an integer that specifies how frequently HSL reporting data is sent.
- 12. For the **Session Reporting Field** setting, move the fields that you want to see in the logs from the **Available** list to the **Selected** list.
- 13. Click Finished.

You have created a rule that sends data about the traffic to external high-speed logging servers. The CSV reporting format differs depending on whether the report granularity is flow-based or session-based.

Creating a rule for high-speed logging for flow reporting

Before you can create a high-speed logging (HSL) rule, you need to create a publisher that defines the destination server or pool where the HSL logs are sent.

In an enforcement policy, a rule can specify that flow statistics about the traffic affected by the rule are sent to an external high-speed logging server.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- 4. In the Name field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- 7. From the **Reporting** list, select **Enabled**.
- 8. From the Report Granularity list, select Flow, for more granular reporting of every TCP connection.
- 9. In the **Volume Threshold** setting, specify in octets, the threshold to send HSL reporting records. You can send reporting data from uplink traffic, to downlink traffic and the total traffic volume before logging the information.
- 10. In the Interval field, type an integer that specifies how frequently HSL reporting data is sent.
- 11. In the **Destination** setting, specify where to send the usage monitoring data:
 - From the HSL list, select the name of the publisher that specifies the server or pool of remote HSL servers to send the logs.
 - Select the Format Script listand select the format script of the report from the Format Script list.
 - Select the **RADIUS Accounting** option from the destination. From the **RADIUS AAA Virtual** list, select the RADIUS AAA virtual that you have created before.

Note: If you are using a formatted destination, select the publisher that matches your log servers, such as Remote Syslog, Splunk, or ArcSight.

- 12. For the Flow Reporting Field setting, move the fields that you want to see in the logs from the Available list to the Selected list.
- 13. Click Finished.

You have created a rule that sends data about the traffic to external high-speed logging servers. The CSV reporting format differs depending on whether the report granularity is flow-based or session-based.

Creating a high-speed logging rule for transactional reporting

Before you can create a high-speed logging (HSL) rule, you need to create a publisher that defines the destination server or pool where the HSL logs are sent.

In an enforcement policy, a rule can specify that transactional statistics about traffic affected by the rule are sent to an external high-speed logging server.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- 2. From the Transactional list, select **Enabled** if you want the BIG-IP system to allow policy enforcement on each HTTP transaction.
- **3.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **4.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- 5. In the Name field, type a name for the rule.
- **6.** In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- 7. Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- **8.** From the **Reporting** list, select **Enabled**.
- **9.** From the **Report Granularity** list, select **Transaction**, for more granular reporting of every HTTP transaction.
- **10.** In the **Additional HTTP Information** setting, specify in bytes, the HTTP **Hostname**, the HTTP **User Agent**, and the HTTP **URI**.
- 11. In the **Destination** setting, specify where to send the usage monitoring data:
 - From the **HSL** list, select the name of the publisher that specifies the server or pool of remote HSL servers to send the logs.
 - Select the **RADIUS Accounting** option from the destination. From the **RADIUS AAA Virtual** list, select the RADIUS AAA virtual that you created earlier.

Note: If you are using a formatted destination, select the publisher that matches your log servers, such as Remote Syslog, Splunk, or ArcSight.

Note: There are no Format Scripts for transactional reporting.

- 12. For the **Transaction Reporting Field** setting, move the fields that you want to see in the logs from the **Available** list to the **Selected** list.
- 13. Click Finished.

You have created a rule that sends transactional data about the traffic to external high-speed logging servers. You can now assign the policy to an active subscriber.

Session-based reporting format

In an enforcement policy, a rule can send session-based information about traffic that matches certain criteria to an external high-speed logging (HSL) server. The logs include the following comma-separated values in the order listed.

Field	Description
PEM id	Identifies the reporting module (PEM) and the field value is 23003143.
Version	Indicates the version of the format for backward compatibility.
Timestamp seconds	The time the information was logged (along with the timestamp in milliseconds), specifies seconds using UNIX time format.
Timestamp msec	The time the information was logged (along with the timestamp in seconds), specifies milliseconds using UNIX time format.
Report type	The type of report. Always set to 3 for session-based reporting.
Subscriber ID	A unique identifier (up to 64 characters) for the subscriber initiating the session, such as a phone number. The subscriber ID type determines the format.
Subscriber ID type	The format of the subscriber ID. It can be E.164, IMSI, NAI, or Private.
3GPP parameters	The list of 3GPP parameters, which can be imsi, imeisv, tower_id, or username.
Policy ID	The Identification of the policy.
Rule ID	The Identification of the policy rule.
Application ID	A unique number that represents a particular application, and is used for classifying traffic.
Last Sent	The time, in seconds, since the last log entry was sent.
Bytes in	The number of bytes received during this session.
Bytes out	The number of bytes sent during this session.
Concurrent flows	Always 0 (unsupported).
Opened flows	Always 0 (unsupported).
Terminated flows	Always 0 (unsupported).
Total transactions	Always 0 (unsupported).
Successful transactions	Always 0 (unsupported).
Aggregated category duration	Summary of the duration of all flows for the session.
Reason	The reason for sending the record. It can be 0 - reserved, 1 - volume threshold reached, 2- interval time, 3 - subscriber logout, or 4 - inactivity.

Example session-based reporting format

```
Oct 10 17:19:45 172.31.63.64
23003143,1349914925,546879,3,404234567123456,IMSI,linux,f501,
404234567123456,35827001,16394,1349914913,5469633,308908379,
0,0,0,0,0,5052,1
Oct 10 17:19:57 172.31.63.64
23003143,1349914937,546661,3,404234567123456,IMSI,linux,f501,
404234567123456,35827001,16394,1349914925,5550857,313317479,
0,0,0,0,0,5063,1
Oct 10 17:20:09 172.31.63.64
23003143,1349914949,546676,3,404234567123456,IMSI,linux,f501,
404234567123456,35827001,16394,1349914937,5636605,318053179,
0,0,0,0,0,5074,1
```

Flow-based reporting format

In an enforcement policy, a rule can send flow-based information about traffic that matches certain criteria to an external high-speed logging (HSL) server. The logs include the following comma-separated values in the order in which the attributes were added (available to selected list).

Field	Description
PEM id	Identifies the reporting module (PEM) and the field value is 2300314.
Version	Indicates the version of the format for backward compatibility.
Timestamp seconds	The time the information was logged in UNIX time format.
Timestamp msec	The msecs time value of the timestamp (in decimal number).
Report type	The type of report; $0 - \text{flow start}$, $1 - \text{flow interim}$, $2 - \text{flow end}$.
Subscriber ID	A unique identifier (up to 64 characters) for the subscriber initiating the session, such as a phone number. The subscriber ID type determines the format.
Subscriber ID type	The format of the subscriber ID. It can be E.164, IMSI, NAI, or Private.
Source IP	The IPv4 source address in the IP packet header.
Source port	The source port the subscriber.
Destination IP	The IPv4 destination address in the IP packet header.
Destination port	The destination port for the traffic.
Protocol	The protocol of the traffic for this flow, TCP or UDP.
Route Domain	The route domain this flow belongs to.
VLAN	The VLAN this flow belongs to.
Application ID	A unique number that represents a particular application in this flow; it is used for classifying traffic.
Urlcat ID	The URL category id that the flow belongs to.
Flow start time seconds	The time, in seconds, the flow started in UNIX time format.
Flow start time msecs	The time in milliseconds of the flow start time.
Flow end time seconds	The time the flow ended in UNIX time format.
Flow end time msecs	The time in milliseconds of the flow end time.

Field	Description
Transactions count	The count of full transactions seen in the flow.
Bytes in	The number of bytes received during this flow.
Bytes out	The number of bytes sent during this flow.

Example flow-based reporting format

```
Sep 13 13:48:58 172.31.63.60
23003143,1347546777,654398,0,4086007577,E164,2001::10,52784,2001::2,80,6,
67,1347546774,628630,4278124286,4278124286,331,156
Sep 13 13:48:58 172.31.63.60
23003143,1347546777,654398,2,4086007577,E164,2001::10,52784,2001::2,80,6,
67,1347546774,628630,1347546775,382473,547,864
```

Transaction-based reporting format

In an enforcement policy, a rule can send transaction-based information about traffic that matches certain criteria to an external high-speed logging (HSL) server. The logs include the following comma-separated values in the order listed.

Field	Description
PEM id	Identifies the reporting module (PEM) and the field value is 23003143.
Version	Indicates the version of the format for backward compatibility.
Record type	The type of report; 10 – transactional.
Transaction Number	The sequential number of transaction in this flow (starting from 1).
Subscriber ID	A unique identifier (up to 64 characters) for the subscriber initiating the session, such as a phone number. The subscriber ID type determines the format.
Subscriber ID type	The format of the subscriber ID. It can be E.164, IMSI, NAI, or Private.
Source IP	The IPv4 source address in the IP packet header.
Source port	The source port the subscriber.
Destination IP	The IPv4 destination address in the IP packet header.
Destination port	The destination port for the traffic.
Protocol, TCP/UDP	The protocol of the traffic for this flow, TCP or UDP.
Route Domain ID	The route domain ID of the traffic.
VLAN ID	The VLAN ID of the traffic.
Application/Category ID	A unique number that represents the most relevant application or category that is classified for the transaction.
URL Category ID	A unique number that represents the first (most relevant) URL category that is classified for the transaction.

Field	Description
Transaction Classification result	Reports all classification tokens from the classification engine.
	Note: The traffic classification result is stored using multiple tokens (8 application/category token identifiers and 4 URL token identifiers) and reported using a CSV format.
Transaction Start, seconds	The transaction timestamp (seconds) in UNIX time format, when an HTTP request is received.
Transaction Start, msecs	The transaction timestamp (msecs) in UNIX time format when an HTTP request is received.
Transaction Stop, seconds	The transaction timestamp (seconds) in UNIX time format when the corresponding HTTP response is received.
Transaction Stop, msecs	The transaction timestamp (msecs) in UNIX time format when the corresponding HTTP response is received.
Transaction Upstream Volume, bytes	The number of HTTP request bytes for this transaction.
Transaction Downstream Volume, bytes	The number of HTTP response bytes for this transaction.
Skipped Transactions of this kind	The number of transactional reports skipped within the flow since the last successfully transmission in the flow.
HTTP information:	The HTTP request/response information presented in a CSV format containing the following fields:
	 HTTP Transaction Response Code HTTP Hostname field truncated (indicates that the Hostname field is truncated due to excessive length) HTTP Hostname HTTP User Agent field truncated (indicates that the User Agent field is truncated due to excessive length) HTTP User Agent HTTP URI field truncated (indicates that the URI field is truncated due to excessive length)
	· · · · · · · · · · · · · · · · · · ·

Example transaction-based reporting format

Reporting Usage Data to an External Analytics Server

0,10.10.10.217,0,Wget/1.13.4 (linux-gnu),0,/index_long.html
Jan 15 11:36:45 localhost info tmm[29503]:
23003143,10,1.0.0,5,12341234,IMSI,10.10.10.212,32965,10.10.10.217,80,6,0,311,67,0,67,16394,0,0,0,0,0,0,0,0,0,0,1389123399,196,1389123399,201,127,80799103,0,200,0,10.10.10.217,0,Wget/1.13.4 (linux-gnu),0,/index long.html

Chapter

7

Performing Radius Authentication and Accounting

 Overview: Performing RADIUS authentication and accounting

Overview: Performing RADIUS authentication and accounting

In Policy Enforcement Manager[™], the RADIUS client has the ability to initiate RADIUS authentication for a subscriber. You can configure the virtual servers that are used to request for authentication of DHCPv4 and DHCPv6 discovered subscribers. The subscriber authentication may be triggered by subscriber discovery based on other means, such as obtaining RADIUS accounting messages. The ability to generate accounting messages helps to track subscriber usage as a RADIUS client.

RADIUS authentication is initiated when PEM receives messages, showing that the subscribers are attempting to connect to the network. The two factors of initiation are:

- The start of DHCP exchange showing that the subscriber attempts to obtain an IP address (fixed line deployments).
- When the RADIUS accounting start message indicates that the subscriber has passed through the initial phase of access but still needs authentication.

Task summary

Creating a RADIUS AAA profile for policy enforcement

Create a RADIUS profile, which contains the shared secret of the RADIUS server, the transaction timeout, password, and retransmission timeout details, for configuring the RADIUS authentication profile settings.

- 1. On the Main tab, click Local Traffic > Profiles > Policy Enforcement > RADIUS AAA.
- 2. Click Create.
 - The New Radius Profile screen opens.
- **3.** In the **Name** field, type a unique name for the profile.
- **4.** In the **Description** field, type a descriptive text that identifies the profile.
- 5. From the **Parent Profile** list, select the default **radiusaaa** profile.
- **6.** Select the **Custom** check box.
- 7. For the **Secret** setting, select the **Custom** check box to enable this option. Type the shared secret of the RADIUS server used for authentication.
- **8.** For the **Password** setting, select the **Custom** check box to enable this option. Type the password of the RADIUS AAA profile for RADIUS server authentication.
- **9.** For the **Transaction Timeout** setting, select the **Custom** check box to enable this option. Type the number, in seconds, of the time taken for server to respond.
- 10. For the Retransmission Timeout setting, select the Custom check box to enable this option. Type the number of seconds to wait before resending authentication or accounting messages to the RADIUS server.

The RADIUS profile that you created can be chosen from the RADIUS profile in **Local Traffic** > **Virtual Servers** > **Virtual Server List** > **New Virtual Server** > , depending on the virtual server IP address type.

Creating a listener for RADIUS AAA Virtual

You can create new RADIUS AAA virtuals to authenticate or send accounting information about the subscriber to the RADIUS server.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- **2.** From the Authentication Virtuals area, click **Add**. The New RADIUS AAA Virtual screen opens.
- **3.** In the **Name** field, type a unique name for the RADIUS AAA virtual.
- **4.** In the **Description** field, type a description of the listener.
- 5. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.
- **6.** From the **Mode** list, select the **Authentication** or **Accounting** to specify the type of RADIUS virtual you are creating.
- 7. For the **Secret** setting, select the **Custom** check box to enable this option. Type the shared secret of the RADIUS server used for authentication or accounting.
- **8.** For the **Password** setting, select the **Custom** check box to enable this option. Type the password of the RADIUS AAA profile for RADIUS server authentication.
- 9. For the Pool Member Configuration setting, add the RADIUS AAA virtual servers that are to be members of the pool. Type the Member IP Address and Port number, then click Add.
 You can use port 1812 for RADIUS authentication and port 1813 for RADIUS accounting.
- 10. Click Finished.

The Policy Enforcement Manager creates a RADIUS AAA virtual server, and displays in the authentication virtuals list.

When you create a RADIUS AAA virtual for a subscriber, the Policy Enforcement Manager[™] initiates RADIUS authentication or sends accounting information, for that subscriber. A RADIUS AAA profile is also created and is assigned to the virtual server automatically.

Creating policy rule for RADIUS accounting reports

Policy Enforcement Manager^{$^{\text{TM}}$} (PEM^{$^{\text{TM}}$}) allows you to specify a RADIUS internal virtual server as a reporting destination. The reporting thresholds are optional if RADIUS destination is selected.

Note: Only one reporting destination can be specified in a given rule.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for

the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- 7. From the **Reporting** list, select **Enabled**.
- 8. From the **Report Granularity** list, select from one the the granular reporting options:

Option	Description
Session	Select Session to log details about subscribers and application sessions.
Flow	Select Flow , for more granular reporting of every TCP connection.
Transaction	select Transaction , for more granular reporting of every HTTP transaction.

- **9.** If you select **Session** or **Flow**, in the **Volume Threshold** setting, specify in octets, the threshold to send RADIUS reporting records. You can send reporting data from uplink traffic, to downlink traffic and the total traffic volume before logging the information.
- **10.** If you select **Transaction**, in the **Additional HTTP Information** setting, specify in bytes, the HTTP **Hostname**, the HTTP **User Agent** and the HTTP **URI**.
- 11. In the **Destination** setting, Select the **RADIUS** Accounting option from the destination.
- 12. From the RADIUS AAA Virtual list, select the RADIUS AAA virtual that you created earlier.
- 13. Click Finished.

You have created a RADIUS internal virtual server as a reporting destination.

Chapter

8

Configuring Subscriber Discovery based on DHCP

 Configuring Subscriber Discovery based on DHCP

Configuring Subscriber Discovery based on DHCP

Overview: Configuring subscriber discovery based on DHCP

Overview: Configuring subscriber discovery based on DHCP

The Policy Enforcement Manager[™] uses DHCP to discover subscribers. The DHCP consists of two components, which includes a protocol for delivering host-specific parameters from a DHCP server to a host, and the ability to allocate network addresses to hosts. The BIG-IP[®] system processes the DHCP traffic between subscribers and DHCP server and extracts of the subscriber's identity and other information that is important for subscriber handling.

The BIG-IP DHCP module has two functional modes:

- Relay mode: The DHCP-Relay agent handles the DHCP traffic from the subscriber, modifies it as required, and relays it to the DHCP server according to the configuration.
- Forward or pass-through mode: The DHCP module does not relay the messages or modify the message in this mode.

In both modes, the DHCP module snoops the DHCP packets, parses relay-agent options and the allocated IP address, and then extracts session information. The relay-agent options are option 82 for DHCPv4 and options 37 and 38 for DHCPv6.



Figure 2: Subscriber Discovery through DHCP

The DHCP module monitors the clients DHCP traffic after the initial IP allocation and snoops for DHCP lease renewal packets, releasing of the IP address, and reconfiguring requests. This determines when the BIG-IP system can safely delete the session.

