Table of Contents

Deploying a Carrier Grade NAT
- Overview: The carrier-grade NAT (CGNAT) module ... 9
- About ALG Profiles .. 10
- About CGNAT translation address persistence and inbound connections 10
- About IPv6 prefixes .. 11
- About IPv4 prefixes .. 11
- Creating an LSN pool .. 11
- Configuring an ALG profile .. 12
- Configuring a CGNAT iRule ... 12
- Creating a virtual server for an LSN pool .. 12
- Creating a CGNAT tunnel .. 13

Using NAT64 to Map IPv6 Addresses to IPv4 Destinations
- Overview: NAT64 ... 15
- NAT64 example .. 15
- Creating a NAT64 LSN pool ... 16
- Creating a NAT64 virtual server for an LSN pool .. 16
- Configuring an ALG profile .. 17
- Configuring a CGNAT iRule ... 17

Using NAT44 to Translate IPv4 Addresses
- Overview: NAT44 .. 19
- About CGNAT hairpinning .. 19
- Creating an LSN pool ... 20
- Creating a virtual server for an LSN pool .. 20
- Configuring an ALG profile .. 21
- Configuring a CGNAT iRule ... 21

Using DS-Lite with CGNAT
- Overview: DS-Lite Configuration on BIG-IP systems .. 23
- About CGNAT hairpinning .. 24
- Creating a DS-Lite tunnel on the BIG-IP device as an AFTR device 25
- Assigning a self IP address to an AFTR device ... 25
- Configuring CGNAT for DS-Lite ... 25
- Verifying traffic statistics for a DS-Lite tunnel .. 26

Using CGNAT Translation Modes
- Overview: Using NAPT address translation mode .. 27
- NAPT log examples ... 27
- NAPT log examples with timestamp ... 28
- Creating a NAPT LSN pool ... 29
- Creating a VLAN for NAT ... 29
- Creating a NAT64 virtual server for an LSN pool ... 30
- Overview: Using PBA mode to reduce CGNAT logging .. 31
- About PBA address translation mode ... 31
- About configuring PBA mode with route domains ... 32
- PBA log examples ... 33
Table of Contents

Creating a PBA LSN pool.. 35
Creating a VLAN for NAT.. 36
Creating a virtual server for an LSN pool.. 37

Overview: Deterministic address translation mode.. 37
Creating a deterministic LSN pool.. 38
Creating a VLAN for NAT.. 38
Creating a virtual server for an LSN pool.. 39

Overview: The DNAT utility.. 40
DNAT utility example commands... 40
Downloading the DNAT utility external tool... 41
Using the DNAT utility external tool for reverse mappings.. 42
Using DNAT utility to look up deterministic NAT mappings on the BIG-IP system.................. 42

Overview: PCP client address translation... 43
Creating a PCP profile... 43
Configuring an LSN pool with a PCP profile... 43

Using ALG Profiles... 45
Overview: Using the FTP ALG Profile to Transfer Files... 45
About the FTP profile... 45
Creating an LSN pool.. 47
Creating an FTP profile... 47
Configuring a CGNAT iRule.. 48
Creating a virtual server using an FTP ALG profile.. 48
Creating an FTP ALG logging profile.. 49
Configuring an FTP ALG profile.. 49

Overview: Enabling FTAPS on the FTP ALG profile... 50
About the FTP ALG profile with FTAPS enabled... 50
Creating an LSN pool.. 50
Creating an FTP ALG profile... 51
Creating a virtual server using an FTP ALG profile.. 52
Creating a wildcard virtual server... 52
Creating an FTP ALG logging profile.. 53
Configuring an FTP ALG profile.. 53

Overview: Using the TFTP ALG profile to transfer files.. 53
About the TFTP ALG profile... 54
Creating a TFTP ALG profile.. 54
Creating an LSN pool.. 54
Creating a virtual server using a TFTP ALG profile.. 55
Creating a TFTP ALG logging profile.. 55

Overview: Using the SIP MRF ALG Profile... 56
About the SIP session profile... 57
About the SIP router profile... 57
Creating a SIP session profile.. 57
Creating a SIP router profile... 58
Creating an LSN pool.. 59
Configuring a SIP virtual server... 61
Viewing reserved endpoints... 62

Overview: Using the RTSP ALG Profile to Stream Media.. 63
About the RTSP ALG profile... 63
Creating an LSN pool.. 64
Creating an RTSP profile... 65
Configuring a CGNAT iRule... 65
Creating a virtual server using an RTSP ALG profile.. 65
Creating an RTSP ALG logging profile.. 66
Configuring an RTSP ALG profile... 67
Overview: Using the PPTP ALG profile to create a VPN tunnel.......................... 67
 About the PPTP ALG profile... 68
 PPTP profile log example.. 69
 Creating an LSN pool.. 70
 Creating a PPTP profile.. 70
 Adding a static route to manage GRE traffic.. 71
 Creating a virtual server using a PPTP ALG profile................................. 72

Overview: Configuring IPsec ALG with IKE... 72
 About negotiation of security associations.. 73
 About the IPSecALG profile... 74
 About IPsec Tunnel mode.. 74
 Creating a log publisher.. 74
 Creating an IPsecALG logging profile... 74
 Creating an LSN pool.. 75
 Creating an IPsecALG profile.. 77
 Creating an IPsec ALG virtual server for IKE.. 77

Overview: Configuring IPsec ALG with manual keys.................................. 78
 About IPsec Tunnel mode.. 79
 Creating a log publisher.. 79
 Creating an IPsecALG logging profile... 79
 Creating an LSN pool.. 80
 Configuring an IPsecALG profile.. 82
 Creating an IPsec ALG virtual server for manual keys............................ 82

Enabling FTPS on the FTP ALG Profile.. 85
Overview: Enabling FTPS on the FTP ALG profile.. 85
 About the FTP ALG profile with FTPS enabled...................................... 85
 Creating an LSN pool.. 85
 Creating an FTP ALG profile.. 86
 Creating a virtual server using an FTP ALG profile................................. 86
 Creating a wildcard virtual server.. 87
 Creating an FTP ALG logging profile.. 87

Using CGNAT Logging and Subscriber Traceability... 89
Overview: Configuring local logging for CGNAT... 89
 Creating a formatted local log destination for CGNAT............................ 89
 Creating a publisher to send log messages to the local Syslog database...... 90
 Configuring an LSN pool with a local Syslog log publisher........................ 90
Overview: Configuring remote high-speed logging for CGNAT....................... 90
 About the configuration objects of high-speed logging.......................... 91
 Creating a pool of remote logging servers.. 92
 Creating a remote high-speed log destination.. 92
 Creating a formatted remote high-speed log destination......................... 93
 Creating a publisher.. 93
 Creating an LSN logging profile.. 94
 Configuring an LSN pool... 95
Overview: Configuring IPFIX logging for CGNAT.. 95
 About the configuration objects of IPFIX logging.................................... 95
 Assembling a pool of IPFIX collectors.. 96
 Creating an IPFIX log destination.. 96
 Creating a publisher.. 97
 Creating an LSN logging profile.. 98
 Configuring an LSN pool.. 98

CGNAT Log Format Reference... 99
Overview: CGNAT log formats... 99
Deploying Stateless Network Address Translation

Overview: 6rd configuration on BIG-IP systems ... 165
Task summary .. 166
 - Using a profile to define a 6rd domain ... 166
 - Configuring a BIG-IP system as a border relay (BR) device 166
 - Creating a forwarding virtual server for a tunnel .. 167
 - Assigning a self IP address to an IP tunnel endpoint .. 167
 - Routing traffic through a 6rd tunnel interface .. 168

Overview: MAP configuration on BIG-IP systems ... 168
About Mapping of Address and Port (MAP) .. 169
 - About Mapping of Address and Port with Translation (MAP-T) 169
 - About Mapping of Address and Port with Encapsulation (MAP) 169
Task summary .. 170
 - Using a profile to define a MAP domain .. 170
 - Configuring a tunnel for Mapping Address and Port ... 171
 - Creating a forwarding virtual server for IPv4 traffic ... 171
 - Creating a forwarding virtual server for IPv6 traffic ... 171
 - Assigning a self IP address to a MAP tunnel endpoint 171
 - Viewing MAP tunnel statistics .. 172

Overview: Lightweight 4over6 Configuration on BIG-IP systems 173
An example lw4o6 table .. 174
Task summary .. 174
 - Importing an lw4o6 table .. 175
 - Using a profile to define a lw4o6 domain ... 175
 - Configuring a tunnel for lw4o6 .. 175
 - Creating a forwarding virtual server for IPv4 traffic ... 176
 - Assigning a self IP address to an lw4o6 tunnel endpoint 176
 - Viewing lw4o6 tunnel statistics .. 177

IPFIX Templates for CGNAT Events

Overview: IPFIX logging templates ... 179
IPFIX information elements for CGNAT events ... 179
 - IANA-Defined IPFIX information elements ... 179
 - IPFIX enterprise information elements ... 180
Individual IPFIX templates for each event ... 180
 - NAT44 session create – outbound variant ... 181
 - NAT44 session delete – outbound variant ... 181
 - NAT44 session create – inbound variant .. 182
 - NAT44 session delete – inbound variant .. 183
 - NAT44 translation failed .. 183
 - NAT44 quota exceeded ... 184
 - NAT44 port block allocated or released ... 184
 - NAT64 session create – outbound variant ... 185
 - NAT64 session delete – outbound variant ... 185
 - NAT64 session create – inbound variant .. 186
 - NAT64 session delete – inbound variant .. 187
 - NAT64 translation failed .. 188
 - NAT64 quota exceeded ... 188
 - NAT64 port block allocated or released ... 188
 - DS-Lite session create – outbound variant ... 189
 - DS-Lite session delete – outbound variant ... 190
 - DS-Lite session create – inbound variant .. 191
 - DS-Lite session delete – inbound variant .. 191
 - DS-Lite translation failed .. 192
Table of Contents
Deploying a Carrier Grade NAT

Overview: The carrier-grade NAT (CGNAT) module

The carrier-grade network address translation (CGNAT) module on the BIG-IP® system supports large groups of translation addresses using large-scale NAT (LSN) pools and grouping of address-translation-related options in an ALG profile, which can be assigned to multiple virtual servers. It also has the ability to match virtual servers based on client address to destination addresses and ports. Other characteristics of the CGNAT module are listed here.

Note: CGNAT is NAT only. If you want deploy DNS services, you need a BIG-IP DNS license.

Translation address persistence
The CGNAT module can assign the same external (translation) address to all connections originated by the same internal client. For example, providing endpoint-independent address mapping.

Automatic external inbound connection handling
CGNAT can accept inbound external connections to active translation address/port combinations to facilitate endpoint-independent filtering as described in section 5 of RFC 4787. This is also known as a full-cone NAT.

More efficient logging
CGNAT supports log messages that map external addresses and ports back to internal clients for both troubleshooting and compliance with law enforcement/legal constraints.

Network address and port translation
Network address and port translation (NAPT) mode provides standard address and port translation allowing multiple clients in a private network to access remote networks using the single IP address assigned to their router.

Deterministic assignment of translation addresses
Deterministic mode is an option used to assign translation address, and is port-based on the client address/port and destination address/port. It uses reversible mapping to reduce logging, while maintaining the ability for translated IP address to be discovered for troubleshooting and compliance with regulations. Deterministic mode also provides an option to configure backup-members.

Port block allocation of translation addresses
Port block allocation (PBA) mode is an option that reduces logging, by logging only the allocation and release of a block of ports. When a subscriber sends a translation request, the BIG-IP system services the request from a block of ports that is assigned to a single IP address, and only logs the allocation and release of that block of ports. The BIG-IP system applies subsequent requests from the service provider to that block of ports until all ports are used.

Licensing
Designed for service providers, the CGNAT module is offered as a stand-alone license or as an add-on license for Local Traffic Manager™ (LTM®) and Policy Enforcement Manager™ (PEM).
Task summary
Creating an LSN pool
Configuring an ALG profile
Configuring a CGNAT iRule
Creating a virtual server for an LSN pool
Creating a CGNAT tunnel

About ALG Profiles
Application Layer Gateway (ALG) profiles provide the CGNAT with protocol and service functionality that modifies the necessary application protocol header and payload, thus allowing these protocols to seamlessly traverse the NAT. FTP, RTSP, SIP, and PPTP profiles that are supported with ALG profiles, and added to the CGNAT configuration as needed.

An FTP, RTSP, or SIP profile can use an Automap, NAPT, DNAT, or PBA address translation mode when providing necessary logging.

About CGNAT translation address persistence and inbound connections
The BIG-IP® system enables you to manage RFC-defined behavior for translation address persistence and inbound connections.

Translation Address Persistence
When you configure an LSN pool, the CGNAT Persistence Mode setting assigns translation endpoints in accordance with the selected configuration mode: NAPT, Deterministic NAT (DNAT), or Port Block Allocation (PBA). It is important to note that this CGNAT translation address persistence is different from the persistence used in the BIG-IP Local Traffic Manager™ (LTM®) load balancing. CGNAT translation address persistence uses a selected translation address, or endpoint, across multiple connections from the same subscriber address, or endpoint.

The BIG-IP system provides three Persistence Mode settings (None, Address, and Address Port) for each configuration mode.

<table>
<thead>
<tr>
<th>Persistence Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Translation addresses are not preserved for the subscriber. Each outbound connection might receive a different translation address. This setting provides the lowest overhead and highest performance.</td>
</tr>
<tr>
<td>Address</td>
<td>CGNAT preserves the translation address for the subscriber. When a connection is established, CGNAT determines if this subscriber already has a translation address. If the subscriber already has a translation address, then CGNAT uses the translation address stored in the persistence record, and locates a port for that connection. If no port is available, then CGNAT selects a different address. This setting provides greater overhead on each connection and less performance.</td>
</tr>
<tr>
<td>Address Port</td>
<td>CGNAT preserves the translation address and port of the subscriber's connection, so that the endpoint can be reused on subsequent connections. This setting provides Endpoint Independent Mapping (EIM) behavior. Additionally, like the Address setting for Persistence Mode, this setting provides greater overhead on each connection and less performance.</td>
</tr>
</tbody>
</table>

Note: DNAT reserves both addresses and ports for a subscriber; however, persistence might still be of value when a subscriber’s deterministic mappings span two translation addresses. In this instance, persistence prefers the same address each time.
Inbound Connections

The Inbound Connections setting determines whether the Large Scale NAT (LSN) allows connections to be established inbound to the LSN subscriber or client. This setting provides greater overhead, including a lookup on inbound entries for each connection to prevent endpoint overloading, and a reduction in the use of the translation space.

When you disable inbound connections, the BIG-IP system provides greater efficiency in address space utilization by allowing endpoint overloading, where two different subscribers can use the same translation address and port, as long as each subscriber connects to a different host.

When you enable inbound connections, the BIG-IP system restricts the use of a translation address and port to a single subscriber, and ensures that only one subscriber address and port uses a translation endpoint.

Note: Because DNAT reserves addresses and ports for a subscriber, no endpoint overloading between subscribers occurs, but a single subscriber's traffic can leverage overloading. Inbound connections restrict this behavior. For DNAT, increased restriction from inbound connections might occur when fewer ports per subscriber are available. With inbound connections enabled, the ratio of subscriber ports to translation endpoints for a subscriber is 1:1.

About IPv6 prefixes

IPv6 128-bit addresses include a network prefix in the leftmost fields, and subnet in the remaining fields. For example, an IPv6 address of 2001:0db8:0000:0000:0000:0000:0000:0000 with a 32-bit prefix equates to a network of 2001:0db8, written as 2001:db8::/32. A network written as 2001:db8::/32 omits leading zeros in four-digit groups, uses :: to indicate collapsed zero groups, and uses /32 to indicate the 32-bit prefix.

About IPv4 prefixes

IPv4 32-bit addresses include a network prefix in the leftmost fields, and a host identifier in the remaining fields. For example, an address of 192.168.1.0/24 includes the prefix of the IPv4 network starting at the given address, having 24 bits allocated for the network prefix, and the remaining 8 bits reserved for host addressing.

Creating an LSN pool

The CGNAT module must be enabled through the System > Resource Provisioning screen before you can create LSN pools.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools. The LSN Pool List screen opens.
2. Click Create.
3. In the Name field, type a unique name.
4. In the Configuration area, for the Member List setting, type an address and a prefix length in the Address/Prefix Length field, and click Add.
 - If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.
5. Click Finished.

Your LSN pool is now ready, and you can continue to configure your CGNAT.
Configuring an ALG profile

An ALG profile provides the CGNAT module with protocol and service information to make specified packet modifications to the IP and TCP/UDP headers, as well as the payload during translation.

Important: Edit only copies of the included ALG profiles to avoid unwanted propagation of settings to other profiles that use the included profiles as parents.

1. On the Main tab, click *Carrier Grade NAT > ALG Profiles*.
2. In the ALG Profiles menu, click an ALG profile.
3. Click *Create*.
 The New Profile screen opens.
4. Type a name for the new profile.
5. From the *Parent Profile* list, ensure that the correct parent profile is selected as the new profile.
6. Select the *Custom* check box on the right.
7. Configure the profile settings.
8. Click *Finished* to save the new ALG profile.

You now have an ALG profile for use by CGNAT.

Configuring a CGNAT iRule

You create iRules® to automate traffic forwarding for XML content-based routing. When a match occurs, an iRule event is triggered, and the iRule directs the individual request to an LSN pool, a node, or virtual server.

1. On the Main tab, click *Carrier Grade NAT > iRules*.
 The iRule List screen opens.
2. Click *Create*.
3. In the *Name* field, type a 1 to 31 character name, such as `cgn_https_redirect_iRule`.
4. In the *Definition* field, type the syntax for the iRule using Tool Command Language (Tcl) syntax.
 For complete and detailed information about iRules syntax, see the F5 Networks DevCentral web site (http://devcentral.f5.com).
5. Click *Finished*.

You now have an iRule to use with a CGNAT virtual server.

Creating a virtual server for an LSN pool

Virtual servers are matched based on source (client) addresses. Define a virtual server that references the CGNAT profile and the LSN pool.

1. On the Main tab, click *Carrier Grade NAT > Virtual Servers*.
 The Virtual Server List screen opens.
2. Click the *Create* button.
 The New Virtual Server screen opens.
3. In the *Name* field, type a unique name for the virtual server.
4. From the *Type* list, select *Performance (Layer 4)*.
5. For a network, in the *Destination Address* field, type an IPv4 or IPv6 address in CIDR format to allow all traffic to be translated.
The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is 0.0.0.0/0, and an IPv6 address/prefix is ::/0.

6. In the Service Port field, type * or select * All Ports from the list.
7. From the VLAN and Tunnel Traffic list, select Enabled on. Then, for the VLANs and Tunnels setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the Available list to the Selected list.
8. For the LSN Pool setting, select the pool that this server will draw on for translation addresses.
9. In the Resources area of the screen, for the iRules setting, select the name of the iRule that you want to assign and using the Move button, move the name from the Available list to the Enabled list.
10. Click Finished.

The custom CGNAT virtual server now appears in the CGNAT Virtual Servers list.

Creating a CGNAT tunnel

Many translations use tunneling to move TCP/UDP traffic where the payload is other IP traffic. You can create and configure a tunnel for use with an LSN pool.

1. On the Main tab, click Carrier Grade NAT > Tunnels.
 The Tunnels screen opens.
2. Click Create.
3. In the Name field, type a unique name for the tunnel.
4. In the Local Address field, type the IP address of the BIG-IP system.
5. From the Remote Address list, retain the default selection, Any.
 This entry means that you do not have to specify the IP address of the remote end of the tunnel, which allows multiple devices to use the same tunnel.
6. Click Finished.

Your CGNAT tunnel is ready to use as an egress interface in an LSN Pool.
Using NAT64 to Map IPv6 Addresses to IPv4 Destinations

Overview: NAT64

For the BIG-IP® system CGNAT module, NAT64 is the NAT type that maps IPv6 subscriber private addresses to IPv4 Internet public addresses. NAT64 translates subscriber IPv6 addresses to public Internet IPv4 addresses and allows Internet traffic from an IPv6 client to reach a public IPv4 server. The CGNAT module processes NAT64 traffic, as defined in RFC 6146 for TCP and UDP addresses.

Figure 1: Diagram of a NAT64 network

Task summary
- Creating a NAT64 LSN pool
- Creating a NAT64 virtual server for an LSN pool
- Configuring an ALG profile
- Configuring a CGNAT iRule

NAT64 example

This NAT64 example shows the BIG-IP® system CGNAT module mapping of IPv6 subscriber private addresses to IPv4 Internet public addresses.
In this example, an IPv6 client initiates a request to the IPv4 server, using a source address of 2001:db8::1,1500 and a destination address of 64:ff9b::192.0.2.1,80. The NAT64 on the BIG-IP® system selects an available port for the IPv4 address 203.0.113.1,2000, and creates a mapping entry from 2001:db8::1,1500 to 203.0.113.1,2000. The NAT64 translates the IPv6 header into an IPv4 header, including 203.0.113.1,2000 as the source address and 192.0.2.1,80 as the destination address, and sends the translated packet to the IPv4 server.

The IPv4 server responds with a server packet, which includes a destination address of 203.0.113.1,2000 and source address of 192.0.2.1,80. Upon receipt of the IPv4 server packet, the NAT64 translates the IPv4 header into an IPv6 header, which includes 2001:db8::1,1500 as the source address, and sends the response to the client.

Creating a NAT64 LSN pool

The CGNAT module must be enabled through System > Resource Provisioning before you can configure LSN pools.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
 The LSN Pool List screen opens.
2. Click Create.
3. In the Name field, type a unique name.
4. Select NAPT or PBA for the pool's translation Mode.
5. For the Member List setting, in the Address/Prefix Length field, type an IPv4 address and a prefix length and click Add.
 In a NAT64 implementation, an example of an IPv4 member address and prefix is 203.0.113.0/24.
6. Click Finished.

Your LSN pool is now ready, and you can continue to configure your CGNAT.

Creating a NAT64 virtual server for an LSN pool

Virtual servers are matched based on source (client) addresses. Define a NAT64 virtual server that references the CGNAT profile and the LSN pool.

1. On the Main tab, click Carrier Grade NAT > Virtual Servers.
 The Virtual Server List screen opens.
2. Click the Create button.
 The New Virtual Server screen opens.
3. In the Name field, type a unique name for the virtual server.
4. From the Type list, select Performance (Layer 4).
5. In the Destination Address field, type the IPv6 address in CIDR format.
 The supported format is address/prefix, where the prefix length is in bits. For example, an IPv6 address/prefix is 64:ff9b::/64 or 2001:ed8:77b5:2::/64.
6. In the Service Port field, type * or select * All Ports from the list.
7. From the Configuration list, select Advanced.
8. From the Protocol list, select * All Protocols.
9. For the LSN Pool setting, select the pool that this server will draw on for translation addresses.
10. For the Address Translation setting, select the Enabled check box to enable address translation.
11. For the Port Translation setting, clear the Enabled check box.
12. For the NAT64 setting, select the Enabled check box.
13. In the Resources area of the screen, for the iRules setting, select the name of the iRule that you want to assign and using the Move button, move the name from the Available list to the Enabled list.
14. Click Finished.
 The custom CGNAT NAT64 virtual server now appears in the CGNAT Virtual Servers list.

Configuring an ALG profile

An ALG profile provides the CGNAT module with protocol and service information to make specified packet modifications to the IP and TCP/UDP headers, as well as the payload during translation.

Important: Edit only copies of the included ALG profiles to avoid unwanted propagation of settings to other profiles that use the included profiles as parents.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles.
2. In the ALG Profiles menu, click an ALG profile.
3. Click Create.
 The New Profile screen opens.
4. Type a name for the new profile.
5. From the Parent Profile list, ensure that the correct parent profile is selected as the new profile.
6. Select the Custom check box on the right.
7. Configure the profile settings.
8. Click Finished to save the new ALG profile.
 You now have an ALG profile for use by CGNAT.

Configuring a CGNAT iRule

You create iRules® to automate traffic forwarding for XML content-based routing. When a match occurs, an iRule event is triggered, and the iRule directs the individual request to an LSN pool, a node, or virtual server.

1. On the Main tab, click Carrier Grade NAT > iRules.
 The iRule List screen opens.
2. Click Create.
3. In the Name field, type a 1 to 31 character name, such as cg HTTPS redirect iRule.
4. In the **Definition** field, type the syntax for the iRule using Tool Command Language (Tcl) syntax.
 For complete and detailed information about iRules syntax, see the F5 Networks DevCentral web site (http://devcentral.f5.com).

5. Click **Finished**.

You now have an iRule to use with a CGNAT virtual server.
Overview: NAT44

For the BIG-IP® system CGNAT module, NAT44 is the NAT type that maps IPv4 subscriber private addresses to IPv4 Internet public addresses. Translation addresses and ports are set in LSN pools. The CGNAT module performs NAT44 translations for all IP traffic.

Figure 3: Diagram of a NAT44 network

Task summary

Creating an LSN pool
Creating a virtual server for an LSN pool
Configuring an ALG profile
Configuring a CGNAT iRule

About CGNAT hairpinning

An optional feature on the BIG-IP® system, hairpinning routes traffic from one subscriber's client to an external address of another subscriber's server, where both client and server are located in the same subnet. To each subscriber, it appears that the other subscriber's address is on an external host and on a
different subnet. The BIG-IP system can recognize this situation and send, or hairpin, the message back to the origin subnet so that the message can reach its destination.

Important: *In order for hairpinning to function properly, the subscriber VLAN must be configured as an egress interface on the LSN pool. If the subscriber VLAN is not configured as an egress interface on the LSN pool, hairpinning fails.*

Note: *At present hairpinning works with all BIG-IP CGNAT scenarios except NAT64.*

Creating an LSN pool

The CGNAT module must be enabled through the **System > Resource Provisioning** screen before you can create LSN pools.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**.
 The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. In the Configuration area, for the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.
 If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.
5. Click **Finished**.

Your LSN pool is now ready, and you can continue to configure your CGNAT.

Creating a virtual server for an LSN pool

Virtual servers are matched based on source (client) addresses. Define a virtual server that references the CGNAT profile and the LSN pool.

1. On the Main tab, click **Carrier Grade NAT > Virtual Servers**.
 The Virtual Server List screen opens.
2. Click the **Create** button.
 The New Virtual Server screen opens.
3. In the **Name** field, type a unique name for the virtual server.
4. From the **Type** list, select **Performance (Layer 4)**.
5. For a network, in the **Destination Address** field, type an IPv4 or IPv6 address in CIDR format to allow all traffic to be translated.
 The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is 0.0.0.0/0, and an IPv6 address/prefix is ::/0.
6. In the **Service Port** field, type * or select * **All Ports** from the list.
7. From the **VLAN and Tunnel Traffic** list, select **Enabled on**. Then, for the **VLANs and Tunnels** setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the **Available** list to the **Selected** list.
8. For the **LSN Pool** setting, select the pool that this server will draw on for translation addresses.
9. In the Resources area of the screen, for the **iRules** setting, select the name of the iRule that you want to assign and using the Move button, move the name from the **Available** list to the **Enabled** list.
10. Click **Finished**.
The custom CGNAT virtual server now appears in the CGNAT Virtual Servers list.

Configuring an ALG profile

An ALG profile provides the CGNAT module with protocol and service information to make specified packet modifications to the IP and TCP/UDP headers, as well as the payload during translation.

Important: Edit only copies of the included ALG profiles to avoid unwanted propagation of settings to other profiles that use the included profiles as parents.

1. On the Main tab, click **Carrier Grade NAT > ALG Profiles**.
2. In the ALG Profiles menu, click an ALG profile.
3. Click **Create**.
The New Profile screen opens.
4. Type a name for the new profile.
5. From the **Parent Profile** list, ensure that the correct parent profile is selected as the new profile.
6. Select the **Custom** check box on the right.
7. Configure the profile settings.
8. Click **Finished** to save the new ALG profile.

You now have an ALG profile for use by CGNAT.

Configuring a CGNAT iRule

You create iRules® to automate traffic forwarding for XML content-based routing. When a match occurs, an iRule event is triggered, and the iRule directs the individual request to an LSN pool, a node, or virtual server.

1. On the Main tab, click **Carrier Grade NAT > iRules**.
The iRule List screen opens.
2. Click **Create**.
3. In the **Name** field, type a 1 to 31 character name, such as `cgn_https_redirect_iRule`.
4. In the **Definition** field, type the syntax for the iRule using Tool Command Language (Tcl) syntax.

 For complete and detailed information about iRules syntax, see the F5 Networks DevCentral web site (http://devcentral.f5.com).
5. Click **Finished**.

You now have an iRule to use with a CGNAT virtual server.
Using NAT44 to Translate IPv4 Addresses
Overview: DS-Lite Configuration on BIG-IP systems

As IPv4 addresses are becoming depleted, service providers (DSL, cable, and mobile) face the challenge of supplying IP addresses to new customers. Providing IPv6 addresses alone is often not workable, because most of the public Internet still uses only IPv4, and many customer systems do not yet fully support IPv6. The Dual-Stack Lite (DS-Lite) tunneling technology is one solution to this problem. DS-Lite gives service providers the means to migrate to an IPv6 access network without changing end user devices or software.

What is DS-Lite?

DS-Lite is an IPv4-to-IPv6 transition technology, described in RFC 6333, that uses tunneling and network address translation (NAT) to send IPv4 packets over an IPv6 network. This technology makes it possible, for example, for a service provider with an IPv6 backbone to properly route traffic while overlapping IPv4 networks.

How does DS-Lite work?

The customer-premises equipment (CPE), known as the B4 (Basic Bridging BroadBand) device, encapsulates the IPv4 packets inside IPv6 packets, and sends them to the AFTR (Address Family Transition Router) device. The AFTR device includes carrier-grade NAT (CGNAT), which has a global IPv4 address space. The AFTR device decapsulates the IPv4 traffic and performs address translation, as it sends the traffic to the external IPv4 network.

How does F5 implement DS-Lite?

On the BIG-IP® system, a DS-Lite tunnel is a variation of IPIP tunnels that uses augmented flow lookups to route traffic. Augmented flow lookups include the IPv6 address of the tunnel to identify the accurate source of packets that might have the same IPv4 address. When the BIG-IP device receives an IPv6 encapsulated packet, the system terminates the tunnel, decapsulates the packet, and marks it for DS-Lite. When the system re-injects the packet into the IP stack, it performs an augmented flow lookup to properly route the response.

Illustration of a DS-Lite deployment

In this example, a service provider transports encapsulated IPv4 traffic over its IPv6 network.
About CGNAT hairpinning

An optional feature on the BIG-IP system, hairpinning routes traffic from one subscriber's client to an external address of another subscriber's server, where both client and server are located in the same subnet. To each subscriber, it appears that the other subscriber's address is on an external host and on a different subnet. The BIG-IP system can recognize this situation and send, or hairpin, the message back to the origin subnet so that the message can reach its destination.

Important: In order for hairpinning to function properly, the subscriber VLAN must be configured as an egress interface on the LSN pool. If the subscriber VLAN is not configured as an egress interface on the LSN pool, hairpinning fails.

Note: At present hairpinning works with all BIG-IP CGNAT scenarios except NAT64.
Creating a DS-Lite tunnel on the BIG-IP device as an AFTR device

Before you configure the tunnel, ensure that the BIG-IP® device you are configuring has an IPv6 address.

You can create a DS-Lite (wildcard) tunnel for terminating IPv4-in-IPv6 tunnels to remote B4 devices, and recycling the IPv4 address space.

1. On the Main tab, click Network > Tunnels > Tunnel List > Create or Carrier Grade NAT > Tunnels > Create.
2. In the Name field, type a unique name for the tunnel.
3. From the Profile list, select dslite.
4. In the Local Address field, type the IPv6 address of the local BIG-IP device.
5. For the Remote Address setting, retain the default selection, Any, which indicates a wildcard IP address.
6. Click Finished.

You have now created a DS-Lite tunnel that functions as an AFTR (Address Family Translation Router) device.

Assigning a self IP address to an AFTR device

Ensure that you have created a DS-Lite tunnel before you start this task.

Self IP addresses can enable the BIG-IP® system, and other devices on the network, to route application traffic through the associated tunnel.

1. On the Main tab, click Network > Self IPs.
2. Click Create.
 The New Self IP screen opens.
3. In the Name field, type a unique name for the self IP address.
4. In the IP Address field, type an IP address.
 This IP address is the IPv4 gateway that the B4 devices use to reach the Internet. F5 recommends using the IP address space that the IANA has specifically allocated for an AFTR device, for example, 192.0.0.1.
5. In the Netmask field, type the network mask for the specified IP address.
 For example, you can type 255.255.255.0.
6. From the VLAN/Tunnel list, select the tunnel with which to associate this self IP address.
7. Click Finished.

Configuring CGNAT for DS-Lite

Before starting this task, ensure that CGNAT is licensed and the feature module enabled on the BIG-IP® system, and you have created at least one LSN pool.

When you are configuring DS-Lite, you must set up a forwarding virtual server to provide the Large Scale NAT (LSN), which is specified by the DS-Lite tunnel as an augmented flow lookup.

1. On the Main tab, click Carrier Grade NAT > Virtual Servers.
 The Virtual Server List screen opens.
2. Click the Create button.
 The New Virtual Server screen opens.
3. In the Name field, type a unique name for the virtual server.
4. From the **Type** list, select **Performance (Layer 4)**.

5. In the **Destination Address** field, type **0.0.0.0/0** to translate all IPv4 traffic.

6. In the **Service Port** field, type * or select * **All Ports** from the list.

7. From the **Configuration** list, select **Advanced**.

8. From the **Protocol** list, select * **All Protocols**.

9. From the **LSN Pool** list, select an LSN pool.

10. Click **Finished**.

This virtual server now intercepts traffic leaving the DS-Lite tunnel, provides the LSN address translation, and forwards the traffic to the IPv4 gateway.

Verifying traffic statistics for a DS-Lite tunnel

After you configure DS-Lite on a BIG-IP® system, you can check the statistics for the tunnel to verify that traffic is passing through it.

1. Log on to the BIG-IP command-line interface.

2. At the command prompt, type `tmsh show sys connection all-properties`. The result should show tunnel with **any** as the remote endpoint (on the first line), and **ipencap** as the **Protocol**, as shown in the example.

```
---------------------------------------------------------
TMM           0
Type          any
Acceleration  none
Protocol      ipencap
Idle Time     1
Idle Timeout  300
Unit ID       1
Lasthop       /Common/wan 00:d0:01:b9:88:00
Virtual Path  2001:db8::46.any

ClientSide    ServerSide
Client Addr   2001:db8::45.any   any6.any
Server Addr   2001:db8::46.any   any6.any
Bits In       171.6K             0
Bits Out      171.6K             0
```
Using CGNAT Translation Modes

Overview: Using NAPT address translation mode

NAPT mode provides standard address and port translation allowing multiple clients in a private network to access remote networks using the single IP address assigned to their router. For outbound packets, NAPT translates the source IP address and source transport identifier. For inbound packets, NAPT translates the destination IP address, the destination transport identifier, and the IP and transport header checksums. This mode is beneficial for remote access users.

Task summary

Creating a NAPT LSN pool
Creating a VLAN for NAT
Creating a NAT64 virtual server for an LSN pool

NAPT log examples

The following examples describe typical NAPT log messages

NAT44 example

Mar 27 11:17:39 10.10.10.200 lsn_event="LSN_ADD",cli="10.10.10.1:33950",nat="5.5.5.1:10000"
Mar 27 11:17:39 10.10.10.200 "LSN_ADD""10.10.10.1:33950""5.5.5.1:10000"
Mar 27 11:23:17 localhost info tmm[32683]: "LSN_ADD""10.10.10.1:33950""5.5.5.1:10000"
Mar 27 11:17:39 10.10.10.200 lsn_event="LSN_DELETE",cli="10.10.10.1:33950",nat="5.5.5.1:10000"
Mar 27 11:17:39 10.10.10.200 "LSN_DELETE""10.10.10.1:33950""5.5.5.1:10000"
Mar 27 11:23:17 localhost info tmm[32683]: "LSN_DELETE""10.10.10.1:33950""5.5.5.1:10000"

NAT44 example with route domains

Mar 28 08:34:12 10.10.21.200 lsn_event="LSN_ADD",cli="10.10.10.1%11:59187",nat="5.5.5.1%22:10000"
Mar 28 08:34:12 10.10.21.200 "LSN_ADD""10.10.10.1%11:59187""5.5.5.1%22:10000"
Mar 28 08:34:12 10.10.21.200 lsn_event="LSN_DELETE",cli="10.10.10.1%11:59187",nat="5.5.5.1%22:10000"
Mar 28 08:34:12 10.10.21.200 "LSN_DELETE""10.10.10.1%11:59187""5.5.5.1%22:10000"

NAT64 example

Mar 27 11:18:20 10.10.10.200 lsn_event="LSN_ADD",cli="2701:1:12:123:1234:432:43:100.39900",nat="5.5.5.1:10000"
Mar 27 11:18:20 10.10.10.200 "LSN_ADD""2701:1:12:123:1234:432:43:100.39900""5.5.5.1:10000"
Mar 27 11:23:57 localhost info tmm[32683]: "LSN_ADD""2701:1:12:123:1234:432:43:100.39900""5.5.5.1:10000"
Mar 27 11:18:23 10.10.10.200 lsn_event="LSN_DELETE",cli="2701:1:12:123:1234:432:43:100.39900",nat="5.5.5.1:10000"
Mar 27 11:18:23 10.10.10.200 "LSN_DELETE""2701:1:12:123:1234:432:43:100.39900""5.5.5.1:10000"
Mar 27 11:24:00 localhost info tmm[32683]: "LSN_DELETE""2701:1:12:123:1234:432:43:100.39900""5.5.5.1:10000"
NAT64 example with route domains

NAT DSLITE

Mar 27 11:19:14 10.10.10.200 lsn_event="LSN_ADD",cli="10.10.31.4:52240",nat="5.5.5.1:10000",dslite="2701::200"
Mar 27 11:19:14 10.10.10.200 lsn_event="LSN_ADD",cli="10.10.31.4:52240",nat="5.5.5.1:10000",dslite="2701::200"
Mar 27 11:24:52 localhost info tmm[32682]: "LSN_ADD" "10.10.31.4:52240" "5.5.5.1:10000" "2701::200"

NAT DSLITE with route domains

Mar 28 15:03:40 10.10.21.200 lsn_event="LSN_ADD",cli="10.10.31.4%11:51942",nat="5.5.5.1%22:10000",dslite="2701::200%11"
Mar 28 15:03:40 10.10.21.200 lsn_event="LSN_DELETE",cli="10.10.31.4%11:51942",nat="5.5.5.1%22:10000",dslite="2701::200%11"

NAPT log examples with timestamp

The following examples describe typical NAPT log messages with timestamp.

HSL raw messages example

"LSN_ADD" "10.10.10.15:51326" "TCP" "5.5.5.0:80" "1436465636143"
"LSN_DELETE" "10.10.10.15:51326" "TCP" "5.5.5.0:80" "1436465636143"
"LSN_ADD" "10.10.10.15:51326" "UDP" "5.5.5.0:514" "1436465636143"
"LSN_DELETE" "10.10.10.15:51326" "UDP" "5.5.5.0:514" "1436465636143"
"LSN_ADD" "10.10.10.15:51326" "ICMP" "5.5.5.0:0" "1436465636143"
"LSN_DELETE" "10.10.10.15:51326" "ICMP" "5.5.5.0:0" "1436465636143"

Splunk raw messages example

ip_protocol="TCP", lsn_event="LSN_ADD", start="1436465636143", cli="10.10.10.15:51326", nat="5.5.5.0:80"
ip_protocol="TCP", lsn_event="LSN_DELETE", start="1436465636143", cli="10.10.10.15:51326", nat="5.5.5.0:80", duration="4"
ip_protocol="UDP", lsn_event="LSN_ADD", start="1436465636143", cli="10.10.10.15:51326", nat="5.5.5.0:514"
ip_protocol="UDP", lsn_event="LSN_DELETE", start="1436465636143", cli="10.10.10.15:51326", nat="5.5.5.0:514", duration="4"
ip_protocol="ICMP", lsn_event="LSN_ADD", start="1436465636143", cli="10.10.10.15:51326", nat="5.5.5.0:0"
ip_protocol="ICMP", lsn_event="LSN_DELETE", start="1436465636143", cli="10.10.10.15:51326", nat="5.5.5.0:0", duration="4"
remote-syslog raw messages (RFC3164 format) example

<134>Jul 09 11:13:56 victoria-5 tmm[11075]:
"LSN_ADD""10.10.10.15:51326"TCP""4.4.0.0:80""1436465636143""4"
<134>Jul 09 11:13:56 victoria-5 tmm[11075]:
"LSN_DELETE""10.10.10.15:51326"TCP""4.4.0.0:80""1436465636143""4"
<134>Jul 09 11:13:56 victoria-5 tmm[11075]:
"LSN_ADD""10.10.10.15:51326"UDP""4.4.0.0:514""1436465636143"
<134>Jul 09 11:13:56 victoria-5 tmm[11075]:
"LSN_DELETE""10.10.10.15:51326"UDP""4.4.0.0:514""1436465636143"
<134>Jul 09 11:13:56 victoria-5 tmm[11075]:
"LSN_ADD""10.10.10.15:51326"ICMP""4.4.0.0:0""1436465636143"
<134>Jul 09 11:13:56 victoria-5 tmm[11075]:
"LSN_DELETE""10.10.10.15:51326"ICMP""4.4.0.0:0""1436465636143"

Local syslog raw messages

'Jul 9 11:13:56 slot3/victoria-5 info tmm[11075]:
"LSN_ADD""10.10.10.15:51326"TCP""4.4.0.0:80""1436465636143"
'Jul 9 11:13:56 slot3/victoria-5 info tmm[11075]:
"LSN_DELETE""10.10.10.15:51326"TCP""4.4.0.0:80""1436465636143"
'Jul 9 11:13:56 slot3/victoria-5 info tmm[11075]:
"LSN_ADD""10.10.10.15:51326"UDP""4.4.0.0:514""1436465636143"
'Jul 9 11:13:56 slot3/victoria-5 info tmm[11075]:
"LSN_DELETE""10.10.10.15:51326"UDP""4.4.0.0:514""1436465636143"
'Jul 9 11:13:56 slot3/victoria-5 info tmm[11075]:
"LSN_ADD""10.10.10.15:51326"ICMP""4.4.0.0:0""1436465636143"
'Jul 9 11:13:56 slot3/victoria-5 info tmm[11075]:
"LSN_DELETE""10.10.10.15:51326"ICMP""4.4.0.0:0""1436465636143"

Creating a NAPT LSN pool

- The CGNAT module must be provisioned before LSN pools can be configured.
- Before associating a LSN pool with a log publisher, ensure that at least one log publisher exists on the BIG-IP system.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
 The LSN Pool List screen opens.
2. Click Create.
3. In the Name field, type a unique name.
4. In the Description field, type a description.
5. Select NAPT for the pool's translation Mode.
6. Click Finished.

Your NAPT LSN pool is now ready and you can continue to configure your CGNAT.

Creating a VLAN for NAT

VLANs represent a logical collection of hosts that can share network resources, regardless of their physical location on the network. You create a VLAN to associate physical interfaces with that VLAN.

1. On the Main tab, click Network > VLANs.
 The VLAN List screen opens.
2. Click Create.
 The New VLAN screen opens.
3. In the Name field, type a unique name for the VLAN.
4. In the Tag field, type a numeric tag, between 1-4094, for the VLAN, or leave the field blank if you want the BIG-IP system to automatically assign a VLAN tag. The VLAN tag identifies the traffic from hosts in the associated VLAN.

5. For the Interfaces setting:
 a) From the Interface list, select an interface number or trunk name.
 b) From the Tagging list, select Tagged or Untagged.
 Select Tagged when you want traffic for that interface to be tagged with a VLAN ID.
 c) If you specified a numeric value for the Customer Tag setting and from the Tagging list you selected Tagged, then from the Tag Mode list, select a value.
 d) Click Add.
 e) Repeat these steps for each interface or trunk that you want to assign to the VLAN.