Task summary

Configuring Subscriber Discovery based on DHCP
Creating a listener for DHCPv4 discovery virtual
Creating a DHCPv4 profile for policy enforcement
Creating a listener for DHCPv6 discovery virtual
Creating a DHCPv6 profile for policy enforcement
Creating a listener for RADIUS subscriber discovery

Creating a listener for DHCPv4 discovery virtual

You can use DHCP to discover subscribers in order to handle traffic for policy enforcement. For subscribers discovered through DHCP, an identifier comprises of relay agent information option (option 82) and MAC address, as configured in the corresponding DHCP profile.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- 2. Select **DHCPv4** from the profiles list, and click **Add**. The New DHCPv4 Discovery Virtual screen opens.
- 3. In the Name field, type a unique name for the listener.
- **4.** In the **Description** field, type a description of the listener.
- 5. For the Source setting, type the IP address or network from which the virtual server will accept traffic.
- **6.** In the **Destination Address** field, type the IP address of the virtual server. For example, 10.0.0.1 or 10.0.0.0/24.

Note: When you use an IPv4 address without specifying a prefix, the BIG-IP[®] system automatically uses a /32 prefix.

Tip: You can use a catch-all virtual server (0.0.0.0) to specify all traffic that is delivered to the BIG-IP[®] system. Configure the source and destination setting, during forwarding mode only. In the relay mode, the client does not have an IP address and the DHCP provides the client with an IP address.

The system will create a virtual server using the address or network you specify.

- 7. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.
- **8.** For the **VLANs** and **Tunnels** setting, move the VLANs and tunnels that you want to monitor from the **Available** list to the **Selected** list.
- 9. For the **DHCP Mode** setting, select **Relay** or **Forward** to specify the mode in which the DHCP client requests are sent.
- **10.** For the **Pool Member Configuration** setting, add the DHCP virtual servers that are to be members of the pool. Type the **Member IP Address** and **Port** number, then click **Add**.
- 11. From the **Subscriber Discovery** list, select **Enabled**. Then, for the **Subscriber ID Format** setting, select the format you want to implement.

Format	Description
MAC Address	Uses the subscriber ID as the MAC address through which the subscriber ID goes through.
Relay Agent Option: Suboption ID 1	Uses the relay agent first option suboption ID.
Relay Agent Option: Suboption ID 1 + <separator> + Suboption ID 2</separator>	Uses the relay agent first and second suboption IDs.
MAC Address + <separator> + Relay Agent Option: Suboption ID 1</separator>	Uses the MAC Address and the relay agent first suboption ID.
MAC Address + <separator> + Relay Agent Option: Suboption ID 1 <separator> + Suboption ID 2</separator></separator>	Uses the relay agent first option suboption ID.
TCL Expression	Uses the TCL expression to format the subscriber ID.

The **User Name Format** has the same options as the **Subscriber ID Format**, in the Subscriber Discovery setting.

13. Click Finished.

The Policy Enforcement Manager creates a listener.

When you create a new DHCPv4 discover virtual, the Policy Enforcement Manager $^{\text{TM}}$ also creates a corresponding DHCPv4 profile.

Creating a DHCPv4 profile for policy enforcement

You can create a DHCP profile when you want to configure the DHCP virtual to use Relay mode or Pass-through mode.

- 1. On the Main tab, click Local Traffic > Profiles > Services > DHCPv4.
- 2. Click Create.

The New DHCPv4 Profile screen opens.

- 3. In the **Description** field, type a descriptive text that identifies the profile.
- **4.** From the **Parent Profile** list, select the default **dhcpv4** profile.
- 5. Select the Custom check box.
- 6. In the Protocol and Proxy Settings Features area, make a selection from the **DHCP Mode** list.

Option	Description
Relay	When in relay mode, a virtual server relays Dynamic Host Control Protocol (DHCP) client requests and applies unicast IP addresses as the relayed message destination.
Forward	When in forward mode, a virtual server forwards Dynamic Host Control Protocol (DHCP), and does not modify, client requests for an IP address to one or more DHCP servers.

- 7. For the **Idle Timeout** setting, type the number of seconds that a BIG-IP DHCP connection is idle before the connection is eligible for deletion.
- **8.** For the **Max Hops** setting, select the **Custom** check box to enable this option. Type the maximum expected number of relay agents that the messages should pass through, before reaching the DHCPv4 server.
- **9.** For the **Default TTL** setting, select the **Custom** check box to enable this option. Type the time to live (TTL) value that you want to set for each outgoing DHCP packet.
- **10.** For the **Default Lease Time** setting, select the **Custom** check box to enable this option. Type the time, in seconds, of the default value of the DHCPv4 lease time.
- 11. For the TTL Decrement Amount setting, select the Custom check box to enable this option. Type the amount that the DHCP virtual will use to decrement the TTL for each outgoing DHCP packet.
- **12.** For the **Transaction Timeout** setting, select the **Custom** check box to enable this option. Type the number of seconds, taken to internally process the messages.
- **13.** For the **Insert Relay Agent ID (Option 82)** setting, select the **Custom** check box to enable this option if you want the DHCP module to insert option 82.
- **14.** For the **Remove Relay Agent ID From Client Messages** setting, select the **Custom** check box to enable this option and if you want the DHCP relay agent to remove option 82 from the server to client traffic.
- **15.** From the **Subscriber Discovery** list, select **Enabled**. Then, for the **Subscriber ID Format** setting, select the format you want to implement.

Format	Description
MAC Address	Uses the subscriber ID as the MAC address through which the subscriber ID goes through.
Relay Agent Option: Suboption ID 1	Uses the relay agent first option suboption ID.
Relay Agent Option: Suboption ID 1 + <separator> + Suboption ID 2</separator>	Uses the relay agent first and second suboption IDs.
MAC Address + <separator> + Relay Agent Option: Suboption ID 1</separator>	Uses the MAC Address and the relay agent first suboption ID.
MAC Address + <separator> + Relay Agent Option: Suboption ID 1 <separator> + Suboption ID 2</separator></separator>	Uses the relay agent first option suboption ID.
TCL Expression	Uses the TCL expression to format the subscriber ID.

The **User Name Format** has the same options as the **Subscriber ID Format**, in the Subscriber Discovery setting.

17. Click Finished.

The DHCPv4 profile that you created can be chosen from the DHCPv4 profiles in **Local Traffic** > **Virtual Servers** > **Virtual Server List** > **New Virtual Server** > , only if you choose DHCP as a virtual type.

Creating a listener for DHCPv6 discovery virtual

You can use DHCPv6 to discover subscribers in order to handle traffic for policy enforcement. For each subscriber discovered through DHCPv6, an identifier comprises of remote-id, subscriber-id options (options 37 and 38) and MAC address, as configured in the corresponding DHCPv6 profile.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- 2. Select **DHCPv6** from the profiles list, and click **Add**. The New DHCPv6 Discovery Virtual screen opens.
- **3.** In the **Name** field, type a unique name for the listener.
- **4.** In the **Description** field, type a description of the listener.
- 5. For the Source setting, type the IP address or network from which the virtual server will accept traffic.
- **6.** In the **Destination Address** field, type the IP address of the virtual server. For example, ffe1::0020/64 or 2001:ed8:77b5:2:10:10:100:42/64.

Tip: For DHCPv6 discovery virtual, the source and destination should be any (::/0).

The system will create a virtual server using the address or network you specify.

- 7. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.
- **8.** For the **VLANs** and **Tunnels** setting, move the VLANs and tunnels that you want to monitor from the **Available** list to the **Selected** list.

- 9. For the **DHCP Mode** setting, select **Relay** or **Forward** to specify the mode in which the DHCP client requests are sent.
- **10.** For the **Pool Member Configuration** setting, add the DHCP virtual servers that are to be members of the pool. Type the **Member IP Address** and **Port** number, then click **Add**.
- 11. From the **Subscriber Discovery** list, select **Enabled**. Then, for the **Subscriber ID Format** setting, select the format you want to implement.

Format	Description
MAC Address	Uses the subscriber ID as the MAC address through which the subscriber ID goes through.
MAC Address + <separator> + Option 37</separator>	Uses the MAC address and the remote ID relay agent option.
MAC Address + <separator>+ Option 37 <separator> + Option 38</separator></separator>	Uses the MAC address, the remote ID relay agent option and the subscriber ID option.
MAC Address + <separator> + Option 38</separator>	Uses the MAC address and the subscriber ID option.
Option 37	Uses the remote ID relay agent option.
Option 37 <separator> + Option 38:</separator>	Uses the remote ID relay agent option and the subscriber ID option.
Option 38	Uses the subscriber ID option.
TCL Expression	Uses the TCL expression to format the subscriber ID.

The **User Name Format** has the same options as the **Subscriber ID Format**, in the Subscriber Discovery setting.

When you create a new DHCPv6 discover virtual, the Policy Enforcement Manager $^{\text{TM}}$ also creates a corresponding DHCP profile.

Creating a DHCPv6 profile for policy enforcement

You can create a DHCP profile when you want to configure the DHCP virtual to use Relay mode or Pass-through mode.

- 1. On the Main tab, click Local Traffic > Profiles > Services > DHCPv6.
- 2. In the **Description** field, type a descriptive text that identifies the profile.
- 3. From the **Parent Profile** list, select the default **dhcpv6** profile.
- 4. Select the **Custom** check box.
- 5. In the Protocol and Proxy Settings Features area, make a selection from the **DHCP Mode** list.

Option	Description
Relay	When in relay mode, a virtual server relays Dynamic Host Control Protocol (DHCP) client requests and applies unicast IP addresses as the relayed message destination.
Forward	When in forward mode, a virtual server forwards Dynamic Host Control Protocol (DHCP), and does not modify, client requests for an IP address to one or more DHCP servers.

- **6.** For the **Idle Timeout** setting, type the number of seconds that a BIG-IP DHCP connection is idle before the connection is eligible for deletion.
- 7. For the Max Hops setting, select the Custom check box to enable this option. Type the maximum expected number of relay agents that the messages should pass through, before reaching the DHCPv4 server.
- **8.** For the **Default Lease Time** setting, select the **Custom** check box to enable this option. Type the time, in seconds, of the default value of the DHCPv4 lease time.
- **9.** For the **Transaction Timeout** setting, select the **Custom** check box to enable this option. Type the number of seconds, taken to internally process the messages.
- **10.** For the **Insert Remote ID (Option 37)** setting, select the **Custom** check box to enable this option if you want the DHCP module to insert option 37.
- 11. For the **Insert Remote ID (Option 37)** setting, select the **Custom** check box to enable this option if you want the DHCP module to insert option 38.
- 12. For the Remove Subscriber Agent ID From Client Messages setting, select the Custom check box to enable this option and if you want the DHCP relay agent to remove option 37 from the server to client traffic.
- **13.** For the **Remove Relay Agent ID From Client Messages** setting, select the **Custom** check box to enable this option and if you want the DHCP module to remove option 38 from the server to client traffic.
- **14.** From the **Subscriber Discovery** list, select **Enabled**. Then, for the **Subscriber ID Format** setting, select the format you want to implement.

Format	Description
MAC Address	Uses the subscriber ID as the MAC address through which the subscriber ID goes through.
MAC Address + <separator> + Option 37</separator>	Uses the MAC address and the remote ID relay agent option.
MAC Address + <separator>+ Option 37 <separator> + Option 38</separator></separator>	Uses the MAC address, the remote ID relay agent option and the subscriber ID option.
MAC Address + <separator> + Option 38</separator>	Uses the MAC address and the subscriber ID option.
Option 37	Uses the remote ID relay agent option.
Option 37 <separator> + Option 38:</separator>	Uses the remote ID relay agent option and the subscriber ID option.
Option 38	Uses the subscriber ID option.
TCL Expression	Uses the TCL expression to format the subscriber ID.

The **User Name Format** has the same options as the **Subscriber ID Format**, in the Subscriber Discovery setting.

16. Click Finished.

The DHCPv6 profile that you created can be chosen from the DHCPv6 profiles in **Local Traffic** > **Virtual Servers** > **Virtual Server List** > **New Virtual Server** > , only if you choose DHCP as a virtual type.

Creating a listener for RADIUS subscriber discovery

You can create listeners that specify the RADIUS discovery virtual for extracting subscriber information from the RADIUS packets. Creating a listener does preliminary setup tasks on the BIG-IP® system for application visibility, intelligent steering, bandwidth management, and reporting.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- **2.** From the Subscriber Discovery Virtuals area, select **RADIUS**, and click **Add**. The New RADIUS Discovery Virtual screen opens.
- 3. In the Name field, type a unique name for the RADIUS discovery virtual.
- **4.** In the **Description** field, type a description of the listener.
- 5. For the Source setting, type the IP address or network from which the virtual server will accept traffic.
- **6.** In the **Destination Address** field, type the IP address of the virtual server. For example, 10.0.0.1 or 10.0.0.0/24.

Note: When you use an IPv4 address without specifying a prefix, the BIG-IP[®] system automatically uses a /32 prefix.

Tip: You can use a catch-all virtual server (0.0.0.0) to specify all traffic that is delivered to the BIG-IP[®] system. Configure the source and destination setting, during forwarding mode only. In the relay mode, the client does not have an IP address and the DHCP provides the client with an IP address.

The system will create a virtual server using the address or network you specify.

- 7. To use network address translation, from the **Source Address Translation** list, select **Auto Map**. The system treats all of the self IP addresses as translation addresses.
- 8. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.
- **9.** For the **Pool Member Configuration** setting, add the RADIUS discovery virtual servers that are to be members of the pool. Type the **Member IP Address** and **Port** number, then click **Add**.
- 10. Click Finished.

The Policy Enforcement Manager creates a RADIUS virtual server, and displays in the subscriber discovery list.

When you create a RADIUS discovery virtual for a subscriber, the Policy Enforcement Manager^{$^{\text{TM}}$} creates a corresponding profile (**Policy Enforcement** > **Listeners** > **Control Virtual Servers**).

Chapter

9

Usage Monitoring Over a Gx Interface

Overview: Usage monitoring over a Gx interface

Overview: Usage monitoring over a Gx interface

In Policy Enforcement Manager[™], you can create a rule within an enforcement policy that tells the system to send aggregated usage data concerning individual subscribers to a Policy and Charging Rules Function (PCRF). The rule specifies what type of traffic you are interested in, and one of the actions the system can take with the data collected is to send it for processing over a Gx interface to a PCRF.

The system sends the data in the standard Gx format. The report granularity must be set to session for Gx reporting to be available. The PCRF determines the policies for each subscriber, whether or not reporting is enabled, and how often to send the data and monitoring key that identifies the type of traffic PCRF wants to get usage for.

For example, a rule might collect session-based information about all traffic destined to a particular IP address. The BIG-IP® system communicates with the PCRF and sends information about the subscribers for whom reporting is enabled. You establish the connection to the PCRF by creating a listener with Gx interface enabled.

Task summary

Creating a listener for subscriber discovery and policy provisioning Creating a rule for usage monitoring

Creating a listener for subscriber discovery and policy provisioning

You can create listeners that specify how to handle traffic for policy enforcement. Creating a listener does preliminary setup tasks on the BIG-IP® system for application visibility, intelligent steering, bandwidth management, and reporting. You can also connect with a Policy and Charging Rules Function (PCRF) over a Gx interface.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- In the Policy Provisioning and Online Charging Virtuals area, click Add.
 The New Configure Diameter Endpoint Provisioning and Online Charging screen opens.
- **3.** In the **Name** field, type a unique name for the listener.
- **4.** In the **Description** field, type a description of the listener.
- 5. For the VLANs and Tunnels setting, move the VLANs and tunnels that you want to monitor from the Available list to the Selected list.
- 6. To connect to a PCRF, from the **Diameter Endpoint** list, select **Enabled** and select **Gx** from the **Supported Apps** options.
- 7. In the **Product Name** field, type the product name which is used to communicate with the PCRF.
- 8. In the **Origin Host** field, type the fully qualified domain name of the PCRF or external policy server, for example, ocs.xnet.com.
- 9. In the **Origin Realm** field, type the realm name or network in which the PCRF resides, for example, xnet.com.
- **10.** In the **Destination Host** field, type the destination host name of the PCRF or external policy server, for example, pcrfdest.net.com.
- 11. In the Destination Realm field, type the realm name or network of the PCRF, for example, net.com.
- **12.** For the **Pool Member Configuration** setting, add the PCRF servers that are to be members of the Gx endpoint pool. Type the **Member IP Address** and **Port** number, then click **Add**.

- 13. In the Message Retransmit Delay field, type the number of milliseconds to wait before retransmitting unanswered messages in case of failure from the BIG-IP system to the PCRF over the Gx interface. The default value is 1500.
- **14.** In the **Message Max Retransmit** field, type the maximum number of times that messages can be retransmitted from the BIG-IP system to the PCRF. The default value is 2.
- **15.** In the **Fatal Grace Time** field, type the time period in seconds that a diameter connection can remain disconnected before the system terminates all sessions associated with that diameter endpoint. The default value is 500.
- 16. Click Finished.

The Policy Enforcement Manager creates a listener.

When you create a listener, the Policy Enforcement Manager[™] also creates virtual servers for each type of traffic (TCP, UDP, or both), and a virtual server for HTTP traffic. The system sets up classification and assigns the appropriate policy enforcement profile to the virtual servers. The system also creates a virtual server for the Gx interface with a diameter endpoint profile. If you are connecting to a RADIUS authentication server, a virtual server for RADIUS is also added.

Creating a rule for usage monitoring

In an enforcement policy, a rule can specify that usage monitoring statistics concerning traffic affected by the rule are sent to a Gx interface.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with Gate Status disabled for a search engine and you have rule 2 with precedence 11 with Gate Status enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- 7. From the **Reporting** list, select **Enabled**.
- **8.** From the **Report Granularity** list, select **Session**.

You can send only session-based reporting data over the Gx interface.

- **9.** For the **Volume Threshold** setting, specify, in octets, the amount of data to receive from the client, send to the client, and the total traffic volume before logging the information.
- **10.** For the **Destination** setting, specify these values:
 - a) For Gx, select Enabled.

Usage Monitoring Over a Gx Interface

b) In the **Gx Monitoring Key** field, type a string to use for usage monitoring of the service data that the enforcement policy rule or dynamic policy and charging control (PCC) rule controls.

11. Click Finished.

You have created a rule that sends data about the traffic to the Gx interface in the standard Gx format.

Chapter

10

Configuring Global Application Policies with Bandwidth Control

 Overview: Global Application Policies with Bandwidth Control

Overview: Global Application Policies with Bandwidth Control

You can use bandwidth controllers with Policy Enforcement Manager $^{\text{TM}}$ to restrict bandwidth usage per subscriber, group of subscribers, per application, and so on. This implementation uses PEM for global application control to limit overall bandwidth for all P2P (or other application) traffic. For example:

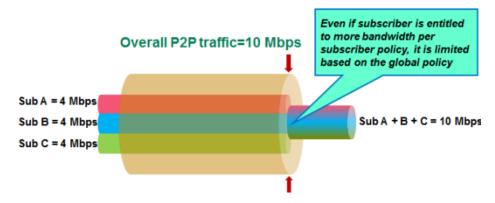


Figure 3: Diagram of bandwidth usage per subscriber

In the figure, three subscribers have individual policies that allow P2P bandwidths of up to 4 Mbps each. The maximum bandwidth for all P2P traffic is limited to 10 Mbps (specified as the maximum rate in a static bandwidth controller). If all were sending P2P traffic, they would all get less bandwidth if you apply a global enforcement policy that enforces bandwidth control.

For this implementation, you create the bandwidth controller and the enforcement policy on the BIG-IP® system. In the enforcement policy, a rule applies bandwidth control to P2P traffic. From the listener, you apply the policy globally to all traffic.

Task Summary

Creating VLANs
Creating a static bandwidth control policy
Creating an enforcement policy
Creating a rule for bandwidth control
Creating a listener: example

Creating VLANs

VLANs represent a collection of hosts that can share network resources, regardless of their physical location on the network. For Policy Enforcement ManagerTM, you typically create VLANs for the subscriber traffic coming in to the BIG-IP[®] system, for traffic going out to the network, and if using w-steering with service chains, you need two VLANs for each value added service to be fully transparent.

- On the Main tab, click Network > VLANs. The VLAN List screen opens.
- **2.** Click **Create**. The New VLAN screen opens.
- **3.** In the **Name** field, type a unique name for the VLAN.

4. In the **Tag** field, type a numeric tag, from 1-4094, for the VLAN, or leave the field blank if you want the BIG-IP system to automatically assign a VLAN tag.

The VLAN tag identifies the traffic from hosts in the associated VLAN.

- **5.** For the **Interfaces** setting:
 - a) From the Interface list, select an interface number.
 - b) From the Tagging list, select Tagged or Untagged.
 Select Tagged when you want traffic for that interface to be tagged with a VLAN ID.
 - c) If you specified a numeric value for the **Customer Tag** setting and from the **Tagging** list you selected **Tagged**, then from the **Tag Mode** list, select a value.
 - d) Click Add.
 - e) Repeat these steps for each interface that you want to assign to the VLAN.
- **6.** From the **Configuration** list, select **Advanced**.
- 7. If you want the system to verify that the return route to an initial packet is the same VLAN from which the packet originated, select the **Source Check** check box.
- **8.** In the MTU field, retain the default number of bytes (1500).
- 9. If you want to base redundant-system failover on VLAN-related events, select the Fail-safe box.
- **10.** From the **CMP Hash** list, select the appropriate value depending on the location of the VLAN in the system:
 - On the VLAN coming in to the BIG-IP system (often called internal), select Source Address.
 - On VLANs going out (often called external), leave the value set to **Default**.
 - For traffic returning to the BIG-IP from the Internet, select **Destination Address**.
 - If using w-steering for value-added services, on the VLAN coming back to the BIG-IP system, select **Source Address**.

11. Click Finished.

The screen refreshes, and displays the new VLAN in the list.

Create as many VLANs as needed for your configuration.

Creating a static bandwidth control policy

You can create a static bandwidth control policy to limit the bandwidth that traffic uses on the BIG-IP® system.

- 1. On the Main tab, click Acceleration > Bandwidth Controllers.
- 2. Click Create.
- 3. In the Name field, type a name for the bandwidth control policy.
- **4.** In the **Maximum Rate** field, type a number and select the unit of measure to indicate the total throughput allowed for the resource you are managing.

The number must be in the range from 1 Mbps to 320 Gbps. This value is the amount of bandwidth available to all the connections going through this static policy.

5. Click Finished.

For the bandwidth control policy to take effect, you must apply the policy to traffic, using a virtual server, packet filter, or route domain.

Creating an enforcement policy

If you want to classify and intelligently steer traffic, you need to create an enforcement policy. The policy describes what to do with specific traffic, and how to treat the traffic.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- 2. Click Create.

The New Policy screen opens.

3. In the Name field, type a name for the policy.

Tip: When creating policies you plan to apply globally or to unknown subscribers, it is a good idea to include the word global or unknown in the policy name to distinguish these from other subscriber policies.

- **4.** From the Transactional list, select **Enabled** if you want the BIG-IP system to allow policy enforcement on each HTTP transaction.
- 5. Click Finished.

Important: The system performance is significantly affected, depending on complexity of the classification and the type of policy action.

The new enforcement policy is added to the policy list.

Now you must add rules to the enforcement policy to define traffic filters and actions.

Creating a rule for bandwidth control

If you want to use rate control, you need to have already created a bandwidth controller.

You can create a rule that provides bandwidth control. For example, the bandwidth controller might limit the total amount of bandwidth that can be used by application traffic, such as P2P.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** In the **Classification** setting, filter the application traffic to which you want to apply bandwidth control.
 - a) For Match Criteria, select Match.
 - b) For Category, select P2P (or other application traffic you want to limit on the network).
 - c) Click Add.
- 7. In the Forwarding area, ensure that **Gate Status** is set to **Enabled**.
- **8.** In the **Rate Control** setting, for **Bandwidth Controller**, select the name of the bandwidth controller that you created to limit P2P (or other application) traffic.
- 9. Click Finished.

You have created a rule to restrict the total bandwidth usage for all P2P traffic to the **Maximum Rate** specified in the static bandwidth control policy.

The enforcement policy needs to be associated with the virtual servers required for PEM. You can do this by creating a listener (recommended), or you can edit the virtual servers to specify the enforcement policy as a global policy, and enable classification.

Creating a listener: example

You create a listener to complete the preliminary setup on the BIG-IP® system; in this case, to apply bandwidth management as a global enforcement policy.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- **2.** Click **Add**. The New Virtual Group screen opens.
- 3. In the Name field, type a unique name for the listener.
- 4. For the Source setting, type the IP address or network from which the virtual server will accept traffic.
- 5. In the **Destination Address** field, type the IP address of the virtual server. For example, 10.0.0.1 or 10.0.0.0/24.

Note: When you use an IPv4 address without specifying a prefix, the BIG-IP[®] system automatically uses a /32 prefix.

Tip: You can use a catch-all virtual server (0.0.0.0) to specify all traffic that is delivered to the BIG-IP[®] system. Configure the source and destination setting, during forwarding mode only. In the relay mode, the client does not have an IP address and the DHCP provides the client with an IP address.

The system will create a virtual server using the address or network you specify.

- **6.** For the **Service Port** setting, type or select the service port for the virtual server.
- 7. Subscriber provisioning using RADIUS is enabled by default. If your system is using RADIUS for snooping subscriber identity, you need to specify VLANs and tunnels. If you are not using RADIUS, you need to disable it.
 - For the VLANs and Tunnels setting, move the VLANs and tunnels that you want to monitor for RADIUS traffic from the Available list to the Selected list.
 - If you do not want to use RADIUS, from the Subscriber Identity Collection list, select Disabled.
- **8.** In the Policy Provisioning area, for **Global Policy**, move the enforcement policy you created for bandwidth control to **High Precedence**.
 - The system applies the policy with bandwidth control to all traffic.
- 9. Click Finished.

Configuring Global Application Policies with Bandwidth Control

The Policy Enforcement Manager creates a listener.

When you create a listener, the Policy Enforcement Manager[™] also creates virtual servers for each type of traffic (TCP, UDP, or both), and a virtual server for HTTP traffic. The system sets up classification and assigns the appropriate policy enforcement profile to the virtual servers. If you are connecting to a RADIUS authentication server, a virtual server for RADIUS is also added.

Now you can send traffic through the network. All traffic classified as P2P traffic is limited to the **Maximum Rate** specified in the static bandwidth control policy. Once the maximum rate is reached, no additional P2P traffic is allowed on the network.

Chapter

11

Enforcing Bandwidth Control Provisioned by PCRF

- Overview: Enforcing bandwidth control provisioned on PCRF
- Implementation result

Overview: Enforcing bandwidth control provisioned on PCRF

Policy Enforcement Manager™ (PEM) can enforce bandwidth limits provisioned by the PCRF using dynamic PCC rules. You do this by creating a dynamic bandwidth controller with the name dynamic_spm_bwc_policy. This bandwidth controller must be created on the BIG-IP system® using this predefined name. It does not need to be associated with an enforcement policy in PEM. Subscribers are assigned bandwidth in proportion to their configured rates. So for example, if subscriber A is assigned 4Mbps, and B is assigned 8Mbps, B will always get twice the bandwidth that A gets.

Task Summary

Creating a dynamic bandwidth control policy for PCRF
Creating a listener for subscriber discovery and policy provisioning

Creating a dynamic bandwidth control policy for PCRF

To set up bandwidth control through PCRF, you must have bandwidth control rules configured on the PCRF.

You can create a dynamic bandwidth controller so that PEM[™] can enforce the maximum bit rate configured on the PCRF. You must follow the steps exactly as described here using the specified name for the bandwidth controller, and you must create the associated categories.

- 1. On the Main tab, click Acceleration > Bandwidth Controllers.
- 2. Click Create.
- 3. In the Name field, type the name dynamic_spm_bwc_policy.
- **4.** In the **Maximum Rate** field, type a number and select the unit of measure to indicate the total throughput allowed for the resource you are managing.

The number must be in the range from 1 Mbps to 320 Gbps. This value is the amount of bandwidth available to all the connections going through this static policy.

5. From the **Dynamic** list, select **Enabled**.

The screen displays additional settings.

6. In the **Maximum Rate Per User** field, type a number and select the unit of measure.

For example, use 50Mbps.

The number must be in the range from 1Mbps to 2Gbps. However, the value you use is just a place holder and is never used by the system. For this example, the value is overridden by the PCRF.

7. Enable the **Measure** setting, if you want to measure bandwidth on all future instances of this bandwidth control policy.

The system measures bandwidth with the frequency you specify in the **Log Period** setting, and sends it to the log publisher you specify using the **Log Publisher** setting.

- 8. Leave the IP Marking (TOS/DSCP) and L2 Marking (802.1p) values set to Pass Through, the default value.
- 9. Click Finished.

Note: After you finish configuring the bandwidth controller, the **Bandwidth Controllers** screen opens.

- **10.** Click the Bandwidth Control policy name, that you configured. The Bandwidth Controllers policy page opens.
- 11. In the Categories field, add up to 32 categories of traffic that this bandwidth control policy manages.

All the categories share the specified bandwidth, in accordance with the rate specified for each category.

Note: Use the Categories setting only if you have not set values for the IP Marking (TOS/DSCP) or the L2 Marking (802.1p) setting.

- 12. In the Category Name field, type a descriptive name for the category.
- 13. In the Max Category Rate field, type a value to indicate the most bandwidth that this category of traffic can use, and select the unit of measure from the list, or select % and type a percentage from 1 to 100. If you specify a rate, the number must be in the range from 500 Kbps to the rate specified for the Maximum Rate Per User setting. A percentage indicates that this category can use up to the specified percentage of the maximum per-user rate. These values are upper limits (not minimum or guaranteed), so the sum can exceed the value you specified for the Maximum Rate Per User setting.
- **14.** From the **IP Marking (TOS/DSCP)** list, select **Specify** and type a number between 0 and 63 to assign a Type of Service (ToS) level to packets that exceed the **Max Category Rate**.

 If you do not want to set a ToS level, maintain the default setting, **Pass Through**.
- 15. From the L2 Marking (802.1p) list, select Specify and type a number between 0 and 7 to assign a Quality of Service (QoS) level to packets that exceed the Max Category Rate.

 If you do not want to set a QoS level, maintain the default setting, Pass Through.
- 16. Click Finished.

If this is the first bandwidth control policy created on a BIG-IP® device, the system also creates a default static bandwidth control policy named default-bwc-policy to handle any traffic that is not included in the policy you created. If you delete all bandwidth controllers, this policy is also deleted.

For PEM to enforce bandwidth control, you need to create a listener (Policy Provisioning and Online Charging Virtuals) with a Gx interface configured.

Creating a listener for subscriber discovery and policy provisioning

You can create listeners that specify how to handle traffic for policy enforcement. Creating a listener does preliminary setup tasks on the BIG-IP® system for application visibility, intelligent steering, bandwidth management, and reporting. You can also connect with a Policy and Charging Rules Function (PCRF) over a Gx interface.

- On the Main tab, click Policy Enforcement > Listeners.
 The Listeners screen opens.
- 2. In the Policy Provisioning and Online Charging Virtuals area, click **Add**. The New Configure Diameter Endpoint Provisioning and Online Charging screen opens.
- **3.** In the **Name** field, type a unique name for the listener.
- **4.** In the **Description** field, type a description of the listener.
- 5. For the VLANs and Tunnels setting, move the VLANs and tunnels that you want to monitor from the Available list to the Selected list.
- 6. To connect to a PCRF, from the **Diameter Endpoint** list, select **Enabled** and select **Gx** from the **Supported Apps** options.
- 7. In the **Product Name** field, type the product name which is used to communicate with the PCRF.
- **8.** In the **Origin Host** field, type the fully qualified domain name of the PCRF or external policy server, for example, ocs.xnet.com.
- 9. In the **Origin Realm** field, type the realm name or network in which the PCRF resides, for example, xnet.com.

- **10.** In the **Destination Host** field, type the destination host name of the PCRF or external policy server, for example, pcrfdest.net.com.
- 11. In the Destination Realm field, type the realm name or network of the PCRF, for example, net.com.
- **12.** For the **Pool Member Configuration** setting, add the PCRF servers that are to be members of the Gx endpoint pool. Type the **Member IP Address** and **Port** number, then click **Add**.
- 13. In the Message Retransmit Delay field, type the number of milliseconds to wait before retransmitting unanswered messages in case of failure from the BIG-IP system to the PCRF over the Gx interface. The default value is 1500.
- **14.** In the **Message Max Retransmit** field, type the maximum number of times that messages can be retransmitted from the BIG-IP system to the PCRF. The default value is 2.
- **15.** In the **Fatal Grace Time** field, type the time period in seconds that a diameter connection can remain disconnected before the system terminates all sessions associated with that diameter endpoint. The default value is 500.
- 16. Click Finished.

The Policy Enforcement Manager creates a listener.

When you create a listener, the Policy Enforcement Manager[™] also creates virtual servers for each type of traffic (TCP, UDP, or both), and a virtual server for HTTP traffic. The system sets up classification and assigns the appropriate policy enforcement profile to the virtual servers. The system also creates a virtual server for the Gx interface with a diameter endpoint profile. If you are connecting to a RADIUS authentication server, a virtual server for RADIUS is also added.

Implementation result

When traffic flows through the BIG-IP[®] system, the system limits the aggregated bandwidth for all subscribers to the **Maximum Rate** specified in the dynamic_spm_bwc_policy bandwidth control policy. The PCRF provides the **Maximum Rate Per User** for each subscriber, overriding the value in the bandwidth control policy. Policy Enforcement Manager[™] restricts subscribers to the maximum user rate, and bandwidth is spread among subscribers fairly, on a best effort basis.

Chapter

12

Configuring Tiered Services with Bandwidth Control

- Overview: Configuring tiered services with bandwidth control
- Implementation result

Overview: Configuring tiered services with bandwidth control

You can set up Policy Enforcement Manager to enforce different levels of bandwidth control on subscribers, providing more bandwidth to subscribers with higher tier subscriptions. Bandwidth control in this case is per subscriber and per application.

This implementation provides three tiers of service: gold (the highest level), silver (the next highest), and bronze (the lowest level). You create three dynamic bandwidth controllers, one for each tier to provide different bandwidth limits for subscribers with different plans. Each tier includes bandwidth control limits for three types of application traffic (P2P, audio-video, and web). You also create three enforcement policies, one for each tier. In the enforcement policies, rules applies bandwidth control to the different types of traffic.

Finally, subscribers are provisioned dynamically through a policy charging and rules function (PCRF) over a Gx interface. On the PCRF, you need to have associated subscribers with one of the subscriber tiers called gold, silver, and bronze.

Task Summary

Creating dynamic bandwidth control policies for tiered services

Creating enforcement policies for three tiers

Creating the rules for tiered bandwidth control

Creating a listener for subscriber discovery with RADIUS and policy provisioning with PCRF

Creating dynamic bandwidth control policies for tiered services

You can create dynamic bandwidth controllers for tiered services so that PEM can enforce different rates of bandwidth control for subscribers having different policy levels. Use this procedure and the values specified to create three bandwidth controllers, one for each tier of service.

- 1. On the Main tab, click Acceleration > Bandwidth Controllers.
- 2. Click Create.
- **3.** In the **Name** field, type the name of the bandwidth controller. In this example, name the three bandwidth controllers as follows:
 - Type gold-bwc for the premium subscription level.
 - Type silver-bwc for the medium subscription level.
 - Type bronze-bwc for the lowest subscription level.