6. From the Configuration list, select Advanced.

7. If you want the system to verify that the return route to an initial packet is the same VLAN from which the packet originated, select the Source Check check box.

8. In the MTU field, retain the default number of bytes (1500).

9. For the Hardware SYN Cookie setting, select or clear the check box.
 When you enable this setting, the BIG-IP system triggers hardware SYN cookie protection for this VLAN.
 Enabling this setting causes additional settings to appear. These settings appear on specific BIG-IP platforms only.

10. For the Syncache Threshold setting, retain the default value or change it to suit your needs.
 The Syncache Threshold value represents the number of outstanding SYN flood packets on the VLAN that will trigger the hardware SYN cookie protection feature.
 When the Hardware SYN Cookie setting is enabled, the BIG-IP system triggers SYN cookie protection in either of these cases, whichever occurs first:
 • The number of TCP half-open connections defined in the LTM® setting Global SYN Check Threshold is reached.
 • The number of SYN flood packets defined in this Syncache Threshold setting is reached.

11. For the SYN Flood Rate Limit setting, retain the default value or change it to suit your needs.
 The SYN Flood Rate Limit value represents the maximum number of SYN flood packets per second received on this VLAN before the BIG-IP system triggers hardware SYN cookie protection for the VLAN.

12. Click Finished.
 The screen refreshes, and displays the new VLAN in the list.

You now have one of two VLANs for your deterministic or PBA NAT. Repeat these steps to create a second VLAN to act as the destination if the first VLAN is the source or vice versa.

Creating a NAT64 virtual server for an LSN pool

Virtual servers are matched based on source (client) addresses. Define a NAT64 virtual server that references the CGNAT profile and the LSN pool.

1. On the Main tab, click Carrier Grade NAT > Virtual Servers.
 The Virtual Server List screen opens.

2. Click the Create button.
 The New Virtual Server screen opens.

3. In the Name field, type a unique name for the virtual server.

4. From the Type list, select Performance (Layer 4).

5. In the Destination Address field, type the IPv6 address in CIDR format.
The supported format is address/prefix, where the prefix length is in bits. For example, an IPv6 address/prefix is 64:ff9b::/64 or 2001:ed8:77b5:2::/64.

6. In the Service Port field, type * or select * All Ports from the list.
7. From the Configuration list, select Advanced.
8. From the Protocol list, select * All Protocols.
9. For the LSN Pool setting, select the pool that this server will draw on for translation addresses.
10. For the Address Translation setting, select the Enabled check box to enable address translation.
11. For the Port Translation setting, clear the Enabled check box.
12. For the NAT64 setting, select the Enabled check box.
13. In the Resources area of the screen, for the iRules setting, select the name of the iRule that you want to assign and using the Move button, move the name from the Available list to the Enabled list.
14. Click Finished.

The custom CGNAT NAT64 virtual server now appears in the CGNAT Virtual Servers list.

Overview: Using PBA mode to reduce CGNAT logging

Port block allocation (PBA) mode is a translation mode option that reduces CGNAT logging, by logging only the allocation and release of each block of ports. When a subscriber first establishes a network connection, the BIG-IP® system reserves a block of ports on a single IP address for that subscriber. The system releases the block when no more connections are using it. This reduces the logging overhead because the CGNAT logs only the allocation and release of each block of ports.

Note: When a subscriber first connects, the PBA translation mode applies client port block limits, which the subscriber uses as long as it has addresses allocated. For each subscriber, PBA mode compares the subscriber's allocated number of port blocks to the port block limit for the currently connected pool. If the allocated number of port blocks exceeds the port block limit, then the connection is denied. For example, if a subscriber's allocated number of port blocks is 2, and the port block limit for the currently connected pool is 1, then the connection is denied.

Task summary

- Creating a PBA LSN pool
- Creating a VLAN for NAT
- Creating a virtual server for an LSN pool

About PBA address translation mode

Port Block Allocation (PBA) mode provides you with the ability to log only the allocation and release of port blocks for a subscriber, instead of separately logging each network address translation (NAT) session as a separate translation event, as with network address and port translation (NAPT), thus reducing the number of log entries while maintaining legal mapping and reverse mapping requirements.

Restrictions

Configuration restrictions for PBA mode include these constraints.

- PBA mode is compatible only with SP-DAG. If a VLAN is used that is not compatible with SP-DAG, then NAPT mode becomes active and an error is logged.
- You can configure overlapping LSN prefixes only between pools of the same type. LSN prefixes are not overlapping when the port ranges for the prefixes do not overlap.
• The system allocates one primary port block for each subscriber, with the allocation of an additional overflow port block, as necessary.
• The Client Connection Limit value constrains the number of subscriber connections, preventing any one subscriber from using an excessive number of connections.
• PBA mode is available with NAT44, NAT64, and DS-Lite.

Behavior Characteristics

PBA mode manages connections by means of the following characteristics.

• Port allocation within an active port block occurs until all available ports become allocated, or until the Block Lifetime limit is exceeded.
• The Block Idle Timeout value specifies the period between when the last connection using a port block is freed and when the port block can be reused.

Important: *A zombie port block, which is a port block that has reached the Block Lifetime limit but cannot be released due to active connections, is released when all active connections become inactive, or when the Zombie Timeout value is reached.*

Reduced Logging

When you use PBA mode, a log entry is sent when a block of ports is allocated for a subscriber, and again when a block of ports is released. Log entries include the range of ports (that is, the port block) from the start port through the end port. Several logging destinations are available for PBA mode, including Syslog, Splunk, and IPFIX.

About configuring PBA mode with route domains

Port block allocation (PBA) mode can be used with route domains to configure multiple subscriber networks in separate route domains. You can also partition subscriber networks and the Internet by using route domains.

A route domain that is used for the translation entry is not the subscriber route domain. The subscriber route domain is, instead, applied to the egress interface.

In the following configuration, multiple subscribers can connect to servers in Internet route domain 0. The BIG-IP® system allocates, to each subscriber, available port blocks from Internet route domain 0 that include unique addresses and ports.

![Figure 5: Multiple subscriber networks connecting to Internet servers in Internet Route Domain 0](image)

In the next configuration, multiple subscribers can connect to servers in respective Internet route domains. The BIG-IP system allocates available port blocks from the respective Internet route domain to the corresponding subscriber. Allocated port blocks can differ only by route domain, and use identical
address and port ranges; consequently, for this configuration, a service provider must provide a means to
distinguish the connections of different route domains, as necessary.

![Figure 6: Multiple subscriber networks connecting to Internet servers in separate Internet route domains](image)

PBA log examples

Following are some examples of the elements that comprise a typical Port Block Allocation (PBA) mode log entry.

PBA log messages include several elements of interest. The following examples show typical log messages, and the table describes common information types.

NAT44 HSL example

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>HTTP Request</th>
<th>Allocated Address</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 23 09:33:42</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_ALLOCATED" 10.10.10.1</td>
<td>5.5.5.9</td>
<td>5555-6666</td>
</tr>
<tr>
<td>Jul 23 09:33:42</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_RELEASED" 10.10.10.1</td>
<td>5.5.5.9</td>
<td>5555-6666</td>
</tr>
</tbody>
</table>

NAT44 HSL with route domains example

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>HTTP Request</th>
<th>Allocated Address</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 23 09:33:42</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_ALLOCATED" 10.10.10.1%55</td>
<td>5.5.5.9%22</td>
<td>5555-6666</td>
</tr>
<tr>
<td>Jul 23 09:33:42</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_RELEASED" 10.10.10.1%55</td>
<td>5.5.5.9%22</td>
<td>5555-6666</td>
</tr>
</tbody>
</table>

DS-Lite HSL example

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>HTTP Request</th>
<th>Allocated Address</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 23 10:46:31</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_ALLOCATED" 2701: :200</td>
<td>5.5.5.9</td>
<td>5555-6666</td>
</tr>
<tr>
<td>Jul 23 10:46:31</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_RELEASED" 2701: :200</td>
<td>5.5.5.9</td>
<td>5555-6666</td>
</tr>
</tbody>
</table>

DS-Lite HSL with route domains example

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>HTTP Request</th>
<th>Allocated Address</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 23 09:36:33</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_ALLOCATED" 2701: :200%11</td>
<td>5.5.5.9%22</td>
<td>5555-6666</td>
</tr>
<tr>
<td>Jul 23 09:36:33</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_RELEASED" 2701: :200%11</td>
<td>5.5.5.9%22</td>
<td>5555-6666</td>
</tr>
</tbody>
</table>

NAT64 HSL example

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>HTTP Request</th>
<th>Allocated Address</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 23 09:36:33</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_ALLOCATED" 2701: :200</td>
<td>5.5.5.9</td>
<td>5555-6666</td>
</tr>
<tr>
<td>Jul 23 09:36:33</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_RELEASED" 2701: :200</td>
<td>5.5.5.9</td>
<td>5555-6666</td>
</tr>
</tbody>
</table>

NAT64 HSL with route domains example

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>HTTP Request</th>
<th>Allocated Address</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 23 09:36:33</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_ALLOCATED" 2701: :200%33</td>
<td>5.5.5.9%22</td>
<td>5555-6666</td>
</tr>
<tr>
<td>Jul 23 09:36:33</td>
<td>www.siterequest.com</td>
<td>"LSN_PB_RELEASED" 2701: :200%33</td>
<td>5.5.5.9%22</td>
<td>5555-6666</td>
</tr>
</tbody>
</table>
NAT44 Splunk example

Jul 23 10:56:13 www.siterequest.com
lsn_event="LSN_PB_ALLOCATED", lsn_client="10.10.10.1", lsn_pb="5.5.5.9: 5555-6666"
Jul 23 10:56:13 www.siterequest.com
lsn_event="LSN_PB_RELEASED", lsn_client="10.10.10.1", lsn_pb="5.5.5.9: 5555-6666"

NAT44 Splunk with route domains example

Jul 23 10:56:13 www.siterequest.com
lsn_event="LSN_PB_ALLOCATED", lsn_client="10.10.10.1%55", lsn_pb="5.5.5.9%22: 5555-6666"
Jul 23 10:56:13 www.siterequest.com
lsn_event="LSN_PB_RELEASED", lsn_client="10.10.10.1%55", lsn_pb="5.5.5.9%22: 5555-6666"

DS-Lite Splunk example

Jul 23 10:57:08 www.siterequest.com lsn_event="LSN_PB_ALLOCATED", lsn_dslite_client="2701: :
200", lsn_pb="5.5.5.9%22:5555-6666"
Jul 23 10:57:08 www.siterequest.com lsn_event="LSN_PB_RELEASED", lsn_dslite_client="2701: :
200", lsn_pb="5.5.5.9%22:5555-6666"

DS-Lite Splunk with route domains example

Jul 23 10:57:08 www.siterequest.com lsn_event="LSN_PB_ALLOCATED", lsn_dslite_client="2701: :
200%11", lsn_pb="5.5.5.9%22:5555-6666"
Jul 23 10:57:08 www.siterequest.com lsn_event="LSN_PB_RELEASED", lsn_dslite_client="2701: :
200%11", lsn_pb="5.5.5.9%22:5555-6666"

NAT64 Splunk example

Jul 23 10:57:08 www.siterequest.com lsn_event="LSN_PB_ALLOCATED", lsn_client="2701: :
200", lsn_pb="5.5.5.9%22:5555-6666"
Jul 23 10:57:08 www.siterequest.com lsn_event="LSN_PB_RELEASED", lsn_client="2701: :
200", lsn_pb="5.5.5.9%22:5555-6666"

NAT64 Splunk with route domains example

Jul 23 10:57:08 www.siterequest.com lsn_event="LSN_PB_ALLOCATED", lsn_client="2701: :
200%33", lsn_pb="5.5.5.9%22:5555-6666"
Jul 23 10:57:08 www.siterequest.com lsn_event="LSN_PB_RELEASED", lsn_client="2701: :
200%33", lsn_pb="5.5.5.9%22:5555-6666"

<table>
<thead>
<tr>
<th>Information Type</th>
<th>Example Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Jul 23 10:57:08</td>
<td>Specifies the time and date that the system logged the event message.</td>
</tr>
<tr>
<td>Domain name</td>
<td>www.siterequest.com</td>
<td>Specifies the domain name of the client.</td>
</tr>
<tr>
<td>LSN event</td>
<td>lsn_event="LSN_PB_ALLOCATED"; lsn_event="LSN_PB_RELEASED"</td>
<td>Specifies the allocation or release of the port block.</td>
</tr>
<tr>
<td>Client address</td>
<td>10.10.10.1; 10.10.10.1%55; 2701: : 200; 2701: :200%33; lsn_client="10.10.1"</td>
<td>Specifies the address of the client.</td>
</tr>
</tbody>
</table>
Informatio

<table>
<thead>
<tr>
<th>Information Type</th>
<th>Example Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsn_client="10.10.10.1%55"; lsn_dslite_client="2701: :200"; lsn_dslite_client="2701: :200%11"</td>
<td>lsn_client="10.10.10.1%55"; lsn_dslite_client="2701: :200"; lsn_dslite_client="2701: :200%11"</td>
<td>Specifies the start of the port range.</td>
</tr>
<tr>
<td>Port block address</td>
<td>5.5.5.9; 5.5.5.9%22</td>
<td>Specifies the address of the port block.</td>
</tr>
<tr>
<td>Port range start</td>
<td>5555</td>
<td>Specifies the start of the port range.</td>
</tr>
<tr>
<td>Port range end</td>
<td>6666</td>
<td>Specifies the end of the port range.</td>
</tr>
</tbody>
</table>

Creating a PBA LSN pool

- The CGNAT module must be provisioned before LSN pools can be configured.
- Before associating a LSN pool with a log publisher, ensure that at least one log publisher exists on the BIG-IP® system.

You configure Large Scale NAT (LSN) pools for the CGNAT module to use in allowing efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools. The LSN Pool List screen opens.
2. Click Create.
3. In the Name field, type a unique name.
4. In the Description field, type a description.
5. For the Mode setting, select PBA for the pool's translation.
 - Note that PBA mode for DS-lite is same as for NAT44, except that all clients behind the DS-Lite tunnel are managed as one subscriber. Port block limits are in accordance with each DS-lite tunnel.
6. For the Port Block Allocation setting, specify your preferred PBA configuration.
 - a) In the Block Size field, type the number of ports designated for a block.
 - b) In the Block Lifetime field, type the number of seconds before a port block times out.

 Note: If you type a timeout other than 0, you can also specify a Zombie Timeout. A Block Lifetime value that is less than the Persistence Timeout value minimizes the number of zombie port blocks. The default value of 0 specifies no lifetime limit and indefinite use of the port block.

 c) In the Block Idle Timeout field, enter the timeout (in seconds) for after the port block becomes idle.

 Note: Typically, you want to use a Block Idle Timeout value less than the Persistence Timeout value, to minimize the number of zombie port blocks.

 d) In the Client Block Limit field, type the number of blocks that can be assigned to a single subscriber IP address.
 e) In the Zombie Timeout field, type the number of seconds before port block times out.

 A zombie port block is a timed out port block with one or more active connections. The default value of 0 specifies no timeout and an indefinite zombie state for the port block, as long as connections remain active. A value other than 0 specifies a timeout expiration, upon which existing connections are terminated, and the port block is released and returned to the pool.
7. In the Configuration area, for the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.

8. Click **Finished**.

Your PBA LSN pool is now ready, and you can continue to configure your CGNAT.

Creating a VLAN for NAT

VLANs represent a logical collection of hosts that can share network resources, regardless of their physical location on the network. You create a VLAN to associate physical interfaces with that VLAN.

1. On the Main tab, click **Network > VLANs**.

 The VLAN List screen opens.

2. Click **Create**.

 The New VLAN screen opens.

3. In the **Name** field, type a unique name for the VLAN.

4. In the **Tag** field, type a numeric tag, between 1-4094, for the VLAN, or leave the field blank if you want the BIG-IP system to automatically assign a VLAN tag.

 The VLAN tag identifies the traffic from hosts in the associated VLAN.

5. For the **Interfaces** setting:

 a) From the **Interface** list, select an interface number or trunk name.

 b) From the **Tagging** list, select **Tagged** or **Untagged**.

 Select **Tagged** when you want traffic for that interface to be tagged with a VLAN ID.

 c) If you specified a numeric value for the **Customer Tag** setting and from the **Tagging** list you selected **Tagged**, then from the **Tag Mode** list, select a value.

 d) Click **Add**.

 e) Repeat these steps for each interface or trunk that you want to assign to the VLAN.

6. From the **Configuration** list, select **Advanced**.

7. If you want the system to verify that the return route to an initial packet is the same VLAN from which the packet originated, select the **Source Check** check box.

8. In the **MTU** field, retain the default number of bytes (1500).

9. For the **Hardware SYN Cookie** setting, select or clear the check box.

 When you enable this setting, the BIG-IP system triggers SYN cookie protection for this VLAN.

 Enabling this setting causes additional settings to appear. These settings appear on specific BIG-IP platforms only.

10. For the **Synache Threshold** setting, retain the default value or change it to suit your needs.

 The **Synache Threshold** value represents the number of outstanding SYN flood packets on the VLAN that will trigger the hardware SYN cookie protection feature.

 When the **Hardware SYN Cookie** setting is enabled, the BIG-IP system triggers SYN cookie protection in either of these cases, whichever occurs first:

 - The number of TCP half-open connections defined in the LTM® setting **Global SYN Check Threshold** is reached.
 - The number of SYN flood packets defined in this **Synache Threshold** setting is reached.

11. For the **SYN Flood Rate Limit** setting, retain the default value or change it to suit your needs.

 The **SYN Flood Rate Limit** value represents the maximum number of SYN flood packets per second received on this VLAN before the BIG-IP system triggers hardware SYN cookie protection for the VLAN.

12. Click **Finished**.

 The screen refreshes, and displays the new VLAN in the list.
You now have one of two VLANs for your deterministic or PBA NAT. Repeat these steps to create a second VLAN to act as the destination if the first VLAN is the source or vice versa.

Creating a virtual server for an LSN pool

Virtual servers are matched based on source (client) addresses. Define a virtual server that references the CGNAT profile and the LSN pool.

1. On the Main tab, click **Carrier Grade NAT > Virtual Servers**.
 The Virtual Server List screen opens.

2. Click the **Create** button.
 The New Virtual Server screen opens.

3. In the **Name** field, type a unique name for the virtual server.

4. From the **Type** list, select **Performance (Layer 4)**.

5. For a network, in the **Destination Address** field, type an IPv4 or IPv6 address in CIDR format to allow all traffic to be translated.
 The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is `0.0.0.0/0`, and an IPv6 address/prefix is `::/0`.

6. In the **Service Port** field, type * or select * All Ports from the list.

7. From the **VLAN and Tunnel Traffic** list, select **Enabled on**. Then, for the **VLANs and Tunnels** setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the **Available** list to the **Selected** list.

8. For the **LSN Pool** setting, select the pool that this server will draw on for translation addresses.

9. In the Resources area of the screen, for the **iRules** setting, select the name of the iRule that you want to assign and using the Move button, move the name from the **Available** list to the **Enabled** list.

10. Click **Finished**.
 The custom CGNAT virtual server now appears in the CGNAT Virtual Servers list.

Overview: Deterministic address translation mode

Deterministic address translation mode provides address translation that eliminates logging of every address mapping, while still allowing internal client address tracking using only an external address and port, and a destination address and port. Reverse mapping allows BIG-IP® CGNAT operators to respond to legal requests revealing the identity of the originator of a specific communication. A typical example is revealing the identity of file sharers or P2P network users accused of copyright theft.

Deterministic mode allows unique identification of internal client address based on:

- External address and port (the address and port visible to the destination server)
- Destination address and port (the service accessed by the client)
- Time

Restrictions

Deterministic mode has these configuration restrictions:

- Only NAT44 can use deterministic mode.
- The subscriber (client-side) and Internet (server-side) interfaces (VLANs) must be set either as a source or destination address in the **CMP Hash** setting.
- The complete set of all internal client addresses that will ever communicate through the CGNAT must be entered at configuration time.
Note: This means that all virtual servers referring to an LSN pool through deterministic NAT mode must specify the source attribute with a value other than 0.0.0.0/0 or ::/0 (any/0, any6/0).

- Use only the most specific address prefixes covering all customer addresses.
- Members of two or more deterministic LSN pools must not overlap; in other words, every external address used for deterministic mapping must occur in only one LSN pool.
- Deterministic mode does not support IPFIX.

Simplified logging

As an alternative to per-connection logging, deterministic mode maps internal addresses to external addresses algorithmically to calculate the mapping without relying on per-connection logging. Deterministic mode significantly reduces the logging burden while mapping a subscriber's inside IP address with an outside Internet address and port.

To decipher mapping generated by LSN pools using deterministic mode, you must use the DNAT utility that can be run from the system's tmsh command prompt.

Task summary

- Creating a deterministic LSN pool
- Creating a VLAN for NAT
- Creating a virtual server for an LSN pool

Creating a deterministic LSN pool

The CGNAT module must be provisioned before you can configure LSN pools.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools. The LSN Pool List screen opens.
2. Click Create.
3. In the Name field, type a unique name.
4. For the Mode setting, select Deterministic for the pool's translation.
 Note that deterministic mode does not support DS-lite tunneling or NAT64.
5. In the Configuration area, for the Member List setting, type an address and a prefix length in the Address/PREFIX Length field, and click Add.
 If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.
6. For deterministic mode, the Backup Member List must have at least one member, so type an address in the Address/PREFIX Length field and click Add.
7. Click Finished.

Your deterministic LSN pool is now ready, and you can continue to configure your CGNAT.

Creating a VLAN for NAT

VLANs represent a logical collection of hosts that can share network resources, regardless of their physical location on the network. You create a VLAN to associate physical interfaces with that VLAN.

1. On the Main tab, click Network > VLANs. The VLAN List screen opens.
2. Click **Create**.
The New VLAN screen opens.

3. In the **Name** field, type a unique name for the VLAN.

4. In the **Tag** field, type a numeric tag, between 1-4094, for the VLAN, or leave the field blank if you want the BIG-IP system to automatically assign a VLAN tag.
The VLAN tag identifies the traffic from hosts in the associated VLAN.