There is no requirement to use these names, but it is convenient to use a similar name for the bandwidth controller and the enforcement policy that you will attach it to. Later in this example, you will attach the gold-bwc bandwidth controller to the gold enforcement policy.

4. In the Maximum Rate field, type a number and select the unit of measure to indicate the total throughput allowed for all the subscribers using each bandwidth controller. For this example, specify 10 Mbps for all three bandwidth controllers

If you want to use different values, the number must be in the range from 1Mbps to 320Gbps.

- **5.** From the **Dynamic** list, select **Enabled**. The screen displays additional settings.
- **6.** In the **Maximum Rate Per User** field, type a number and select the unit of measure relative to the tier of service. For example, use the following values:
 - For gold-bwc, specify **8 Mbps**.

- For silver-bwc, specify 4 Mbps.
- For bronze-bwc, specify 2 Mbps.
- 7. Leave the IP Type of Service and Link Quality of Service values set to Pass Through, the default value.
- **8.** In the Categories field for each bandwidth controller, add three categories of traffic: P2P, Web, and Audio-video.
 - For gold-bwc, set P2P to 20%, set Web to 70%, and set Audio-video to 40%.
 - For silver-bwc, set P2P to 20%, set Web to 60%, and set Audio-video to 30%.
 - For bronze-bwc, set P2P to 20%, set Web to 50%, and set Audio-video to 20%.

In the rule for the policy, different types of traffic, P2P, web, or audio-video traffic is limited to a smaller percentage of the total bandwidth for all subscribers who use that policy.

9. Click Finished.

If this is the first bandwidth control policy created on a BIG-IP® device, the system also creates a default static bandwidth control policy named default-bwc-policy in the Common partition to handle any traffic that is not included in the policy you created. If you delete all bandwidth controllers, this policy is also deleted.

For PEM to enforce bandwidth control, you need to create enforcement policies with rules that refer to the bandwidth controller.

Creating enforcement policies for three tiers

To impose bandwidth control on multiple subscriber tiers, you need to create an enforcement policy for each tier. Use this procedure and the values specified to create three enforcement policies.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- 2. Click Create.

The New Policy screen opens.

- 3. In the Name field, type a name for the policy.
 - Type gold for the premium subscription level.
 - Type silver for the medium subscription level.
 - Type bronze for the lowest subscription level.

4. Click Finished.

The new enforcement policy is added to the policy list.

You have three enforcement policies that represent the three tiers of subscriber traffic that you are creating.

After creating the enforcement policies, you add rules that specify how to treat the subscriber traffic in each tier. In the implementation being developed, subscribers in the different tiers will get different maximum amounts of bandwidth. Further limits will be placed on specific types of traffic (P2P, audio-video, and web).

Creating the rules for tiered bandwidth control

You next add rules to each of the enforcement policies you created (gold, silver, and bronze). The rules limit the amount of bandwidth that P2P, web, and audio-video traffic can use. Create three rules for each enforcement policy.

1. On the Main tab, click **Policy Enforcement > Policies**.

The Policies screen opens.

2. Click the name of the enforcement policy you want to add rules to.

The properties screen for the policy opens.

3. In the Policy Rules area, click Add.

The New Rule screen opens.

- 4. In the Name field, type a name for the rule. For the first rule, use the name P2P.
- 5. In the **Precedence** field, type an integer that indicates the precedence, 1 being the highest.

In this case, you can use any value, for example, 10, as the precedence for all the rules in all the policies because there is no conflict between the rules you are creating. Each rule applies to a different type of traffic: web, audio-video, and P2P.

- **6.** In the **Classification** setting, specify the type of traffic.
 - a) For the first rule, from the **Category** list, select **P2P**. Use the default values for **Match Criteria** (**Match**) and **Application** (**Any**).
 - b) Click Add.
- 7. In the **Rate Control** setting, for **Bandwidth Controller**, select the name of the bandwidth controller and category. Choose
 - a) For **Bandwidth Controller**, select the name that matches the policy you are working on. For example, if editing the gold policy, select **gold-bwc**.
 - b) For **Category**, select the category that matches the type of traffic specified by the name of the rule. For example, select **P2P**.
- 8. Click Finished.
- 9. Repeat steps 3-8 to create a second rule for audio-video traffic with these settings.

Option	Values
Name	Audio-video
Precedence	10
Classification Category	Audio_video
Rate Control-Bandwidth Controller	Same as the name of the policy you are adding the rule to (gold-bwc, silver-bwc, or bronze-bwc)
Bandwidth Controller-Category	Audio-video

10. Repeat steps 3-8 to create a third rule for web traffic with these settings.

Option	Values
Name	Web
Precedence	10
Classification Category	Web
Rate Control-Bandwidth Controller	Same as the name of the policy you are adding the rule to (gold-bwc, silver-bwc, or bronze-bwc)
Bandwidth Controller-Category	Web

The gold, silver, and bronze enforcement policies each have three rules called P2P, Web, and Audio-video. Each of the rules in the gold policy connects to the gold-bwc bandwidth controller; rules in the silver policy connect to the silver-bwc bandwidth controller and; rules in the bronze policy connect to the bronze-bwc policy.

Creating a listener for subscriber discovery with RADIUS and policy provisioning with PCRF

You create a listener to specify how to handle traffic for policy enforcement. Creating a listener does preliminary setup tasks on the BIG-IP® system for application visibility, intelligent steering, bandwidth management, and reporting. You can also connect with a Policy and Charging Rules Function (PCRF) over a Gx interface.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- 2. In the Policy Provisioning and Online Charging Virtuals area, click **Add**. The New Configure Diameter Endpoint Provisioning and Online Charging screen opens.
- 3. In the Name field, type a unique name for the listener.
- **4.** In the **Destination Address** field, type the IP address of the virtual server. For example, 10.0.0.1 or 10.0.0.0/24.

Note: When you use an IPv4 address without specifying a prefix, the BIG-IP[®] system automatically uses a /32 prefix.

Tip: You can use a catch-all virtual server (0.0.0.0) to specify all traffic that is delivered to the BIG-IP[®] system. Configure the source and destination setting, during forwarding mode only. In the relay mode, the client does not have an IP address and the DHCP provides the client with an IP address.

The system will create a virtual server using the address or network you specify.

- **5.** For the **Service Port** setting, type or select the service port for the virtual server.
- **6.** From the **Protocol** list, select the protocol of the traffic for which to deploy enforcement policies (**TCP**, **UDP**, or **TCP** and **UDP**).

The system will create a virtual server for each protocol specified.

- 7. To use network address translation, from the **Source Address Translation** list, select **Auto Map**. The system treats all of the self IP addresses as translation addresses.
- **8.** For the **VLANs and Tunnels** setting, move the VLANs and tunnels that you want to monitor from the **Available** list to the **Selected** list.
- **9.** For subscriber provisioning using RADIUS, ensure that **Subscriber Identity Collection** is set to **RADIUS**.
- **10.** For the **VLANs and Tunnels** setting, move the VLANs and tunnels that you want to monitor for RADIUS traffic from the **Available** list to the **Selected** list.
- 11. For the tiered services example, do not assign global policies.
- 12. To connect to a PCRF, from the **Diameter Endpoint** list, select **Enabled** and select **Gx** from the **Supported Apps** options.
- 13. In the Origin Host field, type the fully qualified domain name of the PCRF or external policy server, for example, ocs.xnet.com.
- **14.** In the **Origin Realm** field, type the realm name or network in which the PCRF resides, for example, xnet.com.
- **15.** In the **Destination Host** field, type the destination host name of the PCRF or external policy server, for example, pcrfdest.net.com.
- 16. In the Destination Realm field, type the realm name or network of the PCRF, for example, net.com.
- **17.** For the **Pool Member Configuration** setting, add the PCRF servers that are to be members of the Gx endpoint pool. Type the **Member IP Address** and **Port** number, then click **Add**.

- **18.** In the **Message Retransmit Delay** field, type the number of milliseconds to wait before retransmitting unanswered messages in case of failure from the BIG-IP system to the PCRF over the Gx interface. The default value is 1500.
- **19.** In the **Message Max Retransmit** field, type the maximum number of times that messages can be retransmitted from the BIG-IP system to the PCRF. The default value is 2.
- **20.** In the **Fatal Grace Time** field, type the time period in seconds that a diameter connection can remain disconnected before the system terminates all sessions associated with that diameter endpoint. The default value is 500.

21. Click Finished.

The Policy Enforcement Manager creates a listener.

When you create a listener, the Policy Enforcement Manager[™] also creates virtual servers for each type of traffic (TCP, UDP, or both), and a virtual server for HTTP traffic. The system sets up classification and assigns the appropriate policy enforcement profile to the virtual servers. The system also creates a virtual server for the Gx interface with a diameter endpoint profile. If you are connecting to a RADIUS authentication server, a virtual server for RADIUS is also added.

Now you can send traffic through the network. As network traffic moves through the BIG-IP system, the system handles policy enforcement.

Implementation result

When traffic flows through a BIG-IP® system, the system limits the aggregated bandwidth for all subscribers having a gold, silver, or bronze policy. Subscribers with a gold policy can use more of the total bandwidth than silver or bronze subscribers. Further, subscriber traffic in any of the tiers that is classified as audio-video, web, or P2P is limited to a percentage of the total bandwidth allowed for that tier.

For example, if a subscriber has a silver subscription level and PEM classifies their traffic as Web, the traffic is limited to 60% of the **Maximum Rate** specified in the silver-bwc bandwidth controller (4 Mbps). This leaves 2.4 Mbps as the maximum bandwidth for all web traffic of silver tier subscribers.

Chapter

13

Configuring Service Chains

• Overview: Configuring service chains

Overview: Configuring service chains

You can use the Policy Enforcement Manager[™] to create service chains to route traffic to one or more value-added services on the way to its final destination. The *service chains* define the path and order that you want traffic to take. There are several value-added services involved and after each endpoint the traffic comes back to the BIG-IP system. An *endpoint* specifies each place you want to send the traffic, so the service chain is essentially between the value-added services endpoints for traffic to stop at on its way to the server it is headed to. For example, you can forward traffic sequentially for virus scanning, parental control, and caching.

You set up service chains by creating an enforcement policy that defines the traffic that you want to route to the service chain. Rules in the enforcement policy specify conditions that the traffic must match, and actions for what to do with that traffic. One of the actions you can take is to send the traffic to a service chain.

While a static service chain defines fixed value-added services, a dynamic service chain provides service chain action that can dynamically change depending on the flow of parameters and you can attach a steering policy that can override the decision of the next session. You can use dynamic service chain to insert or name header and steer different service. Internet Content Adaptation Protocol (ICAP) is one of the services possible to use in a service chain. Dynamic service chain makes the service chain intelligent and flexible by providing the following support:

- Ability to add or skip different value-added services endpoints by selecting policy based forwarding endpoint.
- Perform header insertion or removal per value-added service chain, depending on the policy.
- Includes one sideband value-added service in the service chain using ICAP as the protocol.

You can create listeners to set up virtual servers and associate enforcement policies with the traffic that is sent to them. The system also creates a Policy Enforcement profile that specifies the enforcement policy that the system uses for the service chain.

Task Summary

Creating a ICAP profile for policy enforcement

Creating a Request Adapt profile

Creating a Response Adapt profile

Creating an internal virtual server for ICAP server

Creating a pool

Creating endpoints for service chains

Creating dynamic service chains

Creating an enforcement policy

Configuring steering action policy

Adding rules to an enforcement policy

Creating a rule for forwarding traffic

Creating a data plane virtual group

About services profiles

You can configure the Internet Content Adaptation Protocol (ICAP) profile, request adaptation profile, and response adaptation profile for using the dynamic service chain feature in Policy Enforcement Manager[™].

The internal virtual server references the pool of content adaptation servers. The internal virtual server also references an ICAP profile, which includes specific instructions for how the BIG-IP® system should modify each request or response. Once the request and response adapt profiles have been created, you can attach the profiles to the HTTP virtual server. The adapt profiles use multiple internal virtual servers for various content types.

The HTTP listener must have adapt profile set. The adapt profiles need to be configured as disabled and are enabled by PEM based on the policy action applied.

About service chain processing

The service chain endpoints that have steering policy attached, define the service chain. The dynamic service chain follows these processing strategies:

- The initial subscriber flow start processing of the service chain starts from the first service.
- The steering policy is evaluated before taking in account a default ICAP adaptation or the steering endpoint.

The steering policy changes the service chain in many ways:

- Skips the part of the service chain.
- Skips to different service of the ICAP or steering policy.
- Skip the rest of the service chain and route traffic to the network.
- Applies different services that are not on the chain. The steering policy can apply ICAP and skip the
 rest of the chain. It can also apply steering, skipping all ICAP on the VLAN. The service chain continues
 when the flow returns from the service.

Creating a ICAP profile for policy enforcement

You create this ICAP profile when you want to use an ICAP server to wrap an HTTP request in an ICAP message before the BIG-IP® system sends the request to a pool of web servers. The profile specifies the HTTP request-header values that the ICAP server uses for the ICAP message.

- 1. On the Main tab, click Local Traffic > Profiles > Services > ICAP.
- 2. Click Create.
- 3. In the Name field, type a unique name for the profile.
- 4. Click Finished.

After you create the ICAP profile, you can assign it to an internal virtual server so that the HTTP request that the BIG-IP system sends to an ICAP server is wrapped in an ICAP message, according to the settings you specified in the ICAP profile.

Note: Different services may require different ICAP profiles.

Creating a Request Adapt profile

You create a Request Adapt type of profile when you want a standard HTTP virtual server to forward HTTP requests to an internal virtual server that references a pool of ICAP servers. A Request Adapt type of profile instructs the HTTP virtual server to send an HTTP request to a named internal virtual server for possible request modification.

- 1. On the Main tab, click Local Traffic > Profiles > Services > Request Adapt.
- 2. Click Create.
- 3. In the Name field, type a unique name for the profile.
- 4. For the Parent Profile setting, retain the default value, requestadapt.
- **5.** On the right-side of the screen, select the **Custom** check box.
- 6. Disable the setting by clearing the Enabled check box.
 When you clear the Enabled check box, Policy Enforcement Manager[™] controls this based on the policy.
- 7. In the **Preview Size** field, type a numeric value.

This specifies the maximum size of the preview buffer. This buffer holds a copy of the HTTP request header and the data sent to the internal virtual server, in case the adaptation server reports that no adaptation is needed. Setting the preview size to 0 disables buffering of the request and should only be done if the adaptation server always returns a modified HTTP request or the original HTTP request.

- 8. For the Allow HTTP 1.0 setting, select the Enabled check box.
- 9. Click Finished.

After you perform this task, the BIG-IP® system contains a Request Adapt profile that a standard HTTP virtual server can use to forward an HTTP request to an internal virtual server for ICAP traffic. You need to attach a Request Adapt profile to a standard HTTP virtual server to forward the HTTP requests.

Creating a Response Adapt profile

You create a Response Adapt type of profile when you want a standard HTTP virtual server to forward HTTP responses to an internal virtual server that references a pool of ICAP servers. A Response Adapt type of profile instructs the HTTP virtual server to send an HTTP response to a named internal virtual server for possible response modification.

- 1. On the Main tab, click Local Traffic > Profiles > Services > Response Adapt.
- 2. Click Create.
- 3. In the Name field, type a unique name for the profile.
- **4.** For the **Parent Profile** setting, retain the default value, response adapt.
- 5. On the right-side of the screen, select the Custom check box.
- 6. Disable the setting by clearing the **Enabled** check box.

 When you clear the **Enabled** check box, Policy Enforcement Manager[™] controls the profile based on the policy.
- 7. In the **Preview Size** field, type a numeric value.

This specifies the maximum size of the preview buffer. This buffer holds a copy of the HTTP response header and the data sent to the internal virtual server, in case the adaptation server reports that no adaptation is needed. Setting the preview size to 0 disables buffering of the response and should only be done if the adaptation server always returns a modified HTTP response or the original HTTP response.

8. For the **Allow HTTP 1.0** setting, check the **Enabled** check box.

After you perform this task, the BIG-IP® system contains a Response Adapt profile that a standard HTTP virtual server can use to forward an HTTP response to an internal virtual server for ICAP traffic. You need to attach a Response Adapt profile to a standard HTTP virtual server to forward the HTTP responses.

Creating an internal virtual server for ICAP server

You perform this task to create a standard virtual server that can forward an HTTP request or response to an internal virtual server. The internal virtual server then sends the request or response to a pool of ICAP servers before the BIG-IP® system sends the request or response to the client or web server.

- 1. On the Main tab, click **Local Traffic** > **Virtual Servers**. The Virtual Server List screen opens.
- **2.** Click the **Create** button. The New Virtual Server screen opens.
- 3. In the Name field, type a unique name for the virtual server.
- **4.** From the **Type** list, select **Internal**.
- **5.** For the **State** setting, verify that the value is set to **Enabled**.
- 6. From the Configuration list, select Advanced.
- 7. From the ICAP Profile list, select the name of the HTTP profile that you created previously.
- **8.** From the **Source Address Translation** list, select **Auto Map**. The BIG-IP[®] system uses all of the self IP addresses as the translation addresses for the pool.
- 9. Optionally, from the **OneConnect Profile** list, select a custom OneConnect profile.

Note: Setting OneConnect Profile to ICAP virtual server, is highly recomended when configuring ICAP virtual.

- 10. From the **Default Pool** list, select the pool of ICAP servers that you previously created.
- 11. Click Finished.

After you create the virtual server, the BIG-IP® system can forward an HTTP request or response to a pool of ICAP servers before sending the request or response to the client or web server, respectively.