5. For the **Interfaces** setting:
 a) From the **Interface** list, select an interface number or trunk name.

 b) From the **Tagging** list, select **Tagged** or **Untagged**.

 Select **Tagged** when you want traffic for that interface to be tagged with a VLAN ID.

 c) If you specified a numeric value for the **Customer Tag** setting and from the **Tagging** list you selected **Tagged**, then from the **Tag Mode** list, select a value.

 d) Click **Add**.

 e) Repeat these steps for each interface or trunk that you want to assign to the VLAN.

6. From the **Configuration** list, select **Advanced**.

7. If you want the system to verify that the return route to an initial packet is the same VLAN from which the packet originated, select the **Source Check** check box.

8. In the **MTU** field, retain the default number of bytes (**1500**).

9. For the **Hardware SYN Cookie** setting, select or clear the check box.

 When you enable this setting, the BIG-IP system triggers hardware SYN cookie protection for this VLAN.

 Enabling this setting causes additional settings to appear. These settings appear on specific BIG-IP platforms only.

10. For the **Syncache Threshold** setting, retain the default value or change it to suit your needs.

 The **Syncache Threshold** value represents the number of outstanding SYN flood packets on the VLAN that will trigger the hardware SYN cookie protection feature.

 When the **Hardware SYN Cookie** setting is enabled, the BIG-IP system triggers SYN cookie protection in either of these cases, whichever occurs first:

 • The number of TCP half-open connections defined in the LTM® setting **Global SYN Check Threshold** is reached.

 • The number of SYN flood packets defined in this **Syncache Threshold** setting is reached.

11. For the **SYN Flood Rate Limit** setting, retain the default value or change it to suit your needs.

 The **SYN Flood Rate Limit** value represents the maximum number of SYN flood packets per second received on this VLAN before the BIG-IP system triggers hardware SYN cookie protection for the VLAN.

12. Click **Finished**.

 The screen refreshes, and displays the new VLAN in the list.

You now have one of two VLANs for your deterministic or PBA NAT. Repeat these steps to create a second VLAN to act as the destination if the first VLAN is the source or vice versa.

Creating a virtual server for an LSN pool

Virtual servers are matched based on source (client) addresses. Define a virtual server that references the CGNAT profile and the LSN pool.

1. On the Main tab, click **Carrier Grade NAT > Virtual Servers**.
The Virtual Server List screen opens.

2. Click the **Create** button.
The New Virtual Server screen opens.
3. In the **Name** field, type a unique name for the virtual server.

4. From the **Type** list, select **Performance (Layer 4)**.

5. For a network, in the **Destination Address** field, type an IPv4 or IPv6 address in CIDR format to allow all traffic to be translated.

 The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is `0.0.0.0/0`, and an IPv6 address/prefix is `::/0`.

6. In the **Service Port** field, type `*` or select `* All Ports` from the list.

7. From the **VLAN and Tunnel Traffic** list, select **Enabled on**. Then, for the **VLANs and Tunnels** setting, move the VLAN or VLANs on which you want to allow the virtual servers to share traffic from the **Available** list to the **Selected** list.

8. For the **LSN Pool** setting, select the pool that this server will draw on for translation addresses.

9. In the Resources area of the screen, for the **iRules** setting, select the name of the iRule that you want to assign and using the Move button, move the name from the **Available** list to the **Enabled** list.

10. Click **Finished**.

 The custom CGNAT virtual server now appears in the CGNAT Virtual Servers list.

Overview: The DNAT utility

BIG-IP® deterministic NAT (DNAT) mode allows conservation of log storage for service providers by mapping subscribers to public translation addresses and ports algorithmically so that very little data needs to be stored in logs. The DNAT utility (**dnatutil**) is necessary for identifying subscribers through calculation of reverse source address and port mapping of deterministic-mode LSN pools, by using the states stored in the log files.

The DNAT utility can interpret logs from version 11.4.0 and later, correctly reverse mapping subscribers, or forward mapping possible end-points of the subscriber. DNAT, as of version 11.5 of the BIG-IP system, supports multiple log destinations including, LTM®, Remote Syslog, and Splunk. The DNAT utility can parse logs from any supported DNAT log destination.

The DNAT utility binary can be run either on the BIG-IP system or on any supported Linux host. The DNAT utility package currently supports CentOS 64 and Ubuntu 64 for deployment on Linux systems to support reverse mappings on archived logs. The package is available from the F5® Downloads site (http://support.f5.com/kb/en-us.html).

Task summary

- **Downloading the DNAT utility external tool**
- **Using the DNAT utility external tool for reverse mappings**
- **Using DNAT utility to look up deterministic NAT mappings on the BIG-IP system**

DNAT utility example commands

This list provides examples of the syntax used in commands for **dnatutil**.

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnatutil 10.0.0.1 --action forward</td>
<td>Shows a list of translation address/port pairs that might be used for a subscriber at 10.0.0.1, using the DNAT states contained in /var/log/ltm.</td>
</tr>
<tr>
<td>dnatutil 173.240.102.139:5678</td>
<td>Performs a reverse mapping back to the subscriber address for the connection from 173.240.102.139:5678, using the DNAT states contained in /var/log/ltm.</td>
</tr>
</tbody>
</table>
Command | Response
--- | ---
dnatutil --start_time '2012-09-27 06:30:00' --end_time '2012-09-27 12:10:00' 173.240.102.139:5678 | Performs a reverse mapping back to the subscriber address for the connection from 173.240.102.139:5678, but only shows the subscriber addresses that used the translation within the specified time range.
dnatutil --start_time '2012-09-27 06:30:00' --end_time '2012-09-27 12:10:00' --file ltmlog-21102013 173.240.102.139:5678 | Performs a reverse mapping back to the subscriber address for the connection from 173.240.102.139:5678, showing the subscriber addresses that used the translation within the specified time range, and using the DNAT states contained in /var/log/test.
dnatutil --file /var/log/test | Shows summary information, using the DNAT states contained in /var/log/test.
dnatutil --action summary -- start_time '2012-09-27 06:30:00' -- end_time '2012-09-27 12:10:00' | Shows summary information, using the DNAT states within the specified time range.
dnatutil --action reverse_addr 1.2.3.4 | Shows a list of possible subscriber addresses for the provided client address.
dnatutil --help | grep DAG_ID | Provides version information for the utility.

Downloading the DNAT utility external tool

The deterministic NAT (DNAT) reverse mapping tool can run independently from the BIG-IP® system. Follow these steps to download the dnatutil RPM or Debian file from the F5® Downloads site.

2. From the Downloads Overview page, click Find a Download. The Select a Product Line page displays.
4. Select BIG-IP version 12.x from the drop-down menu. The system selects the most recent version of software, by default.
5. From the Name column, select DNAT-Utility. A Software Terms and Conditions page appears.
6. Read the End User Software License Agreement (EULA) and either accept the license by clicking I Accept, or cancel the process by clicking Cancel. If you accept the EULA, the Select a Download page appears with a table detailing the file name, product description, and size of the file. You should see three files:
 - dnatutil.rpm
 - dnatutil.deb
 - readme.txt
7. Select the file you would like to download.

Now that you have downloaded the DNAT utility RPM/Debian package, you can now use dnatutil for forward and reverse mappings.
Using the DNAT utility external tool for reverse mappings

To discover the subscriber address, you need to have at least the NAT/public address you would like to translate. It is preferable to have the date, time, and NAT/public address, port, and the archived logs with the state information you wish to use.

Deterministic NATs (DNATs) can reduce total log file size but require use of the DNAT utility (dnatutil) to decipher the mapping. With dnatutil, you can calculate forward end-points and reverse client address and port mapping of an LSN pool using deterministic mode based on the state stored in the specified log file.

1. Download the BIG-IP® version 11.x RPM or Debian file from the F5® Downloads web site (https://downloads.f5.com) to a preferred location.
2. Using the command line, type `install -Uvh <rpm>` to install the RPM file.
3. Type `dnatutil` with the date, time, NAT/public address, and port that you want to translate.

```
```
4. Press enter.

If the BIG-IP platform is located in a different time zone than the receiving log server, messages might not be correctly interpreted. TZ is an environmental variable that specifies the timezone. If not specified, the local timezone is used.

```
# dnatutil --file ltm 1.1.7.1:1025
From (1365014711): 2013-04-03 18:45:11 GMT
Reverse mapping for ::,80 -> 1.1.7.1,1025
Using cmp-hash 'dst-ip' and TMM 1:10.10.10.11
```

The log entry will show the source prefix, destination prefix (public address), and the subscriber IP address for the time range.

You now have the basic details for deciphering deterministic log files using the DNAT utility.

Using DNAT utility to look up deterministic NAT mappings on the BIG-IP system

You should know how to navigate in tmsh before using the DNAT utility (dnatutil). For detailed information about navigating in tmsh, see the Traffic Management Shell (tmsh) Reference Guide.

Deterministic NATs can reduce total log file size but require use of the dnatutil (available in tmsh) to decipher the mapping. With the dnatutil, you can calculate forward and reverse source address and port mapping of an LSN pool using deterministic mode based on the state stored in the specified TMM log file.

1. Use an SSH tool to access the BIG-IP® system from the command line.
2. At the command line, type: `tmsh`. This starts tmsh in interactive shell mode and displays the prompt: `(tmsh)#`.
3. **Note:** If you do not provide a file and you are on a BIG-IP system, it will default to the LTM® log.

To show a list of translation address/port pairs used for a subscriber at 10.0.0.1:4321 connecting to 65.61.115.222:80, using the deterministic NAT states contained in /var/log/ltm, type the command: `run util dnat --file /var/log/ltm --client_addr 10.0.0.1 --client_port 4321 --server_addr 65.61.115.222 --action forward`

Replace these example addresses with your actual client and server. This displays a list of the address/port pairs.
4. To calculate a reverse mapping back to the subscriber address for the connection between 173.240.102.139:5678 and 65.61.115.222:80, using the DNAT states contained in /var/log/ltm.1, type the command:
```bash
run util dnat --file /var/log/ltm.1 --server_addr 65.61.115.222 --client_addr 173.240.102.139 --client_port 5678 --action reverse
```
This displays the reverse mapping.

5. For more information about the DNAT utility, type the command: `help util dnat` at the tmsh prompt.
The help file for the DNAT utility is displayed.

You now have the basic details for deciphering deterministic log files using the DNAT utility in tmsh.

Overview: PCP client address translation

Port Control Protocol (PCP) clients can request specific NAT/CGNAT mappings for themselves and/or for third-party devices. This allows the PCP clients to set their own public-side IP addresses (also called *translation addresses*) in a network that uses CGNAT. In cases where the BIG-IP® system assigns a translation address or port other than the one requested, the client is at least aware of their assigned address or port.

You apply a PCP profile to a Large Scale NAT (LSN) pool of translation addresses. A client that uses the LSN pool can also send PCP requests to the BIG-IP system to request a particular address/port from the pool. RFC 6887 defines PCP.

Task summary

Creating a PCP profile

Configuring an LSN pool with a PCP profile

Creating a PCP profile

Someone must license the CGNAT module through System > License, and enable it through System > Resource Provisioning before you can create a PCP profile.

A PCP profile defines limitations for PCP-client requests.

1. On the Main tab, click Carrier Grade NAT > PCP Profiles > +.
 The New PCP Profile screen opens.
2. In the Name field, type a unique name.
3. You can accept the defaults in this profile, or you can select the check box next to any setting that you want to change.
 The online help describes each field.
4. Click Finished.

Your PCP profile is now ready to be used in one or more LSN pools.

Configuring an LSN pool with a PCP profile

An *LSN Pool* is a group of addresses and ports to be used as translation addresses by a virtual server's clients. If one of those clients sends a PCP request (for example, to map the client's private IP address to a particular translation address), the LSN pool's PCP profile determines the ranges and limits allowed for the request.

You assign a PCP profile to an LSN pool in the pool's configuration screen. You also designate the IP address and/or DS-Lite tunnel to which the virtual server's clients can send their PCP requests.
1. On the Main tab, click Carrier Grade NAT > LSN Pools. The LSN Pool List screen opens.

2. Click the name of an LSN pool.

3. From the PCP Profile list, select a pre-created PCP profile. If you have not yet created a customized profile, you can use the default PCP profile pcp. The other two PCP-related settings become active.

4. Type a self IP address or a DS-Lite tunnel where the virtual server's clients can send their PCP requests. You can use either field:
 - Use the PCP Server IP list to select one of the existing self IP addresses on the system, or
 - Use the PCP DS-LITE Tunnel Name - IPv6 list to select an existing DS-Lite tunnel

 The virtual server's clients can send PCP requests to the self-IP address or through the DS-Lite tunnel you selected.

After you perform this task, any virtual server with this LSN pool can support PCP. The virtual server's clients can send PCP MAP requests to the address or tunnel you specified here.

No client can use this PCP configuration unless the LSN pool is assigned to at least one virtual server. Go to Carrier Grade NAT > Virtual Servers > Virtual Server List for a list of servers. Look for the LSN pool's name in the LSN Pool column. Confirm that at least one virtual server uses this LSN pool.
Using ALG Profiles

Overview: Using the FTP ALG Profile to Transfer Files

The File Transfer Protocol (FTP) application layer gateway (ALG) profile enables you to transfer files between a client and server. The FTP ALG profile supports both active and passive modes, where data connections are initiated either from an FTP server (active mode) or from a client (passive mode). You can transfer files using the FTP protocol by configuring an LSN pool, configuring an FTP profile, and then assigning the LSN pool and FTP profile to a virtual server. The FTP protocol is described in RFC 959.

Task summary
- Creating an LSN pool
- Creating an FTP profile
- Configuring a CGNAT iRule
- Creating a virtual server using an FTP ALG profile
- Creating an FTP ALG logging profile
- Configuring an FTP ALG profile

About the FTP profile

The File Transfer Protocol (FTP) profile enables you to transfer files between a client and server, using FTP connections over TCP. The FTP application layer gateway (ALG) supports the FTP protocol's active and passive modes, where data connections are initiated either from an FTP server (active mode) or from a client (passive mode).

You can configure the FTP profile settings, as needed, to ensure compatibility between IPv4 and IPv6 clients and servers, to enable the FTP data channel to inherit the TCP profile used by the FTP control channel, and to use a port other than the default port (20). Additionally, when used with Application Security Manager™ (ASM™), this profile enables the BIG-IP® system to inspect FTP traffic for security vulnerabilities by using an FTP security profile.

FTP Control Channels

Once established, the FTP control channel remains open throughout the FTP session. The FTP control channel and the FTP data channel must both originate from the same IP address.

FTP Data Channels

In active mode, the FTP server initiates data connections. A client informs the server as to what port the client is listening on, and the server connects to the client by using that port.
In this example, an LSN pool is configured with a translation IP address and prefix length of 10.33.1.0/24. The virtual server is configured with an FTP control port using a wildcard address and a specific port: 0.0.0.0:21. The FTP data port is configured to use port 20. The configured translation mode uses the values of the respective port range.

<table>
<thead>
<tr>
<th>Translation mode</th>
<th>Port range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAPT</td>
<td>2000-3000</td>
</tr>
<tr>
<td>DNAT</td>
<td>2000-2200</td>
</tr>
<tr>
<td>PBA</td>
<td>2000-2150</td>
</tr>
</tbody>
</table>

In passive mode, the FTP client initiates data connections. The FTP server informs the client as to what port the server is listening on, and the client connects to the server by using that port.
specific port: 0.0.0.0:21. The FTP data port is configured to use port 20. In this example, the configured translation mode uses the values of the respective port range.

<table>
<thead>
<tr>
<th>Translation mode</th>
<th>Port range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAPT</td>
<td>2000-3000</td>
</tr>
<tr>
<td>DNAT</td>
<td>2000-2200</td>
</tr>
<tr>
<td>PBA</td>
<td>2000-2150</td>
</tr>
</tbody>
</table>

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can create large-scale NAT (LSN) pools.

LSN pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
 The LSN Pool List screen opens.
2. Click Create.
3. In the Name field, type a unique name.
4. In the Configuration area, for the Persistence Mode setting, select Address or Address Port.
5. For the Member List setting, type an address and a prefix length in the Address/Prefix Length field, and click Add.
 If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.
6. Click Finished.

Creating an FTP profile

You can configure a file transfer protocol (FTP) profile on the BIG-IP® system that transfers files, either in an active or passive mode, and logs related messages.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles > FTP.
 The FTP screen opens and displays a list of available FTP ALG profiles.
2. Click Create.
3. Type a name for the profile.
4. From the Parent Profile list, select a parent profile.
5. Select the Custom check box.
6. Select the Translate Extended check box to ensure compatibility between IPv4 and IPv6 clients and servers when using the FTP protocol.
 The default is selected.
7. Select the Inherit Parent Profile check box to enable the FTP data channel to inherit the TCP profile used by the control channel. The check box is clear by default.

 Note: If this setting is disabled, the data channel uses FastL4 (BigProto) only.
8. In the Data Port field, type a number for an alternate port.
 The default value for the FTP data port is 20.
9. Click Finished.
An FTP profile is configured on the BIG-IP® system that transfers files, either in an active or passive mode, and logs related messages.

Configuring a CGNAT iRule

You create iRules® to automate traffic forwarding for XML content-based routing. When a match occurs, an iRule event is triggered, and the iRule directs the individual request to an LSN pool, a node, or virtual server.

1. On the Main tab, click **Carrier Grade NAT > iRules**. The iRule List screen opens.
2. Click **Create**.
3. In the **Name** field, type a 1 to 31 character name, such as `cgn_https_redirect_iRule`.
4. In the **Definition** field, type the syntax for the iRule using Tool Command Language (Tcl) syntax. For complete and detailed information about iRules syntax, see the F5 Networks DevCentral web site (http://devcentral.f5.com).
5. Click **Finished**.

You now have an iRule to use with a CGNAT virtual server.

Creating a virtual server using an FTP ALG profile

Virtual servers are matched based on source (client) addresses. Define a virtual server in order to reference an FTP profile and LSN pool.

1. On the Main tab, click **Carrier Grade NAT > Virtual Servers**. The Virtual Server List screen opens.
2. Click the **Create** button. The New Virtual Server screen opens.
3. In the **Name** field, type a unique name for the virtual server.
4. From the **Type** list, retain the default setting **Standard**.
5. In the **Destination Address** field, type the IP address in CIDR format. The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is 10.0.0.1 or 10.0.0.0/24, and an IPv6 address/prefix is ffe1::0020/64 or 2001:ed8:77b5:2:10:10:100:42/64. When you use an IPv4 address without specifying a prefix, the BIG-IP® system automatically uses a /32 prefix.

 Note: The IP address you type must be available and not in the loopback network.

6. In the **Service Port** field, type 21 or select **FTP** from the list.
7. From the **Protocol** list, select **TCP**.
8. From the **Protocol Profile (Client)** list, select a predefined or user-defined TCP profile.
9. From the **Protocol Profile (Server)** list, select a predefined or user-defined TCP profile.
10. From the **FTP Profile** list, select an FTP ALG profile for the virtual server to use.
11. For the **LSN Pool** setting, select the pool that this server will draw on for addresses.
12. Locate the Resources area of the screen; for the **Related iRules** setting, from the **Available** list, select the name of the iRule that you want to assign and move the name to the **Enabled** list.

 This setting applies to virtual servers that reference a profile for a data channel protocol, such as FTP or RTSP.
13. Click **Finished**.

The custom CGNAT virtual server appears in the CGNAT Virtual Servers list.
Creating an FTP ALG logging profile

You can create an application layer gateway (ALG) logging profile, and associate it with one or more FTP ALG profiles, to allow you to configure logging options for various events that apply to high-speed logging (HSL) destinations. A logging profile decreases the need to maintain a number of customized profiles where the events are very similar.

1. On the Main tab, click Carrier Grade NAT > Logging Profiles > ALG.
 The ALG logging profiles screen opens.
2. Click Create.
 The New ALG Logging Profile screen opens.
3. In the Name field, type a unique name for the logging profile.
4. From the Parent Profile list, select a profile from which the new profile inherits properties.
5. For the Log Settings area, select the Custom check box.
6. For the Log Settings area, select Enabled for the following settings, as necessary.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (csv) format.</td>
</tr>
<tr>
<td>Start Control Channel</td>
<td>Generates event log entries at the start of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Control Channel</td>
<td>Generates event log entries at the end of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>Start Data Channel</td>
<td>Generates event log entries at the start of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Data Channel</td>
<td>Generates event log entries at the end of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>Inbound Transaction</td>
<td>Generates event log entries of ALG messages triggered by an inbound connection to the BIG-IP® system.</td>
</tr>
</tbody>
</table>

Note: Enabling the CSV check box affects splunk logs because IP addresses are shown as ip,port,rtdom instead of ip%rtdom:port. Do not mix log types and only use standard syslog formats.

7. Click Finished.

Configuring an FTP ALG profile

You can associate an FTP ALG profile with a log publisher and logging profile that the BIG-IP® system uses to send log messages to a specified destination.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles > FTP.
 The FTP screen opens and displays a list of available FTP ALG profiles.
2. Click the name of an FTP profile.
3. In the Log Settings area, from the Log Publisher list, select the log publisher the BIG-IP system uses to send log messages to a specified destination.

Note: If you configure a log publisher, you must also configure a Logging Profile.
Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the `logpublisher.atomic db` variable to `false`.

4. From the **Logging Profile** list, select the logging profile the BIG-IP system uses to configure logging options for various ALG events.

 Note: If you configure a Logging Profile, you must also configure a Log Publisher.

5. Click **Finished**.

Overview: Enabling FTPS on the FTP ALG profile

When creating an FTP application layer gateway (ALG) profile, you can enable file transfer protocol secure (FTPS) to allow FTP clients to issue the authentication transport layer security (AUTH TLS) or AUTH secure socket layer (SSL) commands, and encrypt FTP traffic between the client and server for that connection. The BIG-IP® system switches the connection to pass through mode, but does not participate in the encryption process.