Creating a pool

You can create a pool of servers that you can group together to receive and process traffic. Repeat these steps for each desired pool.

- 1. On the Main tab, click **Local Traffic** > **Pools**. The Pool List screen opens.
- 2. Click Create.

The New Pool screen opens.

- **3.** In the **Name** field, type a unique name for the pool.
- 4. Using the New Members setting, add each resource that you want to include in the pool:
 - a) In the Node Name field, type a name for the node portion of the pool member.
 This step is optional.
 - b) In the **Address** field, type an IP address.
 - c) In the **Service Port** field, type a port number, or select a service name from the list.
 - d) In the **Priority** field, type a priority number.
 This step is optional.
 - e) Click Add.
- 5. Click Finished.

The new pool appears in the Pools list.

Creating endpoints for service chains

Before you can create an endpoint, you need to create a pool that specifies where you want to direct the classified traffic.

If you plan to set up a service chain, you need to create one or more endpoints that specify the locations of the value-added services to which to send the traffic.

- 1. On the Main tab, click **Policy Enforcement** > **Forwarding** > **Endpoints**. The Endpoints screen opens.
- 2. Click Create.

The New Endpoint screen opens.

- **3.** In the **Name** field, type a name for the endpoint.
- 4. From the Pool list, select the pool to which you want to steer a particular type of traffic.
- 5. Use the default values for the other fields.
- 6. Click Finished.

The endpoint you created is on the endpoint list.

You link the endpoints together by creating a service chain.

Creating dynamic service chains

Before you can create a service chain, you need to have created endpoints for every service that you want the traffic to be directed to. Set up the servers at those endpoints to handle the traffic and (if conditions are right), return it to the BIG-IP® system. You should have attached the HTTP virtual server to the request adapt profile and response adapt profile. You also need to create VLANs for every traffic entry point.

To send traffic to multiple endpoints, including value-added services, you create service chains that define where to send traffic on the way to its final destination. This way, the system can route traffic to other servers that can handle additional functions. Additionally, you can attach a steering action policy, such as modify headers, when you create a service chain which can be later modified at the other end.

Note: If you want to use steering policy, you must define endpoint in service chain.

- 1. On the Main tab, click **Policy Enforcement > Forwarding > Service Chains**. The Service Chains screen opens.
- 2. Click Create

The New Service Chains screen opens.

- **3.** In the **Name** field, type a name for the service chain.
- **4.** In the **Service Chain List** setting, add the endpoints to the service chain. For each place you want to send the traffic, specify the following information:
 - a) From the **Service Endpoint Name** list, type the name of the service endpoint where the traffic is going to.
 - b) From the VLAN list, select the name of the VLAN where the traffic is coming from.

Note: Your first service chain should have subscriber VLAN in the VLAN field.

c) From the **Policy** list, select the name of the steering policy.

Note: If all the service endpoints do not have a steering policy, the service chain is static.

Important: If the policy defining the steering does not match the policy set in the service chain, then the service chain is not processed.

d) From the **Forwarding Endpoint** list, select the name of the endpoint to which you send traffic.

When you configure a new forwarding endpoint (Policy Enforcement > Forwarding > Endpoints), set Address Translation and Port Translation as Disabled.

Note: You need to always configure a default forwarding endpoint or else the flow will exit the service chain and get skipped. If you are in the final leg, then configure without default.

Important: When you use ICAP service, you cannot have a ICAP and a forwarding endpoint on the same service endpoint.

e) From the Service Option list, select the service option in case the service endpoint is not reachable. Select Optional if you want to skip the service endpoint. Select Mandatory if you want all traffic flows dropped.

Note: To use dynamic service chain, select **Optional**. If service endpoint is not available and set to mandatory, you cannot steer policies.

Note: The **Service Option** parameter works only if the right endpoint has a monitor set in the pool. For example, set gateway ICMP to the pool. Otherwise, traffic is dropped even if **Optional** is set.

f) From the **Internal Virtual** list, select the internal ICAP virtual server.

Important: You cannot have consecutive ICAP on the same VLAN.

- g) Click Add.
- 5. From the ICAP Type list, select the action you want to implement. Select Request to send only HTTP requests to ICAP server. Select Response to send only HTTP responses to ICAP server. Select Request and Response to have both requests and responses.
 - Select **Response** to send only HTTP responses to ICAP server.
 - Select **Request and Response** to have both requests and responses.

Note: Select the Internal Virtual to configure the ICAP Type setting.

6. Click Finished.

Note: If steering action is applied after the ICAP request, service endpoint with forwarding endpoint should have the same VLAN configured as the service endpoint with ICAP enabled.

You can direct traffic to the service chain you created in the policy rules in an enforcement policy.

Creating an enforcement policy

If you want to classify and intelligently steer traffic, you need to create an enforcement policy. The policy describes what to do with specific traffic, and how to treat the traffic.

1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.

2. Click Create.

The New Policy screen opens.

3. In the **Name** field, type a name for the policy.

Tip: When creating policies you plan to apply globally or to unknown subscribers, it is a good idea to include the word global or unknown in the policy name to distinguish these from other subscriber policies.

- **4.** From the Transactional list, select **Enabled** if you want the BIG-IP system to allow policy enforcement on each HTTP transaction.
- 5. Click Finished.

Important: The system performance is significantly affected, depending on complexity of the classification and the type of policy action.

The new enforcement policy is added to the policy list.

Now you must add rules to the enforcement policy to define traffic filters and actions.

Configuring steering action policy

You can configure HTTP headers of the steering policy in the BIG-IP® system.

Note: If the steering action is enabled, steering policy is evaluated based on the VLAN flow. If no steering policy is configured, then the default endpoint is the next service endpoint.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** From the **Modify Header** list, select **Enabled**, to modify the HTTP request header. More modify header configuration options display.
- 7. To modify the HTTP request header, select the action you want to implement.
 - Select **Insert String Value** to insert a stringvalue that you have specified before.

- Select **Insert Value from Script** to specify that the BIG-IP system can insert value received from the TCL expression.
- Select **Remove** to remove the string value that you previously created.
- **8.** In the **Header Name** field, type a header name.
- **9.** In the **String Value** field, type a string value for the header.
- 10. Click Finished.

You can add more rules to an enforcement policy in addition to configuring HTTP header action.

Adding rules to an enforcement policy

Before you can add rules to an enforcement policy, you need to create the policy, then reopen it.

You add rules to an enforcement policy to select the traffic you want to affect, and the actions to take. A *rule* associates an action with a specific type of traffic. So you can, for example, add a rule to select all audio-video traffic and send it to a pool of servers that are optimized to handle that type of traffic.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- 7. From the **Modify Header** list, select **Enabled**, to modify the HTTP request header. More modify header configuration options display.
- **8.** Use the Reporting, Quota, Forwarding, Modify Header or QoS areas to specify what you want to do with the traffic that you are classifying or specify what actions you want to apply to the traffic. Other tasks describe how to do this in detail.
 - If you leave **Gate Status** enabled (default) and specify no other actions, the system stores traffic classification statistics on the BIG-IP system, and forwards the traffic to its destination without any further action.
- 9. Click Finished.
- 10. Repeat steps 3-8 to create as many rules as needed to handle the traffic you are interested in.

The enforcement policy includes the rules with the conditions and actions you added.

Now you need to associate the enforcement policy with the virtual server (or servers) to which traffic is directed.

Creating a rule for forwarding traffic

You can create a rule that forwards traffic to an endpoint. For example, you might want to direct video traffic to a server that is optimized for video viewing.

- 1. On the Main tab, click **Policy Enforcement** > **Policies**. The Policies screen opens.
- **2.** Click the name of the enforcement policy you want to add rules to. The properties screen for the policy opens.
- **3.** In the Policy Rules area, click **Add**. The New Rule screen opens.
- **4.** In the **Name** field, type a name for the rule.
- 5. In the **Precedence** field, type an integer that indicates the precedence for the rule in relation to the other rules. Number 1 has the highest precedence. Rules with higher precedence are evaluated before other rules with lower precedence.

Tip: All rules in a policy are run concurrently. Precedence takes effect when there are conflicting rules. The conflict occurs when the traffic matches two rules and the policy actions from these rules differ. For example, if you have a rule 1 with precedence 10 with **Gate Status** disabled for a search engine and you have rule 2 with precedence 11 with **Gate Status** enabled, then rule 1 is processed first because it has higher precedence. Rules conflict if they have identical or overlapping classification criteria (for the traffic that matches more than one rule). In some cases, different policy actions are not conflicting and hence applied in parallel.

- **6.** Use the Classification, URL, Flow, and Custom Criteria tabs to identify the traffic that you want to be affected by this rule.
- In the Gate area, for Gate Status, select Enabled. Options provide several ways to forward the traffic.
- **8.** In the Forwarding area, for **HTTP Redirect**, select **Enabled**, and type the URL.
- **9.** From the Forwarding list, select an option where you would like to forward the traffic.

Options	Description
Route to Network	The traffic flow is forwarded to the default destination.
Forwarding to Endpoint	The flow is steered to a different destination and you can select one of the endpoints.
Forward to ICAP virtual Server	The flow is forwarded to the ICAP virtual server.

- **10.** From the **Forwarding Fallback Action** list, select **Drop** or **Continue** to specify if the connection can remain unchanged or should be dropped if the forwarding action fails.
- 11. From the ICAP Virtual Server list, select an internal virtual server that you have created, or click Create to create a new internal virtual server.
- **12.** From the **ICAP Type** list, select an ICAP adaptation type.
 - Select **Request** to send a portion of the request to the ICAP server.
 - Select **Response** to receive a portion of the response from the ICAP server.
 - Select **Request** and **Response** to have both types of adaptation.

- 13. From the Service Chain list, select Create to direct traffic to more than one location (such as value-added services).
- 14. Click Finished.

You have created a rule that forwards traffic.

Creating a data plane virtual group

If you want to steer specific traffic (or otherwise regulate certain types of traffic) you must first develop appropriate enforcement policies. If using a Gx interface to a PCRF, you need to create a new virtual group in listeners that connect to a PCRF.

You can create listeners that specify how to handle traffic for policy enforcement. Creating a listener performs preliminary setup on the BIG-IP® system for application visibility, intelligent steering, bandwidth management, and reporting.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- 2. Click Data Plane.

The Data Plane screen opens.

- **3.** Click **Add Group**. The New Virtual Group screen opens.
- **4.** In the **Name** field, type a unique name for the listener.
- **5.** In the **Destination Address** field, type the IP address of the virtual server. For example, 10.0.0.1 or 10.0.0.0/24.

Note: When you use an IPv4 address without specifying a prefix, the BIG-IP[®] system automatically uses a /32 prefix.

Tip: You can use a catch-all virtual server (0.0.0.0) to specify all traffic that is delivered to the BIG-IP[®] system. Configure the source and destination setting, during forwarding mode only. In the relay mode, the client does not have an IP address and the DHCP provides the client with an IP address.

The system will create a virtual server using the address or network you specify.

- **6.** For the **Service Port** setting, type or select the service port for the virtual server.
- 7. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.
- **8.** For the **VLANs and Tunnels** setting, move the VLANs and tunnels that you want to monitor from the **Available** list to the **Selected** list.
- **9.** In the Policy Provisioning area, select enforcement policies to apply to the traffic.
 - a) For Global Policy, move policies to apply to all subscribers to High Precedence or Low Precedence.

Note: For URL categorization to take effect, you need to associate the enforcement policy with a classification profile.

b) For Unknown Subscriber Policy, move policies to use if the subscriber is unknown to Selected.

The system applies the global policy to all subscribers in parallel with the subscriber policies, and must be configured with unknown subscriber policy. High-precedence global policies override conflicting subscriber policies, and low-precedence policies are overridden by conflicting subscriber policies.

Configuring Service Chains

10. Click Finished.

The Policy Enforcement Manager creates a listener.

When you create a listener, Policy Enforcement Manager also creates virtual servers for each type of traffic (TCP, UDP, or both and IP), and a virtual server for HTTP traffic. The system sets up classification and assigns the appropriate policy enforcement profile to the virtual servers. If you are connecting to a RADIUS authentication server, a virtual server for RADIUS is also added.

Now you can send traffic through the network. As network traffic moves through the BIG-IP® system, the system classifies the traffic, and if you have developed policies, the system performs the actions specified by the enforcement policy rules.

Chapter

14

Provisioning Dynamic Subscribers

Overview: Provisioning dynamic subscribers

Overview: Provisioning dynamic subscribers

If you have subscribers that are managed on a separate policy charging and rules function (PCRF), you can connect the BIG-IP® system to that policy server to provision dynamic subscribers. *Dynamic subscribers* are subscribers that are managed by a PCRF.

The BIG-IP system receives traffic from GGSN, a gateway between the GPRS mobile network and the Internet. When a subscriber makes a request that is routed to the BIG-IP system, the Policy Enforcement Manager[™] queries the PCRF over a Gx interface. The PCRF responds with information about the subscriber. This information is stored on the BIG-IP system, which recognizes the subscriber in future requests.

You can use dynamic subscriber provisioning alone or in combination with static subscribers.

Provisioning dynamic subscribers

If you want to steer specific traffic, or otherwise regulate certain types of traffic, you need to have developed enforcement policies.

To provision subscribers dynamically through a separate PCRF, you create listeners that specify how to handle traffic for policy enforcement. Creating a listener provides preliminary setup on the BIG-IP[®] system for application visibility, intelligent steering, bandwidth management, reporting, and other features.

- 1. On the Main tab, click **Policy Enforcement** > **Listeners**. The Listeners screen opens.
- 2. Click Data Plane.

The Data Plane screen opens.

3. Click Add Group.

The New Virtual Group screen opens.

- **4.** In the **Name** field, type a unique name for the listener.
- 5. In the **Destination Address** field, type the IP address of the virtual server. For example, 10.0.0.1 or 10.0.0.0/24.

Note: When you use an IPv4 address without specifying a prefix, the BIG-IP[®] system automatically uses a /32 prefix.

Tip: You can use a catch-all virtual server (0.0.0.0) to specify all traffic that is delivered to the BIG-IP[®] system. Configure the source and destination setting, during forwarding mode only. In the relay mode, the client does not have an IP address and the DHCP provides the client with an IP address.

The system will create a virtual server using the address or network you specify.

- **6.** For the **Service Port** setting, type or select the service port for the virtual server.
- 7. From the **Protocol** list, select the protocol of the traffic for which to deploy enforcement policies (**TCP**, **UDP**, or **TCP** and **UDP**).

The system will create a virtual server for each protocol specified.

- **8.** To use network address translation, from the **Source Address Translation** list, select **Auto Map**. The system treats all of the self IP addresses as translation addresses.
- 9. For the VLANs and Tunnels setting, move the VLANs and tunnels that you want to monitor from the Available list to the Selected list.

- **10.** For the **VLANs and Tunnels** setting, move the VLANs and tunnels that you want to monitor for RADIUS traffic from the **Available** list to the **Selected** list.
- 11. In the Policy Provisioning area, select enforcement policies to apply to the traffic.
 - a) For Global Policy, move policies to apply to all subscribers to High Precedence or Low Precedence.

Note: For URL categorization to take effect, you need to associate the enforcement policy with a classification profile.

b) For Unknown Subscriber Policy, move policies to use if the subscriber is unknown to Selected.

The system applies the global policy to all subscribers in parallel with the subscriber policies, and must be configured with unknown subscriber policy. High-precedence global policies override conflicting subscriber policies, and low-precedence policies are overridden by conflicting subscriber policies.

When you create a listener, the Policy Enforcement Manager[®] also creates virtual servers for each type of traffic (TCP, UDP, or both), and a virtual server for the Gx interface. The system also creates a virtual server to handle HTTP traffic. The system assigns the appropriate classification and policy enforcement profiles to the virtual servers. If you are connecting to a RADIUS authentication server, a virtual server for RADIUS is also added.

Chapter

15

Provisioning Static Subscribers

Overview: Provisioning static subscribers

Overview: Provisioning static subscribers

If you have subscribers that are not managed on a separate policy charging and rules function (PCRF), you can create static subscribers. *Static subscribers* are individual subscribers of services that are not managed by a separate policy server. You can add static subscribers directly to the Policy Enforcement Manager[™], and assign enforcement policies to them. Each subscriber can have one or more enforcement policies associated with them.

You can use static subscribers alone or in combination with those managed by a PCRF.

Provisioning multiple subscribers

Before you create a subscriber, you need to create the enforcement policy that you want to associate with the subscriber.

You can provision multiple subscribers to BIG-IP[®] Policy Enforcement Manager^{$^{\text{M}}$} and associate policies with them. This is useful, for example, if you are not using a separate policy charging and rules function (PCRF) for subscribers, or if you need to add a subscriber with a unique enforcement policy.

- 1. On the Main tab, click **Policy Enforcement** > **Subscribers**. The Subscribers screen opens.
- 2. Click Create.

The New Subscriber screen opens.

3. From the **Subscriber ID Type** list, select the format of the subscriber ID.

Option	Description
E.164	A numbering plan that defines the format of an MSISDN international phone number (up to 15 digits). The number typically consists of three fields: country code, national destination code, and subscriber number.
IMSI	International Mobile Subscriber Identity. A globally unique code number that identifies a GSM, UMTS, or LTE mobile phone user.
NAI	Network Access Identifier. A fully qualified network name (FQDN) in the form <user>@<realm>; identifies a subscriber and the home network to which the subscriber belongs.</realm></user>
Private	The subscriber ID type is private for the given deployment.

- **4.** In the **Subscriber ID** field, type a unique identifier (up to 64 characters) for the subscriber, such as a phone number. The subscriber ID type determines the format.
- 5. In the **Subscriber IP Address** area, type the IP address of the subscriber in IPv4 or IPv6-Prefix format. Click **Add** to add multiple IP addresses. This field is optional but recommended.

Tip: Assigning the subscriber IP addresses ensures that the subscriber gets the entitled service faster.

6. In the **Policies** setting, select at least one enforcement policy from the **Available** list and move it to the **Selected** list.

The selected policy is the one that the system enforces for the subscriber you are adding.

Note: You can assign a transactional policy to an active subscriber if you have created a transactional policy with the transactional reporting rule action.

7. Click Finished.

Policy Enforcement Manager creates a static subscriber.

When the subscriber accesses the network through the BIG-IP system, Policy Enforcement Manager applies the policy you assigned to the subscriber traffic.

Subscriber CSV file format

You can upload a list of static subscribers for policy enforcement on the BIG-IP® system. A CSV file is a text file in a comma-separated-values format. Microsoft® Excel® can be used to view and create such files. The list of subscribers must be in a text file in comma separated value (CSV) format.

Each line of the CSV file represents one subscriber in the format:

```
subscriber\_ID, subscriber\_ID\_type, number\_of\_IP\_addresses, subscriber\_IP, policy\_1, policy\_2, policy\_n
```

subscriber ID

A unique identifier for the subscriber that depends on the subscriber ID type.

subscriber ID type

The format of the subscriber ID. This field is optional, but the comma is required. If you omit subscriber ID type, the system assigns the default value of IMSI (International Mobile Subscriber Identity).

subscriber IP

The IP address of the subscriber. This field is optional, but the comma is required.

subscriber IP list

The list of subscribers. This field is optional, but the comma is required.

policy_1,policy_2,policy_n

One policy or more policies assigned to the subscriber. Multiple policies must be separated by commas.

Note: To allow multiple IPs you need to change the DB variable (tmm.pem.session.ip.addr.max).

For example:

```
subscriber_11.1.1.1,private,11.1.1.1,bronze,gold,silver
```

You must include Subscriber ID and at least one policy enforcement policy for each subscriber. You need to include the comma for missing fields. Do not include spaces between values. The policies listed must be included on the policies list in **Policy Enforcement** > **Policies**, and be provisioned using a listener or a policy enforcement profile.

For example, to specify subscriber 8315555555 in IMSI format with a gold policy, you can leave out the subscriber ID type and subscriber IP address:

```
8315555555,,,gold
```

Provisioning a file of static subscribers

You can upload a CSV file containing a list of static subscribers. The file must be in a specific CSV file format.

- 1. On the Main tab, click **Policy Enforcement** > **Subscribers**. The Subscribers screen opens.
- 2. Click Upload.
- **3.** In the **File Name** setting, click the button to browse to the text file. The system opens a screen where you can select the text file
- 4. Click Upload.

The Policy Enforcement Manager[™] uploads the static subscriber file in chunks of 1000 subscribers. The system performs a validation on each chunk. If a validation fails, the subscribers in the current chunk and subsequent chunks are not imported. However, the subscribers loaded in previous chunks are imported onto the system. The Policy Enforcement Manager applies the appropriate policy to traffic from the subscribers in the list.

Chapter

16

Formatting Reports using PEM

Overview: Creating reports using PEM

Overview: Creating reports using PEM

You can view logs of the traffic passing through the BIG-IP[®] system using the reporting feature in Policy Enforcement ManagerTM (PEMTM).

The logs can be either session-based or flow-based. Session-based logs provide information about the session, while flow-based logs contain information about the traffic flow.

In Policy Enforcement Manager[™], reporting provides a default format. The default format can be changed by defining a format script, which enables you to add your own text and fields, and customize the log messages you would like to see in the logging server.

For example, you can create a format script for session reporting by typing: return "(session bytes-in: [PEM::session stats reported bytes-in]). The iRules $^{\text{@}}$ command retrieves the value of the attribute, bytes-in, in session record.

Similarly, you can create a format script for flow reporting by typing: return "(flow bytes-in: [PEM::flow stats reported bytes-in]). The iRules command retrieves the value of the attribute, bytes-in, in flow record.

Creating format scripts for reports

In an enforcement policy, format scripts can be defined for formatting report messages.

- 1. On the Main tab, click **Policy Enforcement** > **Reporting**.
- 2. Click Create.

The Format Scripts screen opens.

- 3. In the Name field, type a name for the custom format script.
- **4.** In the **Description** field, type a description of the format script.
- 5. In the **Definition** field, specify the format script that defines the log messages you want.

The iRule expression is in square brackets. You can select the **Wrap Text** check box to wrap the definition text, and select the **Extend Text Area** check box to increase the field space of format scripts.

- **6.** Click **Update** to save any changes.
- 7. To attach to an HSL endpoint, follow the steps:
 - a) Click Policy Enforcement > Policies.
 - b) Select a policy name.
 - c) Click a policy rule.

- d) From the Reporting list, select Enabled.
- **8.** From the **Report Granularity** list, select the appropriate option:
 - To log details about subscribers and application sessions, select **Session**.
 - For more granular reporting of every TCP connection, select Flow.
- **9.** In the **Volume Threshold** field, specify, in octets, the amount of data to receive from the client, send to the client, and the total traffic volume before logging the information.
- **10.** In the **Destination** setting, for **HSL**, select the HSL endpoint and then select the format script that you created in **Policy Enforcement** > **Reporting**.
- 11. Click Finished.

You have created a reporting format script that enables you to customize the reporting string to any format.

Chapter

17

Updating Signatures for Application Recognition

Overview: Updating classification signatures

Overview: Updating classification signatures

Classification signatures define different types of traffic that Policy Enforcement Manager[™] (PEM) can recognize. PEM[™] recognizes a predefined set of signatures for common applications and application categories that are updated periodically. You can download signature updates from F5 Networks, and schedule the system to automatically update the signatures. You can also manually install the classification signatures and updates, for example, if the BIG-IP[®] system does not have Internet access.

Task Summary

Importing signatures manually Scheduling automatic signature updates

Importing signatures manually

If you are uploading classification signatures manually because you do not have Internet access, you must have previously downloaded the signatures file, have it stored locally, and be able to navigate to it. You can obtain the latest signature update file from http://downloads.f5.com.

On the BIG-IP® system, you can import a locally stored classification signature update file.

- 1. On the Main tab, click **Policy Enforcement > Signatures**. The **Signatures** screen opens.
- 2. If you have Internet connectivity, click Check for Updates to update the signature file if an update is available.
- 3. To upload signature file update if the BIG-IP system does not have Internet connectivity, under the Signature Definitions area, click Import Signatures.
 The Signatures screen displays a Signatures File field where you can browse to a previously downloaded signature file update.
- **4.** To upload a signature file update, in the Signature Definitions area, click **Import Signatures**. The Signatures screen displays a **Signatures File** field where you can select the new signature file.
- 5. In the Signatures File field, click Choose File to navigate to the previously uploaded signatures file.
- 6. Click Upload.

A message displays indicating whether your upload was successful.

For signature updates to take effect, you must type bigstart restart tmm on the tmsh command line.

Scheduling automatic signature updates

You can set up the BIG-IP® system to automatically update the classification signatures. This ensures that the system always has the latest classification signature files.

- 1. On the Main tab, click **Policy Enforcement** > **Signatures**. The Signatures screen opens.
- 2. Click **Check for Updates** to manually upload a signature file update if one is available. You see the current date and time in the **Latest Update Check** setting of the Signature Definitions area.
- 3. For the Automatic Updates setting, select Enabled.

- **4.** From the **Update Schedule** setting, select **Daily**, **Weekly**, or **Monthly** to specify how often you want the system to check for updates.
- 5. Click **Update** to save your settings.

The signature updates take effect immediately.

Chapter

18

Creating Custom Classifications

- Overview: Creating custom classifications
- Classification iRule commands

Overview: Creating custom classifications

The Policy Enforcement Manager $^{\text{TM}}$ (PEM) includes predefined classification signatures for many standard categories and applications. If the predefined signatures are not sufficient for classifying your traffic, you can create custom categories and applications. To use the custom categories and applications, you need to create iRules $^{\text{(B)}}$ to classify the traffic and act on the traffic.

Task summary

Determining and adjusting traffic classifications
Creating custom classification categories
Creating custom classification applications
Creating a custom URL database
Using iRules with classification categories and applications
Modifying iRule event for URL categories

Determining and adjusting traffic classifications

The BIG-IP® system classifies many categories of traffic and specific applications within those categories. You can determine which categories and applications of traffic the system can classify, and find out information about them such as their application or category ID.

- On the Main tab, click Policy Enforcement > Classification.
 The Classification screen opens showing a list of the supported classification categories.
- 2. To view the applications in each category, click the + icon next to the category.
- 3. To view or edit the properties of the application or category, click the name to open its properties screen.

Tip: Here you can view the application or category ID number.

- **4.** Adjust the properties of the application or category, if necessary.
 - In the **Description** field, you can add text to describe the application or category.
 - Set State to Enabled to use this classification, or to Disabled not to use it.
 - For categories only, set **iRule Event**to **Enabled** if you want the system to trigger an iRule event when it recognizes traffic in this category, or set to **Disabled** if you do not.
 - In the **Category** or **Application List** field, you can change which category an application is in, or which applications are in the category.
- 5. Click **Update** to save any changes.

Creating custom classification categories

On the BIG-IP® system, you can create customized categories for classifying traffic if the predefined categories are not sufficient for your needs. For example, if you plan to create new application types unique to your organization, you can create a category to group them together.

On the Main tab, click Policy Enforcement > Classification.
 The Classification screen opens showing a list of the supported classification categories.

2. Click Create.

The New Application screen opens.

- 3. From the Type list, select Category.
- **4.** In the **Name** field, type a name for the classification category.
- 5. In the **Description** field, type optional descriptive text for the application.
- **6.** In the **Category ID** field, type an identifier for this category, a unique number in the range between 20480 and 24576, inclusive.
- 7. For the **State** setting, select the appropriate value from the list.
 - If you want the system to recognize this classification, select **Enabled**.
 - If you do not need this classification, select **Disabled**.
- 8. In the iRule Event field, select the appropriate setting.
 - To trigger an iRule event for this category of traffic, select **Enabled**. You can then create an iRule that performs an action on this type of traffic.
 - If you do not need to trigger an iRule event for this category of traffic, select **Disabled**.

Note: CLASSIFICATION:: DETECTED is the only event that is supported.

9. For the **Application List** setting, move applications that you want to associate with this category from the **Unknown** list to the **Selected** list.

If the applications are not listed yet, you can associate the applications with the category when you create them.

10. Click Finished.

You can create new application types to put into this classification category.

Creating custom classification applications

On the BIG-IP® system, you can create customized applications for classifying traffic if the predefined applications are not sufficient for your needs. You can add applications to existing categories or to customized categories that you have previously created.

- 1. On the Main tab, click **Policy Enforcement** > **Classification**.

 The **Classification** screen opens showing a list of the supported classification categories.
- 2. Click Create.

The New Application screen opens.

- **3.** From the **Type** list, select **Application**.
- **4.** In the **Name** field, type a name for the application.
- **5.** In the **Description** field, type optional descriptive text for the application.
- **6.** In the **Application ID** field, type an identifier for this application, a unique number in the range between 8192 and 16383, inclusive.
- 7. For the **State** setting, select the appropriate value from the list.
 - If you want the system to recognize this classification, select **Enabled**.
 - If you do not need this classification, select **Disabled**.
- 8. From the Category list, select the category into which to place this application.
- 9. Click Finished.

Creating a custom URL database

You can create a customized URL database that can be used for adding custom URLs and categories.

- 1. On the Main tab, click Policy Enforcement > Classification > URL > Feed List. The New Feed List screen opens.
- 2. In the Name field, type a unique name for the URL feed list.
- 3. In the **Description** field, type optional descriptive text for the URL feed list.
- **4.** In the URLDB Location area, click the **Browse** button, and select the customdb file. The customdb file should be present on your machine, and is not present on the BIG-IP system.

The customdb file is a CSV file of the format. The format is: URL/IPv4 [,cat1] [,cat2]...

Note: The non-IP URL should have a IANA registered top level domain. The URL category ID should be in the form of integer and the range is 24576 to 32767.

For example, sample lines of customdb entry is:

```
weather.gov, 28678
pconline.com.cn, 28679
kannadaprabha.com, 28680
yandex.ru, 28677, 28676, 28681
pitt.edu,28682
```

- 5. On the Main tab, click **Policy Enforcement** > **Classification** > **URL** > **Policy**. The New Policy screen opens.
- **6.** In the **Name** field, type a unique name for the URL category policy.
- 7. In the **Description** field, type optional descriptive text for the URL category policy.
- 8. In the Feed List area, select the feed list that you created to attach to the policy.
- 9. Click Finished.

The category lookup is done in the custom database, and the URL list is loaded into the custom database through file input. You can also perform URL categorization by looking up the server name indication (SNI) in SSL traffic.

Using iRules with classification categories and applications

If you are using custom classification categories or applications, you can use iRules® to identify the traffic for the custom classifications, or you can initiate an action based on how the traffic is classified.

- 1. On the Main tab, click Local Traffic > iRules.
- 2. Click Create.
- **3.** In the Name field, type a 1- to 31-character name.
- **4.** In the **Definition** field, type the syntax for the iRule using Tool Command Language (Tcl) syntax. For example, to classify traffic as xxx_app, a custom classification application that you created, you can use this iRule:

```
}
}
}
```

For example, to perform an action (in this case, drop) on traffic classified as xxx_app, you can use this iRule:

For complete and detailed information about iRules syntax, see the F5 Networks DevCentral web site http://devcentral.f5.com.

5. Click Finished.

After creating the iRules, you must assign them as resources for each relevant virtual server on the BIG-IP® system.

Modifying iRule event for URL categories

On the BIG-IP® system, you can modify iRules® Event settings for URL categories.

- 1. On the Main tab, click **Policy Enforcement** > **Classification**.

 The **Classification** screen opens showing a list of the supported classification categories.
- Select an URL category. The URL Properties screen opens.
- 3. In the **Description** field, type optional descriptive text for the application.
- 4. In the iRule Event field, select the appropriate setting.
 - To trigger an iRule event for this category of traffic, select **Enabled**. You can then create an iRule that performs an action on this type of traffic.
 - If you do not need to trigger an iRule event for this category of traffic, select Disabled.

Note: CLASSIFICATION:: DETECTED is the only event that is supported.

You have modified an iRule event setting for an existing URL category.

Classification iRule commands

When the BIG-IP® system identifies a specific type of traffic with iRules® enabled, it triggers a <code>CLASSIFICATION_DETECTED</code> event. You can use the commands within iRules for additional system flexibility to classify the flow as one or more of the application or category classifications. The <code>CLASSIFY</code> commands are available from the <code>HTTP REQUEST</code> or <code>HTTP RESPONSE</code> iRule events.

Creating Custom Classifications

iRule Command	Description
CLASSIFICATION::app	Gets the name of the classified application (the most explicit classified application).
CLASSIFICATION::category	Gets the category of the application.
CLASSIFICATION::disable	Disables the classification for a flow.
CLASSIFICATION::enable	Enables the classification for a flow.
CLASSIFICATION::protocol	Gets the name of the classified protocol (the least explicit classified application).
CLASSIFY::application set appname	Classifies the flow as appname and associates the category that appname belongs to.
CLASSIFY::application set appname	Classifies the flow as appname and associates the category that appname belongs to.
CLASSIFY::category set catname	Classifies the flow as catname and also associates the flow with the unknown category.
CLASSIFY::application add appname	Adds the application appname to the classification statistics.
CLASSIFY::category add catname	Adds the category <i>catname</i> to the classification statistics.

Chapter

19

Configuring PEM with Local Traffic Policies

 Overview: Creating local traffic policy rules for PEM

Overview: Creating local traffic policy rules for PEM

Classification signatures are added as rules in the local traffic policy. The classification signatures can be used for many standard categories and applications. In addition, you can create custom categories and applications. The BIG-IP® system automatically creates a local traffic policy that is attached to a virtual server. However, when you use Policy Enforcement Manager^{$^{\text{TM}}$} (PEM $^{\text{TM}}$), you can create a policy attached to a virtual server and then the BIG-IP system creates a local traffic policy. You can add an HTTP profile and classification profile in the virtual server. The local traffic policy forms a logical link between the local traffic components and the policy.

When you create a listener, a local traffic policy is attached to the listener HTTP virtual server. If you want to create custom application signatures for certain types of traffic, you can use the local traffic policy to do that, and define the policies that allow you to classify traffic. Some policies can behave like application signatures. An *application signature* is a signature that is assigned to an application (for example, HTTP traffic).

Local traffic policies can include multiple rules. Each rule defines the signature and consists of a condition. Actions are to be performed if the condition holds. Multiple signatures can be assigned to one policy, so you can create a local traffic policy that works with PEM and includes multiple rules that do different things depending on the conditions you set up. In this type of traffic policy, each rule must include one of these PEM actions:

- Enable PEM.
- Attach an application or category ID that you created.

Note: The BIG-IP system does not allow you to attach two classification local traffic policies to the same virtual server.

Task Summary

Modifying custom local traffic policy rules for PEM
Creating custom local traffic policy rules for PEM
Creating a virtual server for SSL traffic policy enforcement

Modifying custom local traffic policy rules for PEM

Before you modify rules on existing policies, you must set up an application or category (**Policy Enforcement** > **Classification**.

You can add rules to define conditions and run specific actions for different types of application traffic in Policy Enforcement ManagerTM (PEMTM). For example, if you create an application signature for company A and want to send traffic from company A's website, you can perform actions, such as bandwidth control and disable **Gate status** from PEM. This is a rule that can be assigned to an existing policy.

1. On the Main tab, click Local Traffic > Policies.

For more information about local traffic policies, refer to $BIG-IP^{\otimes}$ Local Traffic ManagerTM: Implementations.