Task summary

- Creating an LSN pool
- Creating an FTP ALG profile
- Creating a virtual server using an FTP ALG profile
- Creating a wildcard virtual server
- Creating an FTP ALG logging profile
- Creating an LSN pool
- Creating an FTP ALG profile
- Creating a virtual server using an FTP ALG profile
- Creating a wildcard virtual server
- Creating an FTP ALG logging profile

About the FTP ALG profile with FTPS enabled

When configuring the FTP application layer gateway (ALG) profile, after enabling File Transfer Protocol Secure (FTPS), ALG switches to pass-through mode. This allows for an encrypted control connection to proceed. Once the connection is encrypted, it cannot be inspected for control commands, and firewall policies cannot be applied to the contents of the connection. For this reason, you must configure another virtual server, a wildcard CGNAT virtual server, to support the passive data transfer connections. FTPS only supports passive mode data transfers.

The wildcard and FTP virtual servers must share the same LSN pool, and address persistence must be configured on the pool. This configuration ensures that source address translation is consistent for the control and data connections that make up the file transfer.

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can create large-scale NAT (LSN) pools.

LSN pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.
Creating an FTP ALG profile

You can configure a file transfer protocol (FTP) profile on the BIG-IP® system that transfers files and messages related to logs. By enabling FTP secure (FTPS), the application layer gateway (ALG) switches to pass-through mode, allowing an encrypted control connection to proceed.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles > FTP.
 The FTP screen opens and displays a list of available FTP ALG profiles.
2. Click Create.
3. Type a name for the profile.
4. From the Parent Profile list, select a parent profile.
5. Select the Custom check box.
6. Select the Translate Extended check box to ensure compatibility between IPv4 and IPv6 clients and servers when using the FTP protocol.
 The default is selected.
7. Select the Inherit Parent Profile check box to enable the FTP data channel to inherit the TCP profile used by the control channel. The check box is clear by default.

 Note: If this setting is disabled, the data channel uses FastL4 (BigProto) only.

8. In the Data Port field, type a number for an alternate port.
 The default value for the FTP data port is 20.

9. In the Settings area, select the Allow FTPS check box.
10. In the Log Settings area, from the Log Publisher list, select the log publisher the BIG-IP system uses to send log messages to a specified destination.

 Note: If you configure a log publisher, you must also configure a Logging Profile.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the logpublisher.atomic db variable to false.

11. From the Logging Profile list, select the logging profile the BIG-IP system uses to configure logging options for various TFTP events.

 Note: If you configure a Logging Profile, you must also configure a Log Publisher.

12. Click Finished.
Creating a virtual server using an FTP ALG profile

Define a virtual server in order to reference an FTP profile and LSN pool. The virtual server attached to an FTP ALG profile, along with a wildcard server, must share the same LSN pool with persistence enabled.

1. On the Main tab, click Carrier Grade NAT > Virtual Servers. The Virtual Server List screen opens.
2. Click the Create button. The New Virtual Server screen opens.
3. In the Name field, type a unique name for the virtual server.
4. From the Type list, retain the default setting Standard.
5. In the Destination Address field, type the IP address in CIDR format, such as 0.0.0.0/0 for IPv4 or ::/0 for IPv6. The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is 10.0.0.1 or 10.0.0.0/24, and an IPv6 address/prefix is ffe1::0020/64 or 2001:ed8:77b5:2:10:100:42/64. When you use an IPv4 address without specifying a prefix, the BIG-IP® system automatically uses a /32 prefix.

Note: The IP address you type must be available and not in the loopback network.

6. In the Service Port field, type 21 or select FTP from the list.
7. From the Protocol list, select TCP.
8. From the Protocol Profile (Client) list, select a predefined or user-defined TCP profile.
9. From the Protocol Profile (Server) list, select a predefined or user-defined TCP profile.
10. From the FTP Profile list, select an FTP ALG profile for the virtual server to use.
11. For the LSN Pool setting, select the pool that this server will draw on for addresses.

Note: You must use the same LSN pool for the wildcard virtual server.

12. Click Finished.

The custom CGNAT virtual server appears in the CGNAT Virtual Servers list.

Creating a wildcard virtual server

Create a wildcard virtual server to support passive mode connections. The wildcard virtual server, along with the virtual server attached to an FTP ALG profile, must share the same LSN pool with persistence enabled.

2. Click the Create button. The New Virtual Server screen opens.
3. In the Name field, type a unique name for the virtual server.
4. In the Destination Address field, type a wildcard network address in CIDR format, such as 0.0.0.0/0 for IPv4 or ::/0 for IPv6, to accept any traffic.
5. In the Service Port field, type 0.

Note: Port 0 defines a wildcard virtual server that handles all types of services. If you specify a port number, you create a port-specific wildcard virtual server. In that case, the wildcard virtual server handles traffic only for the specified port.
Creating an FTP ALG logging profile

You can create an application layer gateway (ALG) logging profile, and associate it with one or more FTP ALG profiles, to allow you to configure logging options for various events that apply to high-speed logging (HSL) destinations. A logging profile decreases the need to maintain a number of customized profiles where the events are very similar.

1. On the Main tab, click Carrier Grade NAT > Logging Profiles > ALG.
 The ALG logging profiles screen opens.
2. Click Create.
 The New ALG Logging Profile screen opens.
3. In the Name field, type a unique name for the logging profile.
4. From the Parent Profile list, select a profile from which the new profile inherits properties.
5. For the Log Settings area, select the Custom check box.
6. For the Log Settings area, select Enabled for the following settings, as necessary.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (csv) format.</td>
</tr>
<tr>
<td>Start Control Channel</td>
<td>Generates event log entries at the start of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Control Channel</td>
<td>Generates event log entries at the end of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>Start Data Channel</td>
<td>Generates event log entries at the start of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Data Channel</td>
<td>Generates event log entries at the end of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>Inbound Transaction</td>
<td>Generates event log entries of ALG messages triggered by an inbound connection to the BIG-IP® system.</td>
</tr>
</tbody>
</table>

Note: Enabling the CSV check box affects splunk logs because IP addresses are shown as ip,port,rtdom instead of ip$rtdom:port. Do not mix log types and only use standard syslog formats.

7. Click Finished.

Overview: Using the TFTP ALG profile to transfer files

The Trivial File Transfer Protocol (TFTP) profile enables you to configure the BIG-IP® system to read and write files from or to a remote server. The TFTP application layer gateway (ALG) profile is associated with a UDP port 69 virtual server so that a listener is established for incoming TFTP traffic. This allows the protocol to operate across the BIG-IP system. You can transfer files using the TFTP protocol by configuring a TFTP profile, configuring an LSN pool, and then assigning the TFTP profile and LSN pool to a virtual server. The TFTP protocol is described in RFC 1350.

Task summary

Creating a TFTP ALG profile
Creating an LSN pool
Creating a virtual server using a TFTP ALG profile
Creating a TFTP ALG logging profile

About the TFTP ALG profile

The Trivial File Transfer Protocol application layer gateway (TFTP ALG) provides connection management for TFTP. The TFTP profile is configured on a UDP port 69 virtual server. The profile opens a server-side listener so that responses from the server can be returned to the client across the BIG-IP® system. ALG logging can be configured on the profile.

Creating a TFTP ALG profile

You can configure a Trivial File Transfer Protocol (TFTP) on the BIG-IP® system to read and write files from or to a remote server.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles > TFTP.
 The TFTP screen opens and displays a list of available TFTP ALG profiles.
2. On the Main tab, click Carrier Grade NAT > ALG Profiles > TFTP.
 The TFTP screen opens and displays a list of available TFTP ALG profiles.
3. Click Create.
 The New TFTP Profile screen opens.
4. In the Name field, type a unique name for the TFTP profile.
5. From the Parent Profile list, select a profile from which the new profile inherits properties.
6. For the Settings area, select the Custom check box.
7. In the Settings area, for the Idle Timeout list, type a number to specify the number of seconds after a connection is eligible for deletion; when the connection has no traffic. The default value is 30 seconds.
8. For the Log Settings area, select the Custom check box.
9. In the Log Settings area, from the Log Publisher list, select the log publisher the BIG-IP system uses to send log messages to a specified destination.

 Note: If you configure a log publisher, you must also configure a Logging Profile.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the logpublisher.atomic.db variable to false.

10. From the Logging Profile list, select the logging profile the BIG-IP system uses to configure logging options for various ALG events.

 Note: If you configure a Logging Profile, you must also configure a Log Publisher.

11. Click Finished.

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can create large-scale NAT (LSN) pools.

LSN pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
The LSN Pool List screen opens.

2. Click Create.

3. In the Name field, type a unique name.

4. In the Configuration area, for the Persistence Mode setting, select Address or Address Port.

5. For the Member List setting, type an address and a prefix length in the Address/Prefix Length field, and click Add.

 If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member’s prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.

6. Click Finished.

Creating a virtual server using a TFTP ALG profile

Virtual servers are matched based on source (client) addresses. Create and define a virtual server that references an TFTP profile and LSN pool.

1. On the Main tab, click Carrier Grade NAT > Virtual Servers.

 The Virtual Server List screen opens.

2. Click the Create button.

 The New Virtual Server screen opens.

3. In the Name field, type a unique name for the virtual server.

4. From the Type list, retain the default setting Standard.

5. In the Destination Address field, type the IP address in CIDR format. The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is 10.0.0.1 or 10.0.0.0/24, and an IPv6 address/prefix is ffe1::0020/64 or 2001:ed8:77b5:2:10:10:100:42/64. When you use an IPv4 address without specifying a prefix, the BIG-IP® system automatically uses a /32 prefix.

6. In the Service Port field, type 69 or select TFTP from the list.

7. From the Configuration list, select Advanced.

8. From the Protocol list, select UDP.

9. From the TFTP Profile list, select an TFTP ALG profile for the virtual server to use.

10. For the LSN Pool setting, select the pool that this server will draw on for addresses.

11. Click Finished.

Creating a TFTP ALG logging profile

You can create an application layer gateway (ALG) logging profile, and associate it with one or more Trivial File Transfer Protocol (TFTP) ALG profiles, to allow you to configure logging options for various events. A logging profile decreases the need to maintain a number of customized profiles where the events are very similar.

1. On the Main tab, click Carrier Grade NAT > Logging Profiles > ALG.

 The ALG logging profiles screen opens.

2. Click Create.

 The New ALG Logging Profile screen opens.

3. In the Name field, type a unique name for the TFTP profile.

4. From the Parent Profile list, select a profile from which the new profile inherits properties.

5. For the Log Settings area, select the Custom check box.

6. For the Log Settings area, select Enabled for the following settings, as necessary.
Using ALG Profiles

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (csv) format.</td>
</tr>
<tr>
<td>Start Control Channel</td>
<td>Generates event log entries at the start of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Control Channel</td>
<td>Generates event log entries at the end of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>Start Data Channel</td>
<td>Generates event log entries at the start of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Data Channel</td>
<td>Generates event log entries at the end of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>Inbound Transaction</td>
<td>Generates event log entries of ALG messages triggered by an inbound connection to the BIG-IP® system.</td>
</tr>
</tbody>
</table>

Note: Enabling the CSV check box affects splunk logs because IP addresses are shown as `ip,port,rtdom` instead of `ip%rtdom:port`. Do not mix log types and only use standard syslog formats.

7. Click Finished.

Overview: Using the SIP MRF ALG Profile

A carrier-grade network address translation (CGNAT) Session Initiation Protocol (SIP) application layer gateway (ALG) configuration, using message routing framework (MRF) functionality, enables SIP communication and associated media flow to cross an address translation boundary.

The SIP ALG profile provides the ability for subscribers to make and accept calls, and to store private contact information with a corresponding translated address and port. The lifetime and idle timeout for this entry differs from the flow that created it, enabling the entry to live after the flow expires. The SIP ALG uses the translated IP address and port to uniquely identify a subscriber, and to accept that subscriber's incoming calls. To enable this functionality, the LSN pool must pick an endpoint that is not reserved for the SIP ALG connections, and update the endpoint reservation time.

For calls between subscribers, a BIG-IP® device can hairpin media; however, it must not hairpin SIP signaling. Instead, the BIG-IP device must always deliver SIP signaling to an external proxy.

Additionally, for communication between subscribers, a BIG-IP device supports NAT44, NAT64, 464XLAT, and DS-Lite translation.

Finally, the SIP ALG profile supports media flow between a caller and callee.

SIP MRF ALG call scenarios include the following:

- Internal to internal calls, with SIP signaling through the proxy
- External to internal calls
- Internal to external calls
- Internal to external calls through NAT64
- Calls through DS-Lite tunnels on the internal network, including the following:
 - DS-Lite subscribers on different tunnels with the same name and IP address
 - DS-Lite subscribers on different tunnels with the same name and different IP addresses
 - DS-Lite subscribers on different tunnels with different names and the same IP address
A SIP MRF virtual server must include both a SIP session profile and a SIP router profile. The SIP session profile provides a protocol-specific configuration, and the SIP router profile specifies the static-route configurations.

Important: The SIP Session profile and SIP Router profile are only available for use with a Message Routing virtual server.

Task summary
- Creating a SIP session profile
- Creating a SIP router profile
- Creating an LSN pool
- Configuring a SIP virtual server
- Viewing reserved endpoints

About the SIP session profile

A SIP session profile, assigned to a message routing virtual server, processes ingress and egress messages in accordance with the profile configuration. Multiple SIP session profiles can be assigned to a virtual server, as necessary, to manage SIP messages. Each SIP session ALG profile includes settings for the message size, message header count, and message header size.

About the SIP router profile

A SIP router profile, assigned to one or more message routing virtual servers, specifies an operation mode, static routes, traffic group, and connection mirroring, as well as session, media proxy, registration, and logging parameters.

For virtual servers that use a SIP router profile in an application layer gateway (ALG) operation mode, the SIP router profile binds the virtual servers together; however, routes are not configured. Instead, the local address of the originating flow is used as the remote address of the outgoing connection.

Creating a SIP session profile

You create a SIP session profile to define how the BIG-IP® system processes SIP messages in an address translation configuration.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles > SIP > SIP Session.
 The SIP Session profiles list screen opens.
2. Click Create.
 The New SIP Session Profile screen opens.
3. In the Name field, type a unique name for the SIP session profile.
4. From the Parent Profile list, select sipsession-alg.
 The SIP Session profile screen refreshes, showing default SIP session ALG profile settings.
5. Select the Custom check box.
6. In the Maximum Message Size (bytes) field, type the maximum SIP message size that the system accepts.
7. In the Maximum Message Header Count field, type the maximum number of header fields that the system allows in a SIP message.
8. In the Maximum Message Header Size (bytes) field, type the maximum size in bytes that the system allows for a SIP message header.
9. Select the Generate Response on Failure check box to send failure response messages when the system drops a SIP request.
10. Click Finished.

Creating a SIP router profile

You can create a SIP router ALG profile for a SIP address translation configuration.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles > SIP > SIP Router.
 The SIP Router profiles list screen opens.

2. Click Create.
 The New Router Profiles screen opens.

3. In the Name field, type a unique name for the router profile.

4. From the Parent Profile list, select siprouter-alg.
 The SIP Router profile screen refreshes, showing default SIP router ALG profile settings, including
 the Operation Mode set to Application Level Gateway.

5. In the Settings area, select the Custom check box.

6. (Optional) To use connection mirroring, configure the Traffic Group setting.
 a) Clear the Inherit traffic group from current partition / path check box.
 b) From the list, select a traffic group, such as, traffic-group-1.

 Important: Changing traffic groups, with Connection Mirroring enabled, drops all mirrored
 connections and loses all persistence data. If you change traffic groups, mirroring must restart.

 Note: The traffic group for the virtual address and mirrored attribute are overwritten by the attached router profile.

7. (Optional) Select the Connection Mirroring check box.

 Note: For connection mirroring to properly function, this device must be a member of a device group.

8. (Optional) In the Mirrored Message Sweeper Interval field, type the milliseconds for the frequency
 of the mirrored message sweeper.

9. In the Session Timeout (seconds) area, select the Custom check box.

10. In the Transaction Timeout field, type the maximum number of seconds the system allows for a
 transaction, that is, the time between a request and response.

11. In the Maximum Session Timeout field, type the maximum duration (in seconds) that a call remains
 active.

12. In the Dialog Establishment Timeout field, type a value for the INVITE transaction timeout.

13. In the Registration area, select the Custom check box.

14. In the Maximum Registrations Per Subscriber field, type the maximum number of registrations per
 subscriber.

15. Clear the Non Register Subscriber Callout check box to prevent non-registered subscribers from
 making calls without a prior REGISTER message.

16. In the Log Settings area, select the Custom check box.

17. From the Log Publisher list, select the log publisher that the BIG-IP system uses to send log
 messages to a specified destination.

 Note: If you configure a log publisher, you must also configure a Logging Profile.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all
 logging destinations must be available in order to log to each destination. Unless all logging
 destinations are available, no logging can occur. If you want to log to the available logging
destinations when one or more destinations become unavailable, you must set the
logpublisher.atomic.db variable to false.

18. From the Logging Profile list, select the logging profile that the BIG-IP system uses to configure
logging options for various ALG events.

Note: If you configure a Logging Profile, you must also configure a Log Publisher.

19. Click Finished.
A SIP router profile appears in the Router Profiles list.

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can
create large-scale NAT (LSN) pools.

LSN pools are used by the CGNAT module to allow efficient configuration of translation prefixes and
parameters. You can configure the following types of LSN pools:

• NAPT
• Deterministic
• PBA

SIP ALG LSN modes and networks

A carrier-grade NAT (CGNAT) Session Initiation Protocol (SIP) application layer gateway (ALG)
configuration supports certain large-scale NAT (LSN) modes and network configurations.

Table 1: Supported SIP ALG LSN modes and network configurations

<table>
<thead>
<tr>
<th>NAT Mode</th>
<th>Supported Network Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAPT</td>
<td>• NAT44
• NAT64, 464XLAT
• DS-Lite</td>
</tr>
<tr>
<td>DNAT</td>
<td>• NAT44</td>
</tr>
<tr>
<td>PBA</td>
<td>• NAT44
• NAT64, 464XLAT
• DS-Lite</td>
</tr>
</tbody>
</table>

Creating a NAPT LSN pool

• The CGNAT module must be provisioned before LSN pools can be configured.
• Before associating a LSN pool with a log publisher, ensure that at least one log publisher exists on the
BIG-IP system.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of
translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
The LSN Pool List screen opens.
2. Click Create.
3. In the Name field, type a unique name.
4. In the Description field, type a description.
5. Select NAPT for the pool's translation **Mode**.
6. Click **Finished**.

Your NAPT LSN pool is now ready and you can continue to configure your CGNAT.

Creating a deterministic LSN pool

The CGNAT module must be provisioned before you can configure LSN pools. *Large Scale NAT* (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**.
The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. For the **Mode** setting, select **Deterministic** for the pool's translation.
 Note that deterministic mode does not support *DS-lite* tunneling or *NAT64*.
5. From the **Log Publisher** list, select the publisher that includes the destinations to which you want to send log messages.
6. In the Configuration area, for the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.
 If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.
7. For deterministic mode, the **Backup Member List** must have at least one member, so type an address in the **Address/Prefix Length** field and click **Add**.
8. Click **Finished**.

Your deterministic LSN pool is now ready, and you can continue to configure your CGNAT.

Creating a PBA LSN pool

- The CGNAT module must be provisioned before LSN pools can be configured.
- Before associating a LSN pool with a log publisher, ensure that at least one log publisher exists on the BIG-IP® system.

You configure *Large Scale NAT* (LSN) pools for the CGNAT module to use in allowing efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**.
The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. In the **Description** field, type a description.
5. For the **Mode** setting, select **PBA** for the pool's translation.
 Note that PBA mode for *DS-lite* is same as for *NAT44*, except that all clients behind the *DS-Lite* tunnel are managed as one subscriber. Port block limits are in accordance with each *DS-lite* tunnel.
6. For the **Port Block Allocation** setting, specify your preferred PBA configuration.
 a) In the **Block Size** field, type the number of ports designated for a block.
 b) In the **Block Lifetime** field, type the number of seconds before a port block times out.
c) In the **Block Idle Timeout** field, enter the timeout (in seconds) for after the port block becomes idle.

Note: Typically, you want to use a Block Idle Timeout value less than the Persistence Timeout value, to minimize the number of zombie port blocks.

d) In the **Client Block Limit** field, type the number of blocks that can be assigned to a single subscriber IP address.

e) In the **Zombie Timeout** field, type the number of seconds before port block times out.

A **zombie port block** is a timed out port block with one or more active connections. The default value of 0 specifies no timeout and an indefinite zombie state for the port block, as long as connections remain active. A value other than 0 specifies a timeout expiration, upon which existing connections are terminated, and the port block is released and returned to the pool.

7. In the Configuration area, for the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.

8. Click **Finished**.

Your PBA LSN pool is now ready, and you can continue to configure your CGNAT.

Configuring a SIP virtual server

Before you can create a SIP virtual server, you need to create a SIP ALG session profile and a SIP ALG router profile.

You can create a SIP virtual server to provide source address translation and manage messages as configured in the SIP session profile and SIP router profile.

1. On the Main tab, click **Carrier Grade NAT > Virtual Servers**. The Virtual Server List screen opens.

2. Click **Create**. The New Virtual Server screen opens.

3. In the **Name** field, type a unique name for the virtual server.

4. In the **Description** field, type a description for the virtual server.

5. From the **Type** list, select **Message Routing**.

6. In the **Destination Address/Mask** field, type an IP address in CIDR format.

 The supported format is address/prefix, where the prefix length is in bits. For example, to select all IP addresses, an IPv4 address/prefix is 0.0.0.0/0, and an IPv6 address/prefix is ::/0. To specify a network, an IPv4 address/prefix is 10.07.0.0 or 10.07.0.0/24, and an IPv6 address/prefix is ffe1::/64 or 2001:ed8:77b5::/64. When you use an IPv4 address without specifying a prefix, the BIG-IP® system automatically uses a /32 prefix.

 Note: For best results, F5 recommends that you enter the subnet that matches your destination server network.

7. In the **Service Port** field, type 5060.

8. From the **Configuration** list, select **Advanced**.

9. From the **Application Protocol** list, select **SIP**.

10. From the **Session Profile** list, select a SIP session ALG profile.

11. From the **Router Profile** list, select a SIP router ALG profile.
Using ALG Profiles

12. From the Source Address Translation list, select LSN.
13. From the LSN Pool list, select an LSN pool.
14. Click Finished.

A SIP virtual server is configured to provide source address translation and manage messages as configured in the SIP session profile and SIP router profile.

Viewing reserved endpoints

When an LSN pool or AFM Dynamic PAT source translation is configured, you can view information for the reserved endpoints using the TMSH (TMOS Shell) command-line interface.

1. Access the `tmsh` command-line utility.
2. At the command prompt, type `tmsh run util lsndb list endpoint_reservations` or `tmsh run util lsndb list all`.

A listing similar to the following example appears.

```
# tmsh run util lsndb list endpoint-reservations
LSN Endpoint Reservations
Translation                Subscriber ID    Client          DS-Lite tunnel   Proto   Age
-------------------------------------------------------------------------------------------
5.5.5.1:1035                No-lookup       10.0.0.0:1035                    UDP     9
5.5.5.1:1025                No-lookup       10.0.0.0:1025                    TCP     14
5.5.5.1:1025                No-lookup       10.0.0.0:1025                    UDP     14
5.5.5.1:1033                No-lookup       10.0.0.0:1033                    UDP     9
5.5.5.2:5033                No-lookup       10.0.0.1:6000                    UDP     9
5 endpoint reservations found
```

```
# tmsh run util lsndb list all
LSN Client Connections
Client                                      Connections
-------------------------------------------------------------------------------------------
0 client with 0 connection found.
LSN Persistence Entries
Client                                      Translation     TTL
-------------------------------------------------------------------------------------------
0 persist entries found.
LSN port block allocations
Client                                      Port block      TTL
-------------------------------------------------------------------------------------------
0 port block entries found.
LSN Inbound Mapping Entries
Translation                Subscriber ID   Client          DS-Lite tunnel   Proto   Age
-------------------------------------------------------------------------------------------
0 inbound mappings found.
```

```
# lsndb summary endpoint-reservations
--------------------------------------------------------------------------------------------
Summary:
LSN Endpoint Reservation Entries
Translation Address                Client Count
-------------------------------------------------------------------------------------------
Using ALG Profiles
```
Overview: Using the RTSP ALG Profile to Stream Media

The Real Time Streaming Protocol (RTSP) application layer gateway (ALG) profile enables you to establish streaming multimedia sessions between a client and a server. You can stream multimedia sessions by configuring an LSN pool, configuring an RTSP profile, and then assigning the LSN pool and RTSP profile to a virtual server. The RTSP protocol is described in RFC 2326.

Task summary

Creating an LSN pool
Creating an RTSP profile
Configuring a CGNAT iRule
Creating a virtual server using an RTSP ALG profile
Creating an RTSP ALG logging profile
Configuring an RTSP ALG profile

About the RTSP ALG profile

The Real Time Streaming Protocol (RTSP) profile enables you to stream multimedia content between a client and server, using RTSP connections over TCP. The RTSP application layer group (ALG) supports the RTSP protocol's control channel to an RTSP server, through which the client requests a file for the server to stream (and controls the streaming of that file with commands like play or pause). The client can request streaming over UDP and provide two listening ports for the server response. The RTSP server responds with a Real-Time Transport Protocol (RTP) data channel port, to stream the requested file, and a Real-Time Control Protocol (RTCP) control channel port, which provides a stream description and status.

Note: You can specify RTP and RTCP port numbers in the RTSP profile, which only apply when a client connects to a Windows Media server. If you configure RTP and RTCP port numbers, both values must be nonzero.

You can configure the RTSP profile settings, as needed.
Figure 9: An example RTSP ALG configuration

In this example, an LSN pool is configured with a translation IP address and prefix length of 10.33.1.0/24. The virtual server is configured with an RTSP control port using a wildcard address and a specific port: 0.0.0.0:554. The configured translation mode uses the values of the respective port range.

<table>
<thead>
<tr>
<th>Translation mode</th>
<th>Port range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAPT</td>
<td>2000-3000</td>
</tr>
<tr>
<td>DNAT</td>
<td>2000-2200</td>
</tr>
<tr>
<td>PBA</td>
<td>2000-2150</td>
</tr>
</tbody>
</table>

Creating an LSN pool

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can create large-scale NAT (LSN) pools.

LSN pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**. The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. In the Configuration area, for the **Persistence Mode** setting, select **Address** or **Address Port**.
5. For the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.

If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.
Creating an RTSP profile

You can configure a real time streaming protocol (RTSP) profile on the BIG-IP® system that streams multimedia content between a client and server.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles > RTSP.
 The RTSP screen opens and displays a list of available RTSP ALG profiles.
2. Click Create.
3. Type a name for the profile.
4. From the Parent Profile list, select a parent profile.
5. Select the Custom check box.
6. In the RTP Port field, type the port number that a Microsoft Media Services server uses. The default is 0.

 Note: You can specify Real-Time Transport Protocol (RTP) and Real-Time Control Protocol (RTCP) port numbers in the RTSP profile, which only apply when a client connects to a Windows Media® server. If you configure RTP and RTCP port numbers, both values must be nonzero.

7. In the RTCP Port field, type the port number that a Microsoft Media Services server uses. The default is 0.

 Note: You can specify Real-Time Transport Protocol (RTP) and Real-Time Control Protocol (RTCP) port numbers in the RTSP profile, which only apply when a client connects to a Windows Media® server. If you configure RTP and RTCP port numbers, both values must be nonzero.

8. Click Finished.

An RTSP profile is configured on the BIG-IP® system that streams multimedia content between a client and server.

Configuring a CGNAT iRule

You create iRules® to automate traffic forwarding for XML content-based routing. When a match occurs, an iRule event is triggered, and the iRule directs the individual request to an LSN pool, a node, or virtual server.

1. On the Main tab, click Carrier Grade NAT > iRules.
 The iRule List screen opens.
2. Click Create.
3. In the Name field, type a 1 to 31 character name, such as cgn_https_redirect_iRule.
4. In the Definition field, type the syntax for the iRule using Tool Command Language (Tcl) syntax.
 For complete and detailed information about iRules syntax, see the F5 Networks DevCentral web site (http://devcentral.f5.com).
5. Click Finished.

You now have an iRule to use with a CGNAT virtual server.

Creating a virtual server using an RTSP ALG profile

Virtual servers are matched based on source (client) addresses. Here are the steps to define a virtual server that references an RTSP profile and LSN pool.

1. On the Main tab, click Carrier Grade NAT > Virtual Servers.
Using ALG Profiles

The Virtual Server List screen opens.

2. Click the Create button.
 The New Virtual Server screen opens.

3. In the Name field, type a unique name for the virtual server.

4. From the Type list, retain the default setting Standard.

5. In the Destination Address field, type the IP address in CIDR format.
 The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is 10.0.0.1 or 10.0.0.0/24, and an IPv6 address/prefix is ffe1:0020/64 or 2001:ed8:77b5:2::10:100:42/64. When you use an IPv4 address without specifying a prefix, the BIG-IP® system automatically uses a /32 prefix.

 Note: The IP address you type must be available and not in the loopback network.

6. In the Service Port field, type 554 for the service.

7. From the Protocol list, select TCP.

8. From the Protocol Profile (Client) list, select a predefined or user-defined TCP profile.

9. From the Protocol Profile (Server) list, select a predefined or user-defined TCP profile.

10. From the RTSP Profile list, select an RISP ALG profile for the virtual server to use.

11. For the LSN Pool setting, select the pool that this server will draw on for addresses.

12. Locate the Resources area of the screen; for the Related iRules setting, from the Available list, select the name of the iRule that you want to assign and move the name to the Enabled list.
 This setting applies to virtual servers that reference a profile for a data channel protocol, such as FTP or RTSP.

13. Click Finished.

 The custom CGNAT virtual server appears in the CGNAT Virtual Servers list.

Creating an RTSP ALG logging profile

You can create an ALG logging profile, and associate it with one or more RTSP ALG profiles, to allow you to configure logging options for various events that apply to high-speed logging (HSL) destinations. A logging profile decreases the need to maintain a number of customized profiles where the events are very similar.

1. On the Main tab, click Carrier Grade NAT > Logging Profiles > ALG.
 The ALG logging profiles screen opens.

2. Click Create.
 The New ALG Logging Profile screen opens.

3. In the Name field, type a unique name for the logging profile.

4. From the Parent Profile list, select a profile from which the new profile inherits properties.

5. For the Log Settings area, select the Custom check box.

6. For the Log Settings area, select Enabled for the following settings, as necessary.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (csv) format.</td>
</tr>
<tr>
<td>Start Control Channel</td>
<td>Generates event log entries at the start of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Control Channel</td>
<td>Generates event log entries at the end of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Start Data Channel</td>
<td>Generates event log entries at the start of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Data Channel</td>
<td>Generates event log entries at the end of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>Inbound Transaction</td>
<td>Generates event log entries of ALG messages triggered by an inbound connection to the BIG-IP® system.</td>
</tr>
</tbody>
</table>

Note: Enabling the CSV check box affects splunk logs because IP addresses are shown as ip, port, rtdom instead of ip%rtdom:port. Do not mix log types and only use standard syslog formats.

7. Click Finished.

Configuring an RTSP ALG profile

You can associate an RTSP ALG profile with a log publisher and logging profile that the BIG-IP® system uses to send log messages to a specified destination.

1. On the Main tab, click Carrier Grade NAT > ALG Profiles > RTSP.
 The RTSP screen opens and displays a list of available RTSP ALG profiles.
2. Click the name of an RTSP profile.
3. In the Log Settings area, from the Log Publisher list, select the log publisher the BIG-IP system uses to send log messages to a specified destination.
 Note: If you configure a log publisher, you must also configure a Logging Profile.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the logpublisher.atomic db variable to false.

4. From the Logging Profile list, select the logging profile the BIG-IP system uses to configure logging options for various ALG events.
 Note: If you configure a Logging Profile, you must also configure a Log Publisher.

5. Click Finished.

Overview: Using the PPTP ALG profile to create a VPN tunnel

The point-to-point tunneling protocol (PPTP) profile enables you to configure the BIG-IP® system to support a secure virtual private network (VPN) tunnel that forwards PPTP control and data connections. You can create a secure VPN tunnel by configuring a PPTP Profile, and then assigning the PPTP profile to a virtual server. The PPTP protocol is described in RFC 2637.

Important: You cannot combine or use the PPTP Profile with another profile other than a TCP Profile. The PPTP Profile must be used separately and independently.
About the PPTP ALG profile

The point-to-point tunneling protocol (PPTP) profile enables you to configure the BIG-IP® system to support a secure virtual private network (VPN) tunnel. A PPTP application layer gateway (ALG) forwards PPTP client (also known as PPTP Access Concentrator [PAC]) control and data connections through the BIG-IP system to PPTP servers (also known as PPTP Network Servers [PNSs]), while providing source address translation that allows multiple clients to share a single translation address.

The PPTP profile defines a Transmission Control Protocol (TCP) control connection and a data channel through a PPTP Generic Routing Encapsulation (GRE) tunnel, which manages the PPTP tunnels through CGNAT for NAT44 and DS-Lite, as well as all translation modes, including Network Address Port Translation (NAPT), Deterministic, and Port Block Allocation (PBA) modes.

PPTP control channels

The BIG-IP system proxies PPTP control channels as normal TCP connections. The PPTP profile translates outbound control messages, which contain Call Identification numbers (Call IDs) that match the port that is selected on the outbound side. Subsequently, for inbound control messages containing translated Call IDs, the BIG-IP system restores the original client Call ID. You can use a packet tracer to observe this translation on the subscriber side or on the Internet side. You can also use iRules® to evaluate and manage any headers in the PPTP control channel.

PPTP GRE data channels

The BIG-IP system manages the translation for PPTP GRE data channels in a manner similar to that of control channels. The BIG-IP system replaces the translated Call ID from the Key field of the GRE header with the inbound client's Call ID. You can use a packet tracer to observe this translation, as well.

Important: A PPTP ALG configuration requires a route to the PPTP client in order to return GRE traffic to the PPTP client. A route to the PPTP client is required because GRE traffic (in both directions) is forwarded based on standard IP routing, unlike TCP control connections, which are automatically routed because of the default auto-lasthop=enabled setting.
Log messages

The PPTP profile enables you to configure Log Settings, specifically the Publisher Name setting, which logs the name of the log publisher, and the Include Destination IP setting, which logs the host IP address of the PPTP server, for each call establishment, call failure, and call teardown.

Note: If a client, for example, a personal computer (PC) or mobile phone, attempts to create a second concurrent call, then an error message is logged and sent to the client.

PPTP profile log example

This topic includes examples of the elements that comprise a typical log entry.

Description of PPTP log messages

PPTP log messages include several elements of interest. The following examples describe typical log messages.

```
"Mar 1 18:46:11: PPTP CALL-REQUEST id:0 from:10.10.10.1 to:20.20.20.1 nat:30.30.30.1 ext-id:32456"
"Mar 1 18:46:11: PPTP CALL-START id:0 from:10.10.10.1 to:20.20.20.1 nat:30.30.30.1 ext-id:32456"
"Mar 1 18:46:11: PPTP CALL-END id:0 reason:0 from:10.10.10.1 to:20.20.20.1 nat:30.30.30.1 ext-id:32456"
```

<table>
<thead>
<tr>
<th>Information Type</th>
<th>Example Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Mar 1 18:46:11</td>
<td>The time and date that the system logged the event message.</td>
</tr>
<tr>
<td>Transformation mode</td>
<td>PPTP</td>
<td>The logged transformation mode.</td>
</tr>
<tr>
<td>Command</td>
<td>CALL-REQUEST, CALL-START, CALL-END</td>
<td>The type of command that is logged.</td>
</tr>
<tr>
<td>Information Type</td>
<td>Example Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Client Call ID</td>
<td>id;0</td>
<td>The client Call ID received from a subscriber.</td>
</tr>
<tr>
<td>Client IP address</td>
<td>from;10.10.1.1</td>
<td>The IP address of the client that initiated the connection.</td>
</tr>
<tr>
<td>Reason</td>
<td>reason;0</td>
<td>A code number that correlates the reason for terminating the connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following reason codes apply:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0. The client requested termination, a normal termination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1. The server requested termination, a normal termination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2. The client unexpectedly disconnected, where TCP shut down or reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3. The server unexpectedly disconnected, where TCP shut down or reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 4. The client timed out.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 5. The server timed out.</td>
</tr>
<tr>
<td>Server IP address</td>
<td>to;20.20.20.1</td>
<td>The IP address of the server that established the connection.</td>
</tr>
<tr>
<td>NAT</td>
<td>nat;30.30.30.1</td>
<td>The translated IP address.</td>
</tr>
<tr>
<td>Translated client Call ID</td>
<td>ext-id;32456</td>
<td>The translated client Call ID from the GRE header of the PPTP call.</td>
</tr>
</tbody>
</table>

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can create large-scale NAT (LSN) pools.

LSN pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**. The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. In the Configuration area, for the **Persistence Mode** setting, select **Address** or **Address Port**.
5. For the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.

 If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.
6. Click **Finished**.

Creating a PPTP profile

You can configure a point-to-point tunneling protocol (PPTP) profile on the BIG-IP® system to support a secure virtual private network (VPN) tunnel that forwards PPTP control and data connections, and logs related messages.
1. On the Main tab, click Carrier Grade NAT > ALG Profiles > PPTP. The PPTP screen opens and displays a list of available PPTP ALG profiles.

2. Click Create.

3. Type a name for the profile.

4. From the Parent Profile list, select a parent profile.

5. Select the Custom check box.

6. From the Publisher Name list, select a log publisher for high-speed logging of messages. If None is selected, the BIG-IP system uses the default syslog.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the logpublisher.atomic db variable to false.

7. (Optional) From the Include Destination IP list, select whether to include the PPTP server's IP address in log messages.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Includes the PPTP server's IP address in log messages for call establishment or call disconnect.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Default. Includes 0.0.0.0 as the PPTP server's IP address in log messages for call establishment or call disconnect.</td>
</tr>
</tbody>
</table>

8. Click Finished.

The PPTP profile displays in the ALG Profiles list on the PPTP screen.

Adding a static route to manage GRE traffic

Perform this task when you want to explicitly add a route for a destination client that is not on the directly-connected network. Depending on the settings you choose, the BIG-IP system can forward packets to a specified network device, or the system can drop packets altogether.

1. On the Main tab, click Network > Routes.

2. Click Add.

 The New Route screen opens.

3. In the Name field, type a unique user name.

 This name can be any combination of alphanumeric characters, including an IP address.

4. (Optional) In the Description field, type a description for this route entry.

5. In the Destination field, type the destination IP address for the route.

6. In the Netmask field, type the network mask for the destination IP address.

7. From the Resource list, specify the method through which the system forwards packets:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Gateway</td>
<td>Select this option when you want the next hop in the route to be a network IP address. This choice works well when the destination is a pool member on the same internal network as this gateway address.</td>
</tr>
<tr>
<td>Use Pool</td>
<td>Select this option when you want the next hop in the route to be a pool of routers instead of a single next-hop router. If you select this option, verify that you have created a pool on the BIG-IP system, with the routers as pool members.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Use VLAN/Tunnel</td>
<td>Select this option when you want the next hop in the route to be a VLAN or tunnel. This option works well when the destination address you specify in the routing entry is a network address. Selecting a VLAN/tunnel name as the resource implies that the specified network is directly connected to the BIG-IP system. In this case, the BIG-IP system can find the destination host simply by sending an ARP request to the hosts in the specified VLAN, thereby obtaining the destination host’s MAC address.</td>
</tr>
<tr>
<td>Reject</td>
<td>Select this option when you want the BIG-IP system to reject packets sent to the specified destination.</td>
</tr>
</tbody>
</table>

8. In the MTU field, specify in bytes a maximum transmission unit (MTU) for this route.
9. Click Finished.

A static route is defined to manage GRE traffic to a client.

Overview: Configuring IPsec ALG with IKE

You can configure CGNAT IPsec application layer gateway (ALG) functionality with Internet Key Exchange (IKE) security for LSN source address translation. A typical IPsec ALG configuration includes a wildcard virtual server listening on Internet Security Association and Key Management Protocol (ISAKMP) port 500, using IPsec tunnel mode. When the BIG-IP system receives the first IKE packet, it
picks a translation address, and, after successfully completing the IKE negotiation, creates the IKE and IPsec flows.

![Figure 11: An example configuration of IPsec ALG with IKE for source address translation](image)

Table 2: A typical CGNAT IKE virtual server configuration

<table>
<thead>
<tr>
<th>Virtual Server Configuration</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Port</td>
<td>500 (ISAKMP)</td>
</tr>
<tr>
<td>Protocol</td>
<td>UDP</td>
</tr>
<tr>
<td>IPsecALG Profile</td>
<td>Default ipsecalg profile, or custom IPsecALG profile</td>
</tr>
<tr>
<td>Source Address Translation</td>
<td>LSN</td>
</tr>
</tbody>
</table>
| LSN pool | One of the following LSN pool modes applies:
 - NAPT
 - Deterministic
 - PBA |

Note: The BIG-IP® system must map a different translation address to each subscriber when two or more subscribers connect to the same server. However, if each subscriber connects to a different server, then each subscriber can use the same translation address, because the server IP address distinguishes the traffic.

Important: If the pool of translation addresses is exhausted when a new subscriber attempts to initiate an IKE exchange with a server, the BIG-IP system logs an error and drops the IKE traffic from the second client.

Task summary
- Creating a log publisher
- Creating an IPsecALG logging profile
- Creating an LSN pool
- Creating an IPsecALG profile
- Creating an IPsec ALG virtual server for IKE

About negotiation of security associations

The way to dynamically negotiate security associations is to configure the Internet Key Exchange (IKE) protocol, which is included in the IPsec protocol suite. When you configure the IKE protocol, two IPsec
tunnel endpoints (IKE peers) open a secure channel using an ISAKMP security association (ISAKMP-SA) to initially negotiate the exchange of peer-to-peer authentication data. This exchange is known as *Phase 1 negotiation*.

After Phase 1 is complete and the secure channel is established, *Phase 2 negotiation* begins, in which the IKE peers dynamically negotiate the authentication and encryption algorithms to use to secure the payload. Without IKE, the system cannot dynamically negotiate these security algorithms.

About the IPSecALG profile

The *IPSecALG profile* provides network address translation and flow management for Internet Protocol Security (IPSec) and Internet Key Exchange (IKE) flows.

This profile enables you to specify an idle timeout value, where a connection is idle for the specified period before becoming eligible for deletion. You can also limit the number of pending Internet Key Exchange (IKE) connections, a maximum number of unacknowledged connections that a client can have, before being denied further requests, to prevent a single client from flooding all of the connections while establishing the connections. Additionally, you can apply an initial connection timeout value, which determines the maximum number of seconds to wait for a response from the server for an IKE or IPsec request.

Finally, you can configure a log publisher and logging profile for IPsec ALG functionality, as necessary, through the IPSecALG profile.

About IPsec Tunnel mode

Tunnel mode causes the IPsec protocol to encrypt the entire packet (the payload plus the IP header). This encrypted packet is then included as the payload in another outer packet with a new header. Traffic sent in this mode is more secure than traffic sent in Transport mode, because the original IP header is encrypted along with the original payload.

Creating a log publisher

Create a log publisher to specify where the BIG-IP system sends alert messages to the alert server.

2. Click **Create**.
3. In the **Name** field, type a unique, identifiable name for this publisher.
4. For the **Destinations** setting, select the log destination you created previously from the **Available** list, and move the destination to the **Selected** list.
5. Click **Finished**.

Creating an IPSecALG logging profile

You can create an ALG logging profile, and associate it with one or more IPSecALG profiles, to allow you to configure logging options for various events that apply to high-speed logging (HSL) destinations. A logging profile decreases the need to maintain a number of customized profiles where the events are very similar.

1. On the Main tab, click **Carrier Grade NAT > Logging Profiles > ALG**. The ALG logging profiles screen opens.
2. Click **Create**. The New ALG Logging Profile screen opens.
3. In the **Name** field, type a unique name for the logging profile.
4. From the **Parent Profile** list, select a profile from which the new profile inherits properties.
5. For the Log Settings area, select the **Custom** check box.
6. For the Log Settings area, select **Enabled** for the following settings, as necessary.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (csv) format.</td>
</tr>
<tr>
<td>Start Control Channel</td>
<td>Generates event log entries at the start of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Control Channel</td>
<td>Generates event log entries at the end of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>Start Data Channel</td>
<td>Generates event log entries at the start of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Data Channel</td>
<td>Generates event log entries at the end of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>Inbound Transaction</td>
<td>Generates event log entries of ALG messages triggered by an inbound connection to the BIG-IP® system.</td>
</tr>
</tbody>
</table>

Note: Enabling the **CSV** check box affects Splunk logs because IP addresses are shown as `ip,port,rtdom` instead of `ip%rtdom:port`. Do not mix log types and only use standard syslog formats.