The Policy List screen opens.

2. Click _sys_CEC_video_policy.

Important: $_sys_CEC_video_policy$ is the default local traffic policy that is important for classification; $F5^{®}$ recommends that you keep the policy.

The Policy List screen opens.

3. Click Add.

The New Rule screen opens.

- 4. In the Rule Name field, type a unique name for the policy, for example companyA.
- 5. In the Rule properties area, define the application traffic to which this rule applies. Specify these values and use default values for the remainder.
 - a) From the **Operand** list, select **http-host**.
 - b) From the **Event** list, select **request**.
 - c) From the **Selector** list, select all.
 - d) From the Condition list, select ends-with.
 - e) Type the value; for example, companyA.com.
 - f) Click Add.
- **6.** In the Actions setting, define the action to apply to the traffic. Specify these values and use the default values for the remainder:
 - a) From the **Target** list, select **pem**.

Note: You can specify the application you created; in this example, it is companyA.

Event is set to request and Action is set to classify. For Parameters, select application and specify the application /common/companyA; click Add.

- b) In the Actions area, click Add.
- 7. Click **Finished** to add the rule to the local traffic policy.
- **8.** Verify that the rule is added to the policy (**Local Traffic** > **Policies** > _sys_CEC_video_policy) and scroll down to view the list of rules.

You should be able to view the rule you just created.

Now you have added a new rule to the existing policy. When you send traffic that matches the rule you defined, you should be able to see the application or category you have configured. You can view the classified traffic, as well (**Statistics** > **Classification** > **Statistics**).

Creating custom local traffic policy rules for PEM

You can create a new policy with rules in Policy Enforcement Manager[™] (PEM[™]).

1. On the Main tab, click Local Traffic > Policies.

Important: $_sys_CEC_video_policy$ is the default local traffic policy that is important for classification; $F5^{\textcircled{®}}$ recommends that you keep the policy.

The Policy List screen opens.

2. Click Create.

The New Policy screen opens.

- 3. In the Name field, type a unique name for the policy, for example £5.
- 4. From the Strategy list, select first-match.
- 5. For the **Requires** setting, select **http** in the **Available** list, and move it to the **Selected** list using the Move button.
- **6.** For the **Controls** setting, select **classification** in the **Available** list, and move it to the **Selected** list using the Move button.

7. Click **Finished** to add a new policy.

The Policy List screen opens.

- 8. Click the new policy created. In this example, it is **f5.com**.
- 9. Click Add.
- **10.** In the Rule Name field, type the name f5 web.
- 11. In the Rule properties area, define the application traffic to which this rule applies. Specify these values and use default values for the remainder.
 - a) From the **Operand** list, select **http-host**.
 - b) From the **Event** list, select **request**.
 - c) From the Selector list, select all.
 - d) From the Condition list, select ends-with.
 - e) Type the value; for example, f5.com.
 - f) Click Add.
- 12. In the Actions setting, define the action to apply to the traffic. Specify these values and use the default values for the remainder:
 - a) From the **Target** list, select **pem**.

Note: You can specify the application created (**Policy Enforcement** > **Classification**); in this example, it is £5.

Event is set to **request**, **Action** is set to **classify**. For **Parameters**, select **application** and specify the application /**common/f5**.

- b) Click Add.
- c) In the Actions area, click Add.
- **13.** Click **Finished** to add the rule to the local traffic policy.
- **14.** Verify that the policy is added to the virtual servers (**Local Traffic** > **Virtual Servers**) and click the HTTP virtual server that you created.

The Virtual Server List screen opens.

15. Click Resources.

The listener screen opens.

16. In the Policies area, click the Manage button.

The screen for the HTTP virtual server opens.

- 17. For the **Policies** setting, select the new policy that you created, **f5.com**, from the **Available** list, and move it to the **Enabled** list using the Move button.
- 18. Click Finished.

Now you have created a new policy with an HTTP-based signature (f5.com). You can view traffic for f5.com (**Statistics** > **Classification** > **Statistics**), and also verify the rule created, by browsing to **f5.com** through the BIG-IP system.

Creating a virtual server for SSL traffic policy enforcement

The BIG-IP® system allows SSL pass through mode to collect certificate information. You have to define a virtual server that references SSL pool and classifies SSL traffic for policy enforcement.

- 1. On the Main tab, click **Local Traffic** > **Virtual Servers**. The Virtual Server List screen opens.
- 2. Click the Create button.

The New Virtual Server screen opens.

- **3.** In the **Name** field, type a unique name for the virtual server.
- **4.** For a network, in the **Destination Address** field, type an IPv4 or IPv6 address in CIDR format to allow all traffic to be translated.

The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is 0.0.0.0/0, and an IPv6 address/prefix is ::/0.

- 5. In the Service Port field, type 443 or select HTTPS from the list.
- **6.** From the **Configuration** list, select **Advanced**.
- 7. From the Classification list, select **Enabled** on, for the BIG-IP system to enable classification for virtual servers when a policy enforcement listener is created.
- **8.** From the **Policy Enforcement Profile** list, select the name of the Policy Enforcement Profile that you previously created.
- 9. Click Finished.
- **10.** From the **Default Persistence Profile** list, select **ssl**. This implements simple persistence, using the default ssl profile.
- 11. In the Policies area, click the Manage button.
- **12.** For the **Policies** setting, from the **Available** list, select the name of the iRule that you want to assign, and use the buttons to move the name into the **Enabled** list.

You have created a virtual server for SSL traffic. The virtual server that references SSL pools appears in the Virtual Servers list.

Chapter

20

Configuring Policy and RADIUS Updates

 Overview: Configuring policy and RADIUS updates

Overview: Configuring policy and RADIUS updates

Policy Enforcement Manager^{$^{\text{TM}}$} (PEM^{$^{\text{TM}}$}) enables you to schedule policy reevaluations and radius updates on the BIG-IP^{$^{\text{R}}$} system in the following two ways:

- You can configure the interval for reevaluation of policies, for a subscriber session, by configuring the
 re-evaluation interval. The BIG-IP system evaluates changes in the policy for traffic, once the
 re-evaluation interval is configured.
- The RADIUS traffic contains the subscriber and IP address information that is monitored by the BIG-IP system. If you enable the timeout interval, the BIG-IP system avoids repeated deletion and creation of the subscriber during the configured interval rate.

Configuring PEM options

You can set up the BIG-IP® system to schedule an interval that sets policy reevaluation and RADIUS re-transmission updates periodically.

- 1. On the Main tab, click **Policy Enforcement > Options**. The Options screen opens.
- 2. In the Policy Options area, specify (in seconds) the **Policy Re-evaluation Interval** at which the policy re-evaluation is triggered, to evaluate the flow policy again.
 - The re-valuation interval is only for active flows.
 - For example, a subscriber is provisioned over GX which has a policy to allow Netflix with some bandwidth. The subscriber is able to watch a movie using the Netflix service. However, consider that the PCRF installs a policy for this subscriber to block Netflix over the Gx interface. Then, while the subscriber is viewing the content, the Netflix content is blocked for the subscriber after the configured re-evaluation interval.
- 3. In the RADIUS Options area, for the Re-Transmit Timeout setting, select Enabled and specify the time in seconds. If you select Disabled, each RADIUS message is handled as a new message and this might lead to deletion and creation of sessions even though the radius massage is a duplicate. This is the timeout after which the RADIUS message is considered as a new message, by the BIG-IP system.
- 4. In the Quota Management Options area, for the **Default Rating Group** setting, select **Create** to create a new rating group for quota management.
 This takes you to the **Policy Enforcement > Rating Groups > New Rating Group** screen. Click **Policy Enforcement > Options** to go back to options screen.
- 5. In the Statistics Options area, for the Analytics Mode setting, select Enabled to use analytics reporting. Select the external logging such as HSL endpoint in the External Log Publisher setting. This generates Application Visibility and Reporting (AVR) PEM reports, in a timely manner through graphs.

The policy and RADIUS updates take effect immediately.

Chapter

21

Enforcing Policy and Classification on IP Protocols

 About enforcing policy and classification on IP protocols

About enforcing policy and classification on IP protocols

The BIG-IP® system now provides classification and policy enforcement on all non-TCP and non-UDP traffic, which includes IPsec traffic. The Policy Enforcement Manager™ is able to classify and enforce any action on virtually any type of IP traffic. This enables detection of IPsec, ICMP, GRE, and other IP protocols (especially tunneling) for the service providers. For IPsec, Encapsulating Security Payloads (ESP) and Authentication Headers (AH) protocols are used, in both tunnel and transport modes.

A bottom hudfilter forwards non-TCP and non-UDP traffic for both classification and policy enforcement.

Note: HTTP redirect is not supported. Based on the protocol, not all actions work and some traffic is not steered.

Important: You can use SNAT, only when you forward ICMP and ICMPv6 traffic.

Creating Any IP profiles for PEM

Before you create multiple Any IP profiles, you must create a listener in Policy Enforcement Manager (PEM^{TM}) , which creates a virtual server with Any IP profile.

You can create a new Any IP profile through local traffic management in PEM.

- 1. On the Main tab, click Local Traffic > Profiles > Protocol > Any IP. The Any IP screen opens.
- 2. Click Create.

The New Any IP Profile screen opens.

3. From the **Parent Profile** list, select the default **ipother** or any other Any IP profile, from where the new profile can inherit the settings.

Note:

You will see multiple Any IP profiles in the list only if you have created the profiles earlier.

- **4.** To specify the idle timeout, click **Custom**, select **Specify**, and type a value (in seconds). The idle time out specifies the number of seconds for which a connection is idle before the connection is eligible for deletion.
- 5. Click Finished.

Now you have created a new Any IP profile. You can view non-TCP and UDP traffic that passes through the BIG-IP system (**Statistics** > **Classification** > **Statistics**).

Updating Any IP profile

If you have created other Any IP profile and you want to attach this profile to the Any IP traffic, then you can attach the profile through local traffic management in Policy Enforcement ManagerTM (PEMTM).

- On the Main tab, click Local Traffic > Virtual Servers > Virtual Server List.
 The Virtual Server List screen opens.
- **2.** Select any virtual server.

The virtual server properties screen opens.

- **3.** From the **Protocol** list, select ***All Protocols**. Any IP profile settings displays.
- **4.** From the **Any IP Profile** list, select the default setting **ipother**, or any other Any IP profile from where the new profile can inherit the settings.

Note:

You will see multiple Any IP profiles from the list only if you have created the profiles earlier.

5. Click Update.

Now you have updated the Any IP profile and attached it to the Any IP traffic.

IPOther filter for current PEM actions

The policy actions configured in the Policy Enforcement Manager $^{\text{TM}}$ can support non-TCP and non-UDP traffic flows. This table contains the information that highlights the actions supported for non-TCP and non-UDP traffic.

Action	All non-TCP and non-UDP flows	
Forwarding	Only non-tunnel protocols.	
	Note: ICMP traffic can be steered.	
Service-chain	Only non-tunnel protocols.	
	Note: ICMP traffic can be steered.	
Cloning	Yes	
BWC (both directions)	Yes	
L2 QoS markings (both directions)	Yes	
Flow Reporting	Yes	
Session Reporting	Yes	
Gate status drop	Yes	
Quota	Yes	
HTTP-redirect	No	
Modify HTTP headers	No	
iRules	CLIENT_DATA and CLIENT_ACCEPTED iRules only (like UDP filter).	

Chapter

22

Troubleshooting

PEM troubleshooting

PEM troubleshooting

Follow these general troubleshooting suggestions when using Policy Enforcement Manager[™] (PEM[™]):

- If enforcement policies are not enforced as expected, on the VLAN screen for all VLANs set up to receive incoming subscriber traffic, verify that you set **CMP Hash** to **Source Address**.
- If static subscriber policies are not enforced as expected, verify whether you enforced any global, high precedence policies with conflicting actions.
- When sending traffic without RADIUS, the unknown subscriber policy (if specified) is assigned to the first flows from dynamic or static subscribers. Subscriber policies are applied to subsequent flows.

Note: An unknown subscriber policy needs to be specified, if there is at least one dynamically provisioned subscriber.

- Policy changes are applied to new and existing flows within a reasonable time.
- For applications with connections initiated from the Internet (FTP, RTSP, TFTP), the BIG-IP® system needs to have **CMP Hash** set to **Destination Address** on the Internet VLAN. In this case, the end-to-end IP addresses have to be preserved; therefore, SNAT should be disabled on all the virtual servers that the applications will use.
- When importing static subscribers, the file is uploaded in chunks of 1000 subscribers. The system
 performs a validation check on each chunk. If a validation fails, the subscribers in the current chunk and
 subsequent chunks are not imported. However, the subscribers loaded in previous chunks are imported
 onto the system.

Note: PEM^{TM} can use 3rd party database, custom DB or iRule for URL categorisation. The onbox 3rd party database is limited to the 20M most used URL and is updated regularly.

Steering troubleshooting

- In case of service chains (w-steering), set **CMP Hash** to **Source Address** on all the VLANs for which the w-steering action is to be applied.
- For response-side classification, steering, w-steering, and cloning actions are applied after the results (based on destination IP address and port) are cached in the classification database (srdb). Actions are not applied for the first six flows, by default. (This behavior is configurable by the DB variable tmm.pem.srdb.entry.step.)

RADIUS troubleshooting

- If static subscribers are not working as expected with RADIUS, check whether you selected the same
 Subscriber ID Type in the radiusLB profile (Local Traffic > Profiles > Services > RADIUS) as that
 assigned when creating the static subscriber. (IMSI in the static subscriber corresponds to 3GPP IMSI
 in the RADIUS profile; E164 to Calling Station ID, and NAI to User Name.)
- The RADIUS message also needs to specify the same **Subscriber ID Type** as the RADIUS profile. So make sure that if you select **IMSI**, the IMSI number exists in the RADIUS message. This also applies to the **user-name** for NAI, and **calling station-id** for E164.

Gx interface to PCRF troubleshooting

- If you change the IP address of the Gx server in the listener, the change takes effect after you restart TMM using the command: bigstart restart tmm.
- For Gx usage monitoring, the threshold is defined on the Policy and Charging Rules Function (PCRF).

Bandwidth control with PEM troubleshooting

- Do not use dynamic bandwidth control policies in preconfigured enforcement policies (either global or subscriber) when the bit rate is managed by the PCRF through PCC dynamic rules.
- Do not use dynamic bandwidth control policies in global enforcement policies if they are also used in subscriber policies.
- For bandwidth controller to work with PCRF, you need to create a default dynamic bandwidth controller with the name dynamic_spm_bwc_policy, with eight categories named cat1 to cat8 (all set to 100 percent). You must choose a proper max-rate value for this bandwidth controller (typically, close to network capacity dedicated to subscriber traffic).

Important: This bandwidth controller is intended for internal usage only and should not be used for other purposes.

Active sessions troubleshooting (retrieving subscriber data or BIG-IP system information)

- When the BIG-IP system receives policy information from the PCRF for a subscriber, you can verify
 the active policies on the subscriber session, the subscriber type (static or dynamic) and view subscriber
 statistics by checking Active Sessions (Policy Enforcement > Subscribers > Active Sessions).
- If you have a static subscriber without an IP address, no active session is created. The incoming RADIUS message has the IP information for the static subscriber and a session is created based on this. When the radius message arrives, verify both the new session and policy attached to the session.
- You can view subscriber information with multiple IP addreses. Static subscribers can have more than two IP addresses of either IPv4 or IPv6 and up to a maximum of 16. Dynamic subscribers can have one IPv4 IP address and one IPv6 IP address.
- If your subscriber type is dynamically provisioned, then your assigned policy can be based on a predefined PCC rule or dynamic PCC rule.
- For information about uplink and downlink traffic (byte count and flows), check (Policy Enforcement > Subscribers > Statistics).
- You can auto-refresh the subscriber session information for 10 to 300 seconds.
- There is a hold time for new subscriber sessions. To change the provisioning hold time, you can use the sys db variable key: tmm.pem.session.ip-addr.max.

iRules® troubleshooting

- While running the script, if the BIG-IP system receives an error, ignore the error and implement the next custom action script. Although this is the default behaviour, it is possible to change it with the sys db variable key: pem.tcl.action.error.abort.
- If policy priority, event priority, and the rule precedence is the same, then there is no guarantee of order of execution.
- You can use iRule commands to set accounting report interval, but set the accounting interval larger than the BIG-IP interval configuration for the accounting report interval to be effective.

IPsec troubleshooting

• For IPsec to work with Policy Enforcement Manager[™] (PEM[™]), disable the DB variable *ipsec.lookupspi*.

Subscriber and policies active sessions

You can view session records based on subscriber ID or session IP. Policy Enforcement Manager^{$^{\text{TM}}$} contains the information presented in this table. You can access this is in **Active Sessions** (**Policy Enforcement** > **Subscribers** > **Active Sessions**).

Field	Description
ID	A unique identifier (up to 64 characters) for the subscriber initiating the session, such as a phone number. The subscriber ID type determines the format.
ID type	The format of the subscriber ID attribute. It can be E.164, IMSI, NAI, or Private (RFC 4006).
Subscriber Type	Specifies a dynamically or statically subscriber.
Calling Station	Radius Attribute Value Pair (AVP) type 31 (3GPP TS 29.061 V9.6.0).
Called Station	Radius Attribute Value Pair (AVP) type 30 (3GPP TS 29.061 V9.6.0.
Tower	Specifies the cell tower where subscriber information goes through.
User Name	Displays the format name name@domain.
IMSI	International Mobile Subscriber Identity. A globally unique code number that identifies a GSM, UMTS, or LTE mobile phone user.
IMSEISV	International Mobile Station Equipment Identity Software Version. A globally unique code number that identifies a GSM, UMTS, LTE, or iDEN mobile phone.
Predefined	Specifies the predetermined policy(ies) assigned to the subscriber.
Dynamic	Specifies the dynamic PCC rule applied.
Statistics	Specifies active session statistical information that includes subscriber and session IP identity attributes, assigned policy, and traffic flow information.

Active sessions statistics

You can view subscriber uplink and downlink traffic information. Policy Enforcement Manager $^{\text{TM}}$ contains the information presented in this table.

Field	Description
Data Format	Specifies how the system presents the statistics information. The default is Normalized .
Auto Refresh	Automatically updates the screen information at the interval you specify. For example, if you select 60 seconds from the list, the system updates the displayed screen information every 60 seconds. The default is Disabled . When you specify an automatic-refresh interval, the system presents a Stop button for halting the operation, and counts down the seconds to the next update. Select Disabled to turn off automatic refreshing.
Session IP	Specifies the session IP address. The IP address is in either IPv4 or IPv6 format.
Subscriber ID	Specifies a unique identifier subscriber ID.
Uplink	Specifies traffic volume from the subscriber to network.
Downlink	Specifies traffic volume from the network to subscriber.
Current	Specifies current number of flows.
Maximum	Specifies maximum number of open flows.
Total	Specifies accumulated number of flows ever opened by the subscriber.

Configuring subscriber activity log

You can configure the activity logs of the selected subscribers by subscriber or session activity.

- 1. On the Main tab, click **Policy Enforcement > Subscribers > Activity Log > Configuration**. The Configuration screen opens.
- 2. From the **Log Publisher** list, select the log publisher that was created. You can create a log publisher in the system at **System** > **Logs** > **Configuration** > **Log Publishers**.
- **3.** From the **Subscriber Type** list, select **Dynamic** (for dynamic provisioning) or **Static** (for static provisioning) subscriber.
- **4.** In the **Subscriber ID** field, type a unique identifier (up to 64 characters) for the subscriber, such as IMSI
- 5. Using the Log Subscriber Activity setting, add each subscriber ID to the log settings.
 - a) Type the Subscriber ID.
 - b) Click Add.
- **6.** To configure settings of the activity logs by sessions, use the Log Session Activity setting to add each session IP to the log settings.
 - a) Type the **Session IP** address.
 - b) Click Add.
- 7. Click Update.

Policy Enforcement Manager[™] starts generating the subscriber activity logs for the configured subscribers.

You have configured the activity logs settings. Policy Enforcement Manager applies the log settings you assigned and lists subscriber activity and session information.

Appendix

IPFIX Templates for PEM Events

- Overview: IPFIX templates for PEM events
- About IPFIX Information Elements for PEM events
- About individual IPFIX templates for each event

Overview: IPFIX templates for PEM events

The IP Flow Information Export (IPFIX) Protocol is a logging mechanism for IP events. This appendix defines the IPFIX Information Elements (IEs) and templates used to $\log F5^{\otimes}$ Policy Enforcement ManagerTM (PEMTM) events. An *IE* is the smallest form of useful information in an IPFIX log message, such as an IP address or a timestamp for the event. An *IPFIX template* is an ordered collection of specific IEs used to record one IP event, such as the acceptance of a network packet. In PEM, the IPFIX publisher delivers PEM records at the session, flow, and transaction level.

About IPFIX Information Elements for PEM events

Information Elements (IEs) are individual fields in an IPFIX template. An IPFIX template describes a single Policy Enforcement Manager $^{\text{TM}}(PEM^{\text{TM}})$ event.

IANA-defined IPFIX Information Elements

IANA maintains a list of standard IPFIX Information Elements (IEs), each with a unique Element Identifier. The $F5^{\text{@}}$ PEMTM IPFIX implementation uses a subset of these IEs to publish PEM events. This subset is summarized in the table.

Information Element (IE)	ID	Size (Bytes)
destinationIPv4Address	12	4
destinationIPv6Address	28	16
destinationTransportPort	11	2
ingressVRFID	234	4
protocolIdentifier	4	1
sourceIPv4Address	8	4
sourceIPv6Address	27	16
sourceTransportPort	7	2

IPFIX enterprise Information Elements

IPFIX provides for enterprises to define their own Information Elements. F5[®] currently uses the following non-standard IEs for PEM[™] events:

Information Element (IE)	ID	Size (Bytes)
3gppParameters	12276 - 57	Variable
applicationCategoryId	12276 - 48	2
concurrentFlows	12276 - 59	2
downlinkVolume	12276 - 88	8

Information Element (IE)	ID	Size (Bytes)
durationSec	12276 - 60	2
lastRecordSent	12276 - 63	8
newFlows	12276 - 64	2
observationTimeSeconds	12276 - 90	8
recordReason	12276 - 66	1
recordType	12276 - 54	1
reportId	12276 - 55	4
reportVersion	12276 - 56	Variable
subscriberId	12276 - 71	Variable
subscriberIdType	12276 - 72	Variable
successfulTransactions	12276 - 68	4
terminatedFlows	12276 - 69	2
timestampMsec	12276 - 91	2
totalTransactions	12276 - 73	2
uplinkVolume	12276 - 89	8

Information Element (IE)	ID	Size (Bytes)
applicationCategoryId	12276 - 48	2
downlinkVolume	12276 - 88	8
flowStartMilliSeconds	12276 - 50	2
flowStartSeconds	12276 - 51	8
flowStopMilliSeconds	12276 - 52	2
flowStopSeconds	12276 - 53	8
observationTimeSeconds	12276 - 90	8
recordType	12276 - 54	1
reportId	12276 - 55	4
reportVersion	12276 - 56	Variable
subscriberId	12276 - 71	Variable
subscriberIdType	12276 - 72	Variable
timestampMsec	12276 - 91	2
totalTransactions	12276 - 73	2
uplinkVolume	12276 - 89	8
urlCategoryId	12276 - 87	2
vlanId	12276 - 92	2

Information Element (IE)	ID	Size (Bytes)
applicationCategoryId	12276 - 48	2

Information Element (IE)	ID	Size (Bytes)
classification	12276 - 49	Variable
downlinkVolume	12276 - 88	8
httpHostname	12276 - 74	Variable
httpHostnameTruncated	12276 - 75	1
httpResponseCode	12276 - 76	2
httpUrl	12276 - 77	Variable
httpUrlTruncated	12276 - 78	1
httpUserAgent	12276 - 79	Variable
httpUserAgentTruncated	12276 - 80	1
recordType	12276 - 54	1
reportId	12276 - 55	4
reportVersion	12276 - 56	Variable
skippedTransactions	12276 - 82	2
subscriberId	12276 - 71	Variable
subscriberIdType	12276 - 72	Variable
transactionNumber	12276 - 81	2
transactionStartMilliSeconds	12276 - 83	2
transactionStartSeconds	12276 - 84	8
transactionStopMilliSeconds	12276 - 85	2
transactionStopSeconds	12276 - 86	8
uplinkVolume	12276 - 89	8
urlCategoryId	12276 - 87	2
vlanId	12276 - 92	2

Note: IPFIX, unlike NetFlow v9, supports variable-length IEs, where the length is encoded within the field in the Data Record. NetFlow v9 collectors (and their variants) cannot correctly process variable-length IEs, so they are omitted from logs sent to those collector types.

About individual IPFIX templates for each event

 $F5^{\text{@}}$ uses IPFIX templates to publish PEMTM events.

Session logs

This IPFIX template is used for session records used for HSL reporting.

Information Element (IE)	ID	Size (Bytes)	Notes
reportId	12276 - 55	4	
observationTimeSeconds	12276 - 90	8	
timestampMsec	12276 - 91	2	
recordType	12276 - 54	1	
subscriberId	12276 - 71	Variable	This IE is omitted for NetFlow v9.
subscriberIdType	12276 - 72	Variable	This IE is omitted for NetFlow v9.
3gppParameters	12276 - 57	Variable	This IE is omitted for NetFlow v9.
applicationCategoryId	12276 - 48	2	
lastRecordSent	12276 - 63	8	
uplinkVolume	12276 - 89	8	
downlinkVolume	12276 - 88	8	
concurrentFlows	12276 - 59	2	
newFlows	12276 - 64	2	
terminatedFlows	12276 - 69	2	
totalTransactions	12276 - 73	2	
successfulTransactions	12276 - 68	4	
durationSec	12276 - 60	2	
recordReason	12276 - 66	1	
reportVersion	12276 - 56	Variable	This IE is omitted for NetFlow v9.

Flow logs

This IPFIX template is used for flow records used for HSL reporting.

Information Element (IE)	ID	Size (Bytes)	Notes
reportId	12276 - 55	4	
observationTimeSeconds	12276 - 90	8	
timestampMsec	12276 - 91	2	
recordType	12276 - 54	1	
subscriberId	12276 - 71	Variable	This IE is omitted for NetFlow v9.
subscriberIdType	12276 - 72	Variable	This IE is omitted for NetFlow v9.
sourceIPv4Address	8	4	
sourceIPv6Address	27	16	
sourceTransportPort	7	2	
destinationIPv4Address	12	4	
destinationIPv6Address	28	16	
I .			

Information Element (IE)	ID	Size (Bytes)	Notes
destinationTransportPort	11	2	
protocolIdentifier	4	1	
applicationCategoryId	12276 - 48	2	
urlCategoryId	12276 - 87	2	
flowStartSeconds	12276 - 51	8	
flowStartMilliSeconds	12276 - 50	2	
flowStopSeconds	12276 - 53	8	
flowStopMilliSeconds	12276 - 52	2	
totalTransactions	12276 - 73	2	
uplinkVolume	12276 - 89	8	
downlinkVolume	12276 - 88	8	
reportVersion	12276 - 56	Variable	This IE is omitted for NetFlow v9.
ingressVRFID	234	4	
vlanId	12276 - 92	2	

Transaction logs

This IPFIX template is used for transactional records used for HSL reporting.

Information Element (IE)	ID	Size (Bytes)	Notes
reportId	12276 - 55	4	
recordType	12276 - 54	1	
reportVersion	12276 - 56	Variable	This IE is omitted for NetFlow v9.
transactionNumber	12276 - 81	2	
subscriberId	12276 - 71	Variable	This IE is omitted for NetFlow v9.
subscriberIdType	12276 - 72	Variable	This IE is omitted for NetFlow v9.
sourceIPv4Address	8	4	
sourceIPv6Address	27	16	
sourceTransportPort	7	2	
destinationIPv4Address	12	4	
destinationIPv6Address	28	16	
destinationTransportPort	11	2	
protocolIdentifier	4	1	
ingressVRFID	234	4	
vlanId	12276 - 92	2	
applicationCategoryId	12276 - 48	2	

Information Element (IE)	ID	Size (Bytes)	Notes
urlCategoryId	12276 - 87	2	
classification	12276 - 49	Variable	This IE is omitted for NetFlow v9.
transactionStartSeconds	12276 - 84	8	
transactionStartMilliSeconds	12276 - 83	2	
transactionStopSeconds	12276 - 86	8	
transactionStopMilliSeconds	12276 - 85	2	
uplinkVolume	12276 - 89	8	
downlinkVolume	12276 - 88	8	
skippedTransactions	12276 - 82	2	
httpResponseCode	12276 - 76	2	
httpHostnameTruncated	12276 - 75	1	
httpHostname	12276 - 74	Variable	This IE is omitted for NetFlow v9.
httpUserAgentTruncated	12276 - 80	1	
httpUserAgent	12276 - 79	Variable	This IE is omitted for NetFlow v9.
httpUrlTruncated	12276 - 78	1	
httpUrl	12276 - 77	Variable	This IE is omitted for NetFlow v9.

Index

A	collectors for IPFIX 46
active sessions	creating 93–94
records 139	custom action
statistics 140	iRules 30
Any IP profile	
updating 134	_
Any IP profiles	D
creating 134	-1
application rules	destinations
adding to enforcement policy 31, 99	for IPFIX logging 47
application visibility	DHCPv4 profiles
defined 22	creating 66
application visibility statistics	DHCPv6 profile
examining 24	creating 68
applications	dynamic service chains
creating custom classification 121	creating 96
overview custom classification 120	dynamic subscribers
Overview custom classification 720	overview 104
	provisioning 104
В	
bandwidth control	E
creating a rule for 78	a sa alma i sa ta
bandwidth control policies	endpoints
creating dynamic for PCRF 82	creating 29
for tiered services 86	creating for service chains 96
overview 86	enforcement policy
static, creating 77	about rules 17
bandwidth control with PEM	adding Gx reporting rules 73
overview 76, 82	adding HSL reporting rules 50, 52–53
result of 84	adding rules to 31, 99
bandwidth control with tiered services	best practices 18
result of 90	classifying traffic rules 32, 34
best practices, PEM 18	controlling bandwidth 78, 87
boot practicos, i Elvi 70	creating 30, 78, 87, 97
_	creating listeners 23, 38, 79, 101
C	overview 16–17
	QoS traffic rules 37
categories	troubleshooting 138
creating custom classification 120	URL categorization 33
determining classification 22, 120	enforcement rules
classification	overview 17
using iRules 122	
classification applications	F
creating custom 121	•
overview 120	forwarding traffic
classification categories	creating rules 36, 100
creating custom 120	overview 28
determining 22, 120	
classification data	0
overview 22	G
classification iRule commands 123	alphal application policies
classification signatures	global application policies
updating automatically 116	overview 76
updating manually 116	Gx reporting
updating overview 116	overview 64, 72
classification statistics	Gy support
examining 24	about 42

Н	listeners (continued) creating 23, 38, 101
header values	local traffic policy
for HTTP requests 93	classification 126
HSL reporting	creating PEM rules 127
overview 50	modifying PEM rules 126
HSL reporting format	SSL 128
flow-based 55	logging
session-based 54	and destinations 47
transaction-based 56	and pools 46
HTTP request-header values 93 HTTP virtual server	and publishers 47, 50 logging format
send HTTP requests 93	HSL flow-based 55
Send III II Tequesis 90	HSL session-based 54
	HSL transaction-based 56
1	THE MAINSCORE BASES OF
ICAP adaptation 93	M
ICAP content adaptation 92	
ICAP profiles	maximum rate of throughput, See bandwidth control policies
93	modify header
assigning 95	creating 98
internal virtual server	
for response modification 94	N
internal virtual server type defined 92	
internal virtual servers	New virtual group
creating 95	connecting to a PCRF 79
IPFIX	creating 79
AFM template overview 144	
and server pools 46	0
template for sending IPFIX data set records for session	adia a di ancia a contaga (000)
reporting 146	online charging system (OCS)
template for sending IPFIX data set records for	connecting to 42
transactional reporting 147-148	
IPFIX collectors	P
and destinations for log messages 47	necessard CO
and publishers for log messages 47	password 60 PCRF
IPFIX logging	enforcing bandwidth control 82
and PEM 46	provisioning subscribers 18
creating a destination 47 IPFIX logging, overview 46	PEM
IPOther filter	IANA IPFIX IEs for 144
PEM actions 135	IPFIX template for PEM flow logs 147
IPsec traffic	IPFIX template for PEM session logs 146
classification 134	IPFIX template for PEM transaction logs 148
iRule commands, classification 123	performance, PEM 19
iRules	policy
using with traffic classification 122	creating enforcement 30, 78, 87, 97
	provisioning dynamic subscribers 104
L	Policy and Charging Rules Function (PCRF)
_	connecting to 72, 83, 89
limitation, PEM 19	policy enforcement overview 16
listener	policy re-evaluation
creating 42, 72, 83, 89	interval 132
listener for DHCPv4 discovery virtual	policy updates
creating 65	overview 132
listener for DHCPv6	pools
creating 67	creating 28, 95
listener for RADIUS	for IPFIX 46
creating 70	publishers
connecting to a PCRF 23, 38, 101	and logging 47
5511100ting to a 1 51tl 20, 50, 707	

publishers (continued)	signatures
creating for logging 50	updating automatically 116
	updating manually 116
Q	static bandwidth control policies, See bandwidth control policies
· ·	static subscribers
quota management with PEM	overview 108
overview 42	statistics
	examining for classification 24
	steering
R	adding classification rules to policy 31, 99
	creating a policy 30, 78, 97
RADIUS AAA profiles 60	creating endpoints 29
RADIUS AAA virtual	creating service chains 96
creating 60	steering policy
RADIUS accounting	
report 61	adding 98
RADIUS authentication	define 93
overview 60	subscriber activity
RADIUS re-transmission	debuggability 141
overview 132	subscriber CSV file format 109
re-transmit timeout 132	subscribers
rating groups	adding 108
about 42	overview 104, 108
	provisioning dynamic 104
creating 43	provisioning with PCRF 18
recommendations, PEM 18	uploading 110
reporting	
creating format scripts 112	T
overview 112	Т
reporting format	tioned convices
HSL flow-based 55	tiered services
HSL session-based 54	overview 86
request adapt profile 93	traffic classification
response adapt profile 94	defined 22
rule	overview 22
creating 61	using iRules 122
rules	traffic steering
about enforcement 17	overview 28
for bandwidth control 78, 87	transactional policy enforcement
for classifying traffic 32, 34	overview 28
for QoS 37	troubleshooting, PEM 138
local traffic policy 126	
setting up Gx reporting 73	II.
setting up HSL reporting 50, 52–53	U
Setting up 110L reporting 50, 52-55	URL categories
S	creating iRule Events 34, 123
	URL database
secret 60	creating custom 122
servers	URL Filtering
and destinations for log messages 47	creating custom classification 122
and publishers for IPFIX logs 47	
and publishers for log messages 50	V
service chain	•
creating endpoints for 96	virtual servers
service chain endpoint	and internal type 92
process 93	creating 95
service chains	VLANs
overview 92	
OVELVIEW 32	creating 76

Index