7. Click **Finished**.

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can create large-scale NAT (LSN) pools.

LSN pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters. You can configure the following types of LSN pools:

- NAPT
- Deterministic
- PBA

Creating a NAPT LSN pool

- The CGNAT module must be provisioned before LSN pools can be configured.
- Before associating a LSN pool with a log publisher, ensure that at least one log publisher exists on the BIG-IP system.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**. The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. In the **Description** field, type a description.
5. Select **NAPT** for the pool's translation **Mode**.
6. Click **Finished**.

Your NAPT LSN pool is now ready and you can continue to configure your CGNAT.
Creating a deterministic LSN pool

The CGNAT module must be provisioned before you can configure LSN pools.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**.
 The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. For the **Mode** setting, select **Deterministic** for the pool's translation.
 Note that deterministic mode does not support *DS-lite* tunneling or *NAT64*.
5. From the **Log Publisher** list, select the publisher that includes the destinations to which you want to send log messages.
6. In the Configuration area, for the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.
 If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.
7. For deterministic mode, the **Backup Member List** must have at least one member, so type an address in the **Address/Prefix Length** field and click **Add**.
8. Click **Finished**.

Your deterministic LSN pool is now ready, and you can continue to configure your CGNAT.

Creating a PBA LSN pool

- The CGNAT module must be provisioned before LSN pools can be configured.
- Before associating a LSN pool with a log publisher, ensure that at least one log publisher exists on the BIG-IP® system.

You configure *Large Scale NAT (LSN)* pools for the CGNAT module to use in allowing efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**.
 The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. In the **Description** field, type a description.
5. For the **Mode** setting, select **PBA** for the pool's translation.
 Note that PBA mode for DS-lite is same as for NAT44, except that all clients behind the DS-Lite tunnel are managed as one subscriber. Port block limits are in accordance with each DS-lite tunnel.
6. For the **Port Block Allocation** setting, specify your preferred PBA configuration.
 a) In the **Block Size** field, type the number of ports designated for a block.
 b) In the **Block Lifetime** field, type the number of seconds before a port block times out.

 Note: If you type a timeout other than 0, you can also specify a *Zombie Timeout*. A **Block Lifetime** value that is less than the **Persistence Timeout** value minimizes the number of zombie port blocks. The default value of 0 specifies no lifetime limit and indefinite use of the port block.
 c) In the **Block Idle Timeout** field, enter the timeout (in seconds) for after the port block becomes idle.
d) In the Client Block Limit field, type the number of blocks that can be assigned to a single subscriber IP address.
e) In the Zombie Timeout field, type the number of seconds before port block times out.

A zombie port block is a timed out port block with one or more active connections. The default value of 0 specifies no timeout and an indefinite zombie state for the port block, as long as connections remain active. A value other than 0 specifies a timeout expiration, upon which existing connections are terminated, and the port block is released and returned to the pool.

7. In the Configuration area, for the Member List setting, type an address and a prefix length in the Address/Prefix Length field, and click Add.

8. Click Finished.

Your PBA LSN pool is now ready, and you can continue to configure your CGNAT.

Creating an IPsecALG profile

You can associate an IPsecALG profile with a log publisher and logging profile that the BIG-IP® system uses to send log messages to a specified destination.

1. On the Main tab, click Local Traffic > Profiles > Services > IPsecALG.

 The IPsecALG profile list screen opens.

2. In the Name field, type a unique name for the profile.

3. From the Parent Profile list, select a parent profile.

4. In the Idle Timeout field, type number of seconds that a connection is idle before the connection is eligible for deletion.

5. In the Pending IKE Connection Limit field, type the maximum number of unacknowledged IKE connections that a client can send, before being denied further requests.

6. In the Initial Connection Timeout field, type the maximum number of seconds to wait for a response from the server for the IKE or IPsec request.

7. In the Log Settings area, from the Log Publisher list, select the log publisher the BIG-IP system uses to send log messages to a specified destination.

 Note: If you configure a log publisher, you must also configure a Logging Profile.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the logpublisher.atomic.db variable to false.

8. From the Logging Profile list, select the logging profile the BIG-IP system uses to configure logging options for various ALG events.

 Note: If you configure a Logging Profile, you must also configure a Log Publisher.

9. Click Finished.

Creating an IPsec ALG virtual server for IKE

You can define a virtual server that applies an IPsecALG profile and LSN pool to match IPsec ALG source (client) addresses for address translation.
1. On the Main tab, click **Carrier Grade NAT > Virtual Servers**. The Virtual Server List screen opens.
2. Click the **Create** button. The New Virtual Server screen opens.
3. In the **Name** field, type a unique name for the virtual server.
4. In the **Description** field, type a description for the virtual server.
5. From the **Type** list, select **Standard**.
6. In the **Source Address** field, type `0.0.0.0/0` for the source address and prefix length.
7. In the **Destination Address** field, type the IP address in CIDR format.
 The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is `10.0.0.1` or `10.0.0.0/24`, and an IPv6 address/prefix is `ffe1::0020/64` or `2001:ed8:77b5:2:10:10:100:42/64`. When you use an IPv4 address without specifying a prefix, the BIG-IP® system automatically uses a `/32` prefix.

 Note: The IP address for this field needs to be on the same subnet as the external self-IP address.

8. In the **Service Port** field, type `500` or select **ISAKMP** from the list.
9. From the **Configuration** list, select **Advanced**.
10. From the **Protocol** list, select **UDP**.
11. From the **IPsecALG Profile** list, select a profile.
12. From the **LSN Pool** list, select an LSN pool.
13. Click **Finished**.

A virtual server is configured to use an IPsecALG profile and LSN pool to match IPsec ALG source (client) addresses for address translation.

Overview: Configuring IPsec ALG with manual keys

You can configure an IPsec application layer gateway (ALG) functionality with manual keys with network address translation. A typical IPsec ALG configuration includes an IPsec ESP (protocol 50) virtual server listening on port 0 (wildcard) using IPsec tunnel mode.

Note: This configuration does not provide NAT-T address translation. If you need to provide NAT-T address translation, a separate virtual server configured to use NAT-T address translation is required.

Figure 12: An example configuration of IPsec ALG with manual keys with NAT
Table 3: A typical IPsec ALG with manual keys with NAT virtual server configuration

<table>
<thead>
<tr>
<th>Virtual Server Configuration</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Port</td>
<td>0 (* All Ports)</td>
</tr>
<tr>
<td>Protocol</td>
<td>• IPsec ESP</td>
</tr>
<tr>
<td>IPsecALG Profile</td>
<td>Default ipsecalg profile, or custom IPsecALG profile</td>
</tr>
</tbody>
</table>

Creating a log publisher
Creating an IPsecALG logging profile
Creating an LSN pool
Configuring an IPsecALG profile
Creating an IPsec ALG virtual server for manual keys

About IPsec Tunnel mode

Tunnel mode causes the IPsec protocol to encrypt the entire packet (the payload plus the IP header). This encrypted packet is then included as the payload in another outer packet with a new header. Traffic sent in this mode is more secure than traffic sent in Transport mode, because the original IP header is encrypted along with the original payload.

Creating a log publisher

Create a log publisher to specify where the BIG-IP system sends alert messages to the alert server.

2. Click Create.
3. In the Name field, type a unique, identifiable name for this publisher.
4. For the Destinations setting, select the log destination you created previously from the Available list, and move the destination to the Selected list.
5. Click Finished.

Creating an IPsecALG logging profile

You can create an ALG logging profile, and associate it with one or more IPsecALG profiles, to allow you to configure logging options for various events that apply to high-speed logging (HSL) destinations. A logging profile decreases the need to maintain a number of customized profiles where the events are very similar.

1. On the Main tab, click Carrier Grade NAT > Logging Profiles > ALG. The ALG logging profiles screen opens.
2. Click Create. The New ALG Logging Profile screen opens.
3. In the Name field, type a unique name for the logging profile.
4. From the Parent Profile list, select a profile from which the new profile inherits properties.
5. For the Log Settings area, select the Custom check box.
6. For the Log Settings area, select Enabled for the following settings, as necessary.
<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (csv) format.</td>
</tr>
<tr>
<td>Start Control Channel</td>
<td>Generates event log entries at the start of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Control Channel</td>
<td>Generates event log entries at the end of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>Start Data Channel</td>
<td>Generates event log entries at the start of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Data Channel</td>
<td>Generates event log entries at the end of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>Inbound Transaction</td>
<td>Generates event log entries of ALG messages triggered by an inbound connection to the BIG-IP® system.</td>
</tr>
</tbody>
</table>

Note: Enabling the CSV check box affects splunk logs because IP addresses are shown as ip, port, rtdom instead of ip%rtdom:port. Do not mix log types and only use standard syslog formats.

7. Click **Finished**.

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can create large-scale NAT (LSN) pools.

LSN pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters. You can configure the following types of LSN pools:

- NAPT
- Deterministic
- PBA

Creating a NAPT LSN pool

- The CGNAT module must be provisioned before LSN pools can be configured.
- Before associating a LSN pool with a log publisher, ensure that at least one log publisher exists on the BIG-IP system.

Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click **Carrier Grade NAT > LSN Pools**.
 The LSN Pool List screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique name.
4. In the **Description** field, type a description.
5. Select **NAPT** for the pool's translation **Mode**.
6. Click **Finished**.

Your NAPT LSN pool is now ready and you can continue to configure your CGNAT.

Creating a deterministic LSN pool

The CGNAT module must be provisioned before you can configure LSN pools.
Large Scale NAT (LSN) pools are used by the CGNAT module to allow efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
 The LSN Pool List screen opens.

2. Click Create.

3. In the Name field, type a unique name.

4. For the Mode setting, select Deterministic for the pool's translation.
 Note that deterministic mode does not support DS-lite tunneling or NAT64.

5. From the Log Publisher list, select the publisher that includes the destinations to which you want to send log messages.

6. In the Configuration area, for the Member List setting, type an address and a prefix length in the Address/Prefix Length field, and click Add.
 If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.

7. For deterministic mode, the Backup Member List must have at least one member, so type an address in the Address/Prefix Length field and click Add.

8. Click Finished.

Your deterministic LSN pool is now ready, and you can continue to configure your CGNAT.

Creating a PBA LSN pool

- The CGNAT module must be provisioned before LSN pools can be configured.
- Before associating a LSN pool with a log publisher, ensure that at least one log publisher exists on the BIG-IP® system.

You configure Large Scale NAT (LSN) pools for the CGNAT module to use in allowing efficient configuration of translation prefixes and parameters.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
 The LSN Pool List screen opens.

2. Click Create.

3. In the Name field, type a unique name.

4. In the Description field, type a description.

5. For the Mode setting, select PBA for the pool's translation.
 Note that PBA mode for DS-lite is same as for NAT44, except that all clients behind the DS-Lite tunnel are managed as one subscriber. Port block limits are in accordance with each DS-lite tunnel.

6. For the Port Block Allocation setting, specify your preferred PBA configuration.
 a) In the Block Size field, type the number of ports designated for a block.
 b) In the Block Lifetime field, type the number of seconds before a port block times out.

 Note: if you type a timeout other than 0, you can also specify a Zombie Timeout. A Block Lifetime value that is less than the Persistence Timeout value minimizes the number of zombie port blocks. The default value of 0 specifies no lifetime limit and indefinite use of the port block.

 c) In the Block Idle Timeout field, enter the timeout (in seconds) for after the port block becomes idle.

 Note: Typically, you want to use a Block Idle Timeout value less than the Persistence Timeout value, to minimize the number of zombie port blocks.
d) In the **Client Block Limit** field, type the number of blocks that can be assigned to a single subscriber IP address.

e) In the **Zombie Timeout** field, type the number of seconds before port block times out.

A zombie port block is a timed out port block with one or more active connections. The default value of 0 specifies no timeout and an indefinite zombie state for the port block, as long as connections remain active. A value other than 0 specifies a timeout expiration, upon which existing connections are terminated, and the port block is released and returned to the pool.

7. In the Configuration area, for the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.

8. Click **Finished**.

Your PBA LSN pool is now ready, and you can continue to configure your CGNAT.

Configuring an IPsecALG profile

You can associate an IPsecALG profile with a log publisher and logging profile that the BIG-IP® system uses to send log messages to a specified destination.

1. On the Main tab, click **Carrier Grade NAT > ALG Profiles > IPsecALG**. The IPsecALG screen opens and displays a list of available IPsecALG profiles.

2. Click the name of an IPsecALG profile.

3. In the **Idle Timeout** field, type number of seconds that a connection is idle before the connection is eligible for deletion.

4. In the **Pending IKE Connection Limit** field, type the maximum number of unacknowledged IKE connections that a client can send, before being denied further requests.

5. In the **Initial Connection Timeout** field, type the maximum number of seconds to wait for a response from the server for the IKE or IPsec request.

6. In the Log Settings area, from the **Log Publisher** list, select the log publisher the BIG-IP system uses to send log messages to a specified destination.

Note: If you configure a log publisher, you must also configure a Logging Profile.

Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the logpublisher.atomic db variable to false.

7. From the **Logging Profile** list, select the logging profile the BIG-IP system uses to configure logging options for various ALG events.

Note: If you configure a Logging Profile, you must also configure a Log Publisher.

8. Click **Finished**.

Creating an IPsec ALG virtual server for manual keys

You can define a virtual server that applies an IPsecALG profile and LSN pool to match IPsec ALG source (client) addresses for address translation.

1. On the Main tab, click **Carrier Grade NAT > Virtual Servers**. The Virtual Server List screen opens.

2. Click the **Create** button. The New Virtual Server screen opens.
3. In the **Name** field, type a unique name for the virtual server.
4. In the **Description** field, type a description for the virtual server.
5. From the **Type** list, select **Standard**.
6. In the **Source Address** field, type **0.0.0.0/0** for the source address and prefix length.
7. In the **Destination Address** field, type the IP address in CIDR format.

 The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is **10.0.0.1** or **10.0.0.0/24**, and an IPv6 address/prefix is **ff1::0020/64** or **2001:ed8:77b5:2:10:10:100:42/64**. When you use an IPv4 address without specifying a prefix, the BIG-IP® system automatically uses a /32 prefix.

 Note: The **IP address for this field needs to be on the same subnet as the external self-IP address.**

8. In the **Service Port** field, type **50**
9. From the **Configuration** list, select **Advanced**.
10. From the **Protocol** list, select **IPsec ESP**.
11. From the **IPsecALG Profile** list, select a profile.
12. From the **LSN Pool** list, select an LSN pool.
13. Click **Finished**.

A virtual server is configured to use an IPsecALG profile and LSN pool to match IPsec ALG source (client) addresses for address translation.
Enabling FTPS on the FTP ALG Profile

Overview: Enabling FTPS on the FTP ALG profile

When creating an FTP application layer gateway (ALG) profile, you can enable file transfer protocol secure (FTPS) to allow FTP clients to issue the authentication transport layer security (AUTH TLS) or AUTH secure socket layer (SSL) commands, and encrypt FTP traffic between the client and server for that connection. The BIG-IP® system switches the connection to pass through mode, but does not participate in the encryption process.

Task summary
Creating an LSN pool
Creating an FTP ALG profile
Creating a virtual server using an FTP ALG profile
Creating a wildcard virtual server
Creating an FTP ALG logging profile
Creating an LSN pool
Creating an FTP ALG profile
Creating a virtual server using an FTP ALG profile
Creating a wildcard virtual server
Creating an FTP ALG logging profile

About the FTP ALG profile with FTPS enabled

When configuring the FTP application layer gateway (ALG) profile, after enabling File Transfer Protocol Secure (FTPS), ALG switches to pass-through mode. This allows for an encrypted control connection to proceed. Once the connection is encrypted, it cannot be inspected for control commands, and firewall policies cannot be applied to the contents of the connection. For this reason, you must configure another virtual server, a wildcard CGNAT virtual server, to support the passive data transfer connections. FTPS only supports passive mode data transfers.

The wildcard and FTP virtual servers must share the same LSN pool, and address persistence must be configured on the pool. This configuration ensures that source address translation is consistent for the control and data connections that make up the file transfer.

Creating an LSN pool

The carrier-grade NAT (CGNAT) module must be enabled with the appropriate settings before you can create large-scale NAT (LSN) pools.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
 The LSN Pool List screen opens.
2. Click Create.
3. In the Name field, type a unique name.
4. In the Configuration area, for the Persistence Mode setting, select Address or Address Port.
5. For the **Member List** setting, type an address and a prefix length in the **Address/Prefix Length** field, and click **Add**.

If your pool uses deterministic mode, ensure that any address ranges you enter as a member do not overlap another member's prefix address ranges. For example, the address and prefix 10.10.10.0/24 overlaps 10.10.10.0/23.

6. Click **Finished**.

Creating an FTP ALG profile

You can configure a file transfer protocol (FTP) profile on the BIG-IP® system that transfers files and messages related to logs. By enabling FTP secure (FTPS), the application layer gateway (ALG) switches to pass-through mode, allowing an encrypted control connection to proceed.

1. On the Main tab, click **Carrier Grade NAT > ALG Profiles > FTP**.

 The FTP screen opens and displays a list of available FTP ALG profiles.

2. Click **Create**.

3. Type a name for the profile.

4. From the **Parent Profile** list, select a parent profile.

5. Select the **Custom** check box.

6. Select the **Translate Extended** check box to ensure compatibility between IPv4 and IPv6 clients and servers when using the FTP protocol.

 The default is selected.

7. Select the **Inherit Parent Profile** check box to enable the FTP data channel to inherit the TCP profile used by the control channel. The check box is clear by default.

 Note: If this setting is disabled, the data channel uses FastL4 (BigProto) only.

8. In the **Data Port** field, type a number for an alternate port.

 The default value for the FTP data port is **20**.

9. In the Settings area, select the **Allow FTPS** check box.

10. In the Log Settings area, from the **Log Publisher** list, select the log publisher the BIG-IP system uses to send log messages to a specified destination.

 Note: If you configure a log publisher, you must also configure a Logging Profile.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the logpublisher.atomicdb variable to false.

11. From the **Logging Profile** list, select the logging profile the BIG-IP system uses to configure logging options for various TFTP events.

 Note: If you configure a Logging Profile, you must also configure a Log Publisher.

12. Click **Finished**.

Creating a virtual server using an FTP ALG profile

Define a virtual server in order to reference an FTP profile and LSN pool. The virtual server attached to an FTP ALG profile, along with a wildcard server, must share the same LSN pool with persistence enabled.
1. On the Main tab, click Carrier Grade NAT > Virtual Servers.
 The Virtual Server List screen opens.
2. Click the Create button.
 The New Virtual Server screen opens.
3. In the Name field, type a unique name for the virtual server.
4. From the Type list, retain the default setting Standard.
5. In the Destination Address field, type the IP address in CIDR format, such as 0.0.0.0/0 for IPv4 or ::/0 for IPv6.
 The supported format is address/prefix, where the prefix length is in bits. For example, an IPv4 address/prefix is 10.0.0.1 or 10.0.0.0/24, and an IPv6 address/prefix is ffe1::0020/64 or 2001:ed8:77b5:2:10:100:42/64. When you use an IPv4 address without specifying a prefix, the BIG-IP® system automatically uses a /32 prefix.
 Note: The IP address you type must be available and not in the loopback network.
6. In the Service Port field, type 21 or select FTP from the list.
7. From the Protocol list, select TCP.
8. From the Protocol Profile (Client) list, select a predefined or user-defined TCP profile.
9. From the Protocol Profile (Server) list, select a predefined or user-defined TCP profile.
10. From the FTP Profile list, select an FTP ALG profile for the virtual server to use.
11. For the LSN Pool setting, select the pool that this server will draw on for addresses.
 Note: You must use the same LSN pool for the wildcard virtual server.
12. Click Finished.
 The custom CGNAT virtual server appears in the CGNAT Virtual Servers list.

Creating a wildcard virtual server

Create a wildcard virtual server to support passive mode connections. The wildcard virtual server, along with the virtual server attached to an FTP ALG profile, must share the same LSN pool with persistence enabled.
1. On the Main tab, click Local Traffic > Virtual Servers.
 The Virtual Server List screen opens.
2. Click the Create button.
 The New Virtual Server screen opens.
3. In the Name field, type a unique name for the virtual server.
4. In the Destination Address field, type a wildcard network address in CIDR format, such as 0.0.0.0/0 for IPv4 or ::/0 for IPv6, to accept any traffic.
5. In the Service Port field, type 0.
 Note: Port 0 defines a wildcard virtual server that handles all types of services. If you specify a port number, you create a port-specific wildcard virtual server. In that case, the wildcard virtual server handles traffic only for the specified port.
6. Click Finished.

Creating an FTP ALG logging profile

You can create an application layer gateway (ALG) logging profile, and associate it with one or more FTP ALG profiles, to allow you to configure logging options for various events that apply to high-speed
logging (HSL) destinations. A logging profile decreases the need to maintain a number of customized profiles where the events are very similar.

1. On the Main tab, click **Carrier Grade NAT > Logging Profiles > ALG**.
 The ALG logging profiles screen opens.

2. Click **Create**.
 The New ALG Logging Profile screen opens.

3. In the **Name** field, type a unique name for the logging profile.

4. From the **Parent Profile** list, select a profile from which the new profile inherits properties.

5. For the Log Settings area, select the **Custom** check box.

6. For the Log Settings area, select **Enabled** for the following settings, as necessary.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (csv) format.</td>
</tr>
<tr>
<td>Start Control Channel</td>
<td>Generates event log entries at the start of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Control Channel</td>
<td>Generates event log entries at the end of a control channel connection for an ALG client.</td>
</tr>
<tr>
<td>Start Data Channel</td>
<td>Generates event log entries at the start of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>End Data Channel</td>
<td>Generates event log entries at the end of a data channel connection for an ALG client.</td>
</tr>
<tr>
<td>Inbound Transaction</td>
<td>Generates event log entries of ALG messages triggered by an inbound connection to the BIG-IP® system.</td>
</tr>
</tbody>
</table>

Note: Enabling the CSV check box affects Splunk logs because IP addresses are shown as `ip,port,rtdom` instead of `ip%rtdom:port`. Do not mix log types and only use standard syslog formats.

7. Click **Finished**.
Using CGNAT Logging and Subscriber Traceability

Overview: Configuring local logging for CGNAT

You can configure the BIG-IP® system to send log messages about carrier grade network address translation (CGNAT) processes to the local Syslog database on the BIG-IP system.

Note: Enabling logging impacts BIG-IP system performance.

When configuring local logging of CGNAT processes, it is helpful to understand the objects you need to create and why:

<table>
<thead>
<tr>
<th>Object</th>
<th>Reason</th>
<th>Applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination (formatted/local)</td>
<td>Create a formatted log destination to format the logs in human-readable name/value pairs, and forward the logs to the local-syslog database.</td>
<td>Creating a formatted local log destination for CGNAT.</td>
</tr>
<tr>
<td>Publisher (local-syslog)</td>
<td>Create a log publisher to send logs to the previously created destination that formats the logs in name/value pairs, and forwards the logs to the local Syslog database on the BIG-IP system.</td>
<td>Creating a publisher to send log messages to the local Syslog database.</td>
</tr>
<tr>
<td>LSN pool</td>
<td>Associate a large scale NAT (LSN) pool with a log publisher in order to log messages about the traffic that uses the pool.</td>
<td>Configuring an LSN pool with a local Syslog log publisher.</td>
</tr>
</tbody>
</table>

Task summary

Creating a formatted local log destination for CGNAT
Creating a publisher to send log messages to the local Syslog database
Configuring an LSN pool with a local Syslog log publisher

Creating a formatted local log destination for CGNAT

Create a formatted logging destination to specify that log messages about CGNAT processes are sent to the local Syslog database in a format that displays name/value pairs in a human-readable format.

1. On the Main tab, click **System > Logs > Configuration > Log Destinations**. The Log Destinations screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique, identifiable name for this destination.
4. From the **Type** list, select **Splunk**. The Splunk format is a predefined format of key value pairs.
5. From the **Forward To** list, select **local-syslog**.
6. Click Finished.

Creating a publisher to send log messages to the local Syslog database
Create a publisher to specify that the BIG-IP® system sends formatted log messages to the local Syslog database, on the BIG-IP system.

 The Log Publishers screen opens.
2. Click Create.
3. In the Name field, type a unique, identifiable name for this publisher.
4. For the Destinations setting, select the previously created destination from the Available list (which formats the logs in the Splunk format and forwards the logs to the local Syslog database) and move the destination to the Selected list.
5. Click Finished.

Configuring an LSN pool with a local Syslog log publisher
Before associating a large scale NAT (LSN) pool with a log publisher, ensure that at least one log publisher exists that sends formatted log messages to the local Syslog database on the BIG-IP® system.

Associate an LSN pool with the log publisher that the BIG-IP system uses to send formatted log messages to the local Syslog database.

1. On the Main tab, click Carrier Grade NAT > LSN Pools.
 The LSN Pool List screen opens.
2. Click the name of an LSN pool.
3. From the Log Publisher list, select the log publisher that sends formatted log messages to the local Syslog database on the BIG-IP system.
4. Click Finished.

Overview: Configuring remote high-speed logging for CGNAT
You can configure the BIG-IP® system to log information about carrier-grade network address translation (CGNAT) processes and send the log messages to remote high-speed log servers.

This illustration shows the association of the configuration objects for remote high-speed logging of CGNAT processes.
Figure 13: Association of remote high-speed logging configuration objects

Task summary
Perform these tasks to configure remote high-speed logging of CGNAT processes on the BIG-IP system.

Note: Enabling remote high-speed logging impacts BIG-IP system performance.

Creating a pool of remote logging servers
Creating a remote high-speed log destination
Creating a formatted remote high-speed log destination
Creating a publisher
Creating an LSN logging profile
Configuring an LSN pool

About the configuration objects of high-speed logging

When configuring remote high-speed logging (HSL) of CGNAT processes, it is helpful to understand the objects you need to create and why, as described here:

<table>
<thead>
<tr>
<th>Object</th>
<th>Reason</th>
<th>Applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool of remote log servers</td>
<td>Create a pool of remote log servers to which the BIG-IP® system can send log messages.</td>
<td>Creating a pool of remote logging servers.</td>
</tr>
<tr>
<td>Destination (formatted)</td>
<td>Create log destination to format the logs in the required format and forward the logs to a remote high-speed log destination.</td>
<td>Creating a formatted remote high-speed log destination.</td>
</tr>
<tr>
<td>Publisher</td>
<td>Create a log publisher to send logs to a set of specified log destinations.</td>
<td>Creating a publisher.</td>
</tr>
<tr>
<td>Object</td>
<td>Reason</td>
<td>Applies to</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Logging Profile (optional)</td>
<td>Create a logging profile to configure logging options for various large scale NAT (LSN) events. The options apply to all HSL destinations.</td>
<td>Creating a LSN logging profile.</td>
</tr>
<tr>
<td>LSN pool</td>
<td>Associate an LSN pool with a logging profile and log publisher in order to log messages about the traffic that uses the pool.</td>
<td>Configuring an LSN pool.</td>
</tr>
</tbody>
</table>

Creating a pool of remote logging servers

Before creating a pool of log servers, gather the IP addresses of the servers that you want to include in the pool. Ensure that the remote log servers are configured to listen to and receive log messages from the BIG-IP® system.

Create a pool of remote log servers to which the BIG-IP system can send log messages.

1. On the Main tab, click the applicable path.
 - DNS > Delivery > Load Balancing > Pools
 - Local Traffic > Pools

 The Pool List screen opens.

2. Click **Create**.

 The New Pool screen opens.

3. In the **Name** field, type a unique name for the pool.

4. Using the **New Members** setting, add the IP address for each remote logging server that you want to include in the pool:
 - Type an IP address in the **Address** field, or select a node address from the **Node List**.
 - Type a service number in the **Service Port** field, or select a service name from the list.

 Note: Typical remote logging servers require port 514.

 c) Click **Add**.

5. Click **Finished**.

Creating a remote high-speed log destination

Before creating a remote high-speed log destination, ensure that at least one pool of remote log servers exists on the BIG-IP® system.

Create a log destination of the **Remote High-Speed Log** type to specify that log messages are sent to a pool of remote log servers.

1. On the Main tab, click **System > Logs > Configuration > Log Destinations**.

 The Log Destinations screen opens.

2. Click **Create**.

3. In the **Name** field, type a unique, identifiable name for this destination.

4. From the **Type** list, select **Remote High-Speed Log**.
Important: If you use log servers such as Remote Syslog, Splunk, or IPFIX, which require data be sent to the servers in a specific format, you must create an additional log destination of the required type, and associate it with a log destination of the **Remote High-Speed Log** type. This allows the BIG-IP system to send data to the servers in the required format.

The BIG-IP system is configured to send an unformatted string of text to the log servers.

5. From the **Pool Name** list, select the pool of remote log servers to which you want the BIG-IP system to send log messages.
6. From the **Protocol** list, select the protocol used by the high-speed logging pool members.
7. Click **Finished**.

Creating a formatted remote high-speed log destination

Ensure that at least one remote high-speed log destination exists on the BIG-IP® system.

Create a formatted logging destination to specify that log messages are sent to a pool of remote log servers, such as Remote Syslog, Splunk, or IPFIX servers.

1. On the Main tab, click **System > Logs > Configuration > Log Destinations**.
 The Log Destinations screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique, identifiable name for this destination.
4. From the **Type** list, select a formatted logging destination, such as **Remote Syslog**, **Splunk**, or **IPFIX**.
 The Splunk format is a predefined format of key value pairs.
 The BIG-IP system is configured to send a formatted string of text to the log servers.
5. If you selected **Remote Syslog**, then from the **Syslog Format** list select a format for the logs, and then from the **High-Speed Log Destination** list, select the destination that points to a pool of remote Syslog servers to which you want the BIG-IP system to send log messages.

Important: For logs coming from Access Policy Manager® (APM®), only the BSD Syslog format is supported.

6. If you selected **Splunk** or **IPFIX**, then from the **Forward To** list, select the destination that points to a pool of high-speed log servers to which you want the BIG-IP system to send log messages.
7. Click **Finished**.

Creating a publisher

Ensure that at least one destination associated with a pool of remote log servers exists on the BIG-IP® system.

Create a publisher to specify where the BIG-IP system sends log messages for specific resources.

1. On the Main tab, click **System > Logs > Configuration > Log Publishers**.
 The Log Publishers screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique, identifiable name for this publisher.
4. For the **Destinations** setting, select a destination from the **Available** list, and move the destination to the **Selected** list.

Note: If you are using a formatted destination, select the destination that matches your log servers, such as Remote Syslog, Splunk, or IPFIX.
Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the `logpublisher.atomic db` key to `false`. If all the remote high-speed log (HSL) destinations are down (unavailable), setting the `logpublisher.atomic db` key to `false` will not work to allow the logs to be written to local-syslog. The `logpublisher.atomic db` key has no effect on local-syslog.

5. Click Finished.

Creating an LSN logging profile

You can create an LSN logging profile to allow you to configure logging options for various LSN events that apply to high-speed logging destinations.

Note: For configuring remote high-speed logging of CGNAT processes on the BIG-IP® system, these steps are optional.

1. On the Main tab, click **Carrier Grade NAT > Logging Profiles > LSN**.
 The LSN logging profiles screen opens.
2. Click **Create**.
 The New LSN Logging Profile screen opens.
3. In the **Name** field, type a unique name for the logging profile.
4. From the **Parent Profile** list, select a profile from which the new profile inherits properties.
5. For the Log Settings area, select the **Custom** check box.
6. For the Log Settings area, select **Enabled** for the following settings, as necessary.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (CSV) format.</td>
</tr>
<tr>
<td>Start Outbound Session</td>
<td>Generates event log entries at the start of a translation event for an LSN client.</td>
</tr>
<tr>
<td>End Outbound Session</td>
<td>Generates event log entries at the end of a translation event for an LSN client.</td>
</tr>
<tr>
<td>Start Inbound Session</td>
<td>Generates event log entries at the start of an incoming connection event for a translated endpoint.</td>
</tr>
<tr>
<td>End Inbound Session</td>
<td>Generates event log entries at the end of an incoming connection event for a translated endpoint.</td>
</tr>
<tr>
<td>Quota Exceeded</td>
<td>Generates event log entries when an LSN client exceeds allocated resources.</td>
</tr>
<tr>
<td>Errors</td>
<td>Generates event log entries when LSN translation errors occur.</td>
</tr>
<tr>
<td>Subscriber ID</td>
<td>Allows for subscriber ID logging.</td>
</tr>
</tbody>
</table>

Note: Enabling the **CSV** check box affects splunk logs because IP addresses are shown as `ip, port, rtdom` instead of `ip%rtdom:port`. Do not mix log types and only use standard syslog formats.

7. Click Finished.
Configuring an LSN pool

You can associate an LSN pool with a log publisher and logging profile that the BIG-IP® system uses to send log messages to a specified destination.

1. On the Main tab, click Carrier Grade NAT > LSN Pools > LSN Pool List.
 The LSN Pool List screen opens.
2. Select an LSN pool from the list.
 The configuration screen for the pool opens.
3. From the Log Publisher list, select the log publisher that the BIG-IP system uses to send log messages to a specified destination.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the logpublisher.atomic db key to false. If all the remote high-speed log (HSL) destinations are down (unavailable), setting the logpublisher.atomic db key to false will not work to allow the logs to be written to local-syslog. The logpublisher.atomic db key has no effect on local-syslog.

4. Optional: From the Logging Profile list, select the logging profile the BIG-IP system uses to configure logging options for various LSN events.
5. Click Finished.

You now have an LSN pool for which the BIG-IP system logs messages using the specified logging profile.

Overview: Configuring IPFIX logging for CGNAT

You can configure the BIG-IP® system to log information about carrier grade network address translation (CGNAT) processes and send the log messages to remote IPFIX collectors.

IPFIX is a set of IETF standards described in RFCs 5101 and 5102. The BIG-IP system supports logging of CGNAT translation events over the IPFIX protocol. IPFIX logs are raw, binary-encoded strings with their fields and field lengths defined by IPFIX templates. **IPFIX collectors** are external devices that can receive IPFIX templates, and use them to interpret IPFIX logs.

Task summary
Perform these tasks to configure IPFIX logging of CGNAT processes on the BIG-IP system.

Note: Enabling IPFIX logging impacts BIG-IP system performance.

- Assembling a pool of IPFIX collectors
- Creating an IPFIX log destination
- Creating a publisher
- Creating an LSN logging profile
- Configuring an LSN pool

About the configuration objects of IPFIX logging
The configuration process involves creating and connecting the following configuration objects.
Assembling a pool of IPFIX collectors

Before creating a pool of IPFIX collectors, gather the IP addresses of the collectors that you want to include in the pool. Ensure that the remote IPFIX collectors are configured to listen to and receive log messages from the BIG-IP® system.

These are the steps for creating a pool of IPFIX collectors. The BIG-IP system can send IPFIX log messages to this pool.

1. On the Main tab, click **Local Traffic > Pools**. The Pool List screen opens.
2. Click **Create**. The New Pool screen opens.
3. In the **Name** field, type a unique name for the pool.
4. Using the **New Members** setting, add the IP address for each IPFIX collector that you want to include in the pool:
 a) Type the collector's IP address in the **Address** field, or select a node address from the **Node List**.
 b) Type a port number in the **Service Port** field.
 By default, IPFIX collectors listen on UDP or TCP port 4739 and Netflow V9 devices listen on port 2055, though the port is configurable at each collector.
 c) Click **Add**.
5. Click **Finished**.

Creating an IPFIX log destination

A log destination of the IPFIX type specifies that log messages are sent to a pool of IPFIX collectors. Use these steps to create a log destination for IPFIX collectors.

1. On the Main tab, click **System > Logs > Configuration > Log Destinations**. The Log Destinations screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique, identifiable name for this destination.
4. From the **Type** list, select **IPFIX**.
5. From the **Protocol** list, select **IPFIX** or **Netflow V9**, depending on the type of collectors you have in the pool.
6. From the **Pool Name** list, select an LTM® pool of IPFIX collectors.
7. From the **Transport Profile** list, select **TCP, UDP**, or any customized profile derived from TCP or UDP.
8. The **Template Retransmit Interval** is the time between transmissions of IPFIX templates to the pool of collectors. The BIG-IP system only retransmits its templates if the **Transport Profile** is a **UDP** profile.

 An **IPFIX template** defines the field types and byte lengths of the binary IPFIX log messages. The logging destination sends the template for a given log type (for example, NAT44 logs or customized logs from an iRule) before sending any of those logs, so that the IPFIX collector can read the logs of that type. The logging destination assigns a template ID to each template, and places the template ID into each log that uses that template.

 The log destination periodically retransmits all of its IPFIX templates over a UDP connection. The retransmissions are helpful for UDP connections, which are lossy.
9. The **Template Delete Delay** is the time that the BIG-IP device should pause between deleting an obsolete template and re-using its template ID. This feature is helpful for systems that can create custom IPFIX templates with iRules.
10. The **Server SSL Profile** applies Secure Socket Layer (SSL) or Transport Layer Security (TLS) to TCP connections. You can only choose an SSL profile if the **Transport Profile** is a **TCP** profile.

 Choose an SSL profile that is appropriate for the IPFIX collectors' SSL/TLS configuration.

 SSL or TLS requires extra processing and therefore slows the connection, so we only recommend this for sites where the connections to the IPFIX collectors have a potential security risk.
11. Click **Finished**.

Creating a publisher

A publisher specifies where the BIG-IP® system sends log messages for IPFIX logs.

1. On the Main tab, click **System > Logs > Configuration > Log Publishers**.

 The Log Publishers screen opens.
2. Click **Create**.
3. In the **Name** field, type a unique, identifiable name for this publisher.
4. Use the **Log Destinations** setting to select an existing IPFIX destination (perhaps along with other destinations for your logs): click any destination name in the **Available** list, and move it to the **Selected** list.

 Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging will occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the **logpublisher.atomic.db** key to **false**. If all the remote high-speed log (HSL) destinations are down (unavailable), setting the **logpublisher.atomic.db** key to **false** will not work to allow the logs to be written to local-syslog. The **logpublisher.atomic.db** key has no effect on local-syslog.
5. Click **Finished**.
Creating an LSN logging profile

You can create an LSN logging profile to allow you to configure logging options for various LSN events that apply to IPFIX logging destinations.

Note: For configuring IPFIX logging of CGNAT processes on the BIG-IP® system, these steps are optional.

1. On the Main tab, click Carrier Grade NAT > Logging Profiles > LSN.
 The LSN profile list screen opens.

2. Click Create.
 The New LSN Logging Profile screen opens.

3. In the Name field, type a unique name for the logging profile.

4. From the Parent Profile list, select a profile from which the new profile inherits properties.

5. For the Log Settings area, select the Custom check box.

6. For the Log Settings area, select Enabled for the following settings, as necessary.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV Format</td>
<td>Generates log entries in comma-separated-values (CSV) format.</td>
</tr>
<tr>
<td>Start Outbound Session</td>
<td>Generates event log entries at the start of a translation event for an LSN client.</td>
</tr>
<tr>
<td>End Outbound Session</td>
<td>Generates event log entries at the end of a translation event for an LSN client.</td>
</tr>
<tr>
<td>Start Inbound Session</td>
<td>Generates event log entries at the start of an incoming connection event for a translated endpoint.</td>
</tr>
<tr>
<td>End Inbound Session</td>
<td>Generates event log entries at the end of an incoming connection event for a translated endpoint.</td>
</tr>
<tr>
<td>Quota Exceeded</td>
<td>Generates event log entries when an LSN client exceeds allocated resources.</td>
</tr>
<tr>
<td>Errors</td>
<td>Generates event log entries when LSN translation errors occur.</td>
</tr>
<tr>
<td>Subscriber ID</td>
<td>Allows for subscriber ID logging.</td>
</tr>
</tbody>
</table>

Note: Enabling the CSV check box affects Splunk logs because IP addresses are shown as ip, port, rtdom instead of ip%rtdom:port. Do not mix log types and only use standard syslog formats.

7. Click Finished.

Configuring an LSN pool

You can associate an LSN pool with a log publisher and logging profile that the BIG-IP® system uses to send log messages to a specified destination.

1. On the Main tab, click Carrier Grade NAT > LSN Pools > LSN Pool List.
 The LSN Pool List screen opens.

2. Select an LSN pool from the list.
 The configuration screen for the pool opens.

3. From the Log Publisher list, select the log publisher that the BIG-IP system uses to send log messages to a specified destination.
Important: If you configure a log publisher to use multiple logging destinations, then, by default, all logging destinations must be available in order to log to each destination. Unless all logging destinations are available, no logging can occur. If you want to log to the available logging destinations when one or more destinations become unavailable, you must set the `logpublisher.atomic db` key to `false`. If all the remote high-speed log (HSL) destinations are down (unavailable), setting the `logpublisher.atomic db` key to `false` will not work to allow the logs to be written to local-syslog. The `logpublisher.atomic db` key has no effect on local-syslog.

4. Optional: From the **Logging Profile** list, select the logging profile the BIG-IP system uses to configure logging options for various LSN events.

5. Click **Finished**.

You now have an LSN pool for which the BIG-IP system logs messages using the specified logging profile.

CGNAT Log Format Reference

Overview: CGNAT log formats

Carrier Grade Network Address Translation (CGNAT) log formats are specific to the type of logging used, for example, high-speed logging (HSL) or Splunk.

Log field descriptions

- **BIG-IP version 11.3.0 and 11.4.0 log reference**
- **BIG-IP version 11.5.0 log reference**
- **BIG-IP version 11.6.0 log reference**
- **BIG-IP version 12.0.0 log reference**
- **BIG-IP version 12.1.0 log formats**
- **BIG-IP version 12.1.1 log reference**
- **BIG-IP 13.0.0 log formats**

Log field descriptions

This topic lists the available log fields and provides a description of each.

Table 4: Log field descriptions

<table>
<thead>
<tr>
<th>Log field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bigip_hostname</td>
<td>BIG-IP hostname.</td>
</tr>
<tr>
<td>bigip_mgmt_ip_address</td>
<td>BIG-IP management IP address.</td>
</tr>
<tr>
<td>bigip_software_version</td>
<td>BIG-IP software version. An example format is <code>11.4.0.132.0</code>.</td>
</tr>
<tr>
<td>client_ipv4_address</td>
<td>Client IPV4 address.</td>
</tr>
<tr>
<td>client_ipv6_address</td>
<td>Client IPV6 address(IPV6 or NAT64 client).</td>
</tr>
<tr>
<td>client_port</td>
<td>Client TCP/UDP port.</td>
</tr>
<tr>
<td>client_rtdomid</td>
<td>Client route domain ID.</td>
</tr>
<tr>
<td>date_time</td>
<td>Date and time. An example format is <code>Apr 04 2013 08:13:26</code>.</td>
</tr>
<tr>
<td>Log field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>destination_address</td>
<td>Client's destination IPV4/IPV6 address.</td>
</tr>
<tr>
<td>destination_port</td>
<td>Client's port.</td>
</tr>
<tr>
<td>dslite_ipv6_remote_ip</td>
<td>DS-Lite remote end point.</td>
</tr>
<tr>
<td>dslite_rtdomid</td>
<td>DS-Lite tunnel route domain ID.</td>
</tr>
<tr>
<td>duration</td>
<td>Duration of the translation (in ms).</td>
</tr>
<tr>
<td>egress_rtdomid</td>
<td>Route domain ID of the egress interface.</td>
</tr>
<tr>
<td>end</td>
<td>End time.</td>
</tr>
<tr>
<td>errdefs_msgno</td>
<td>TMM internal value.</td>
</tr>
<tr>
<td>errdefs_msg_name</td>
<td>TMM internal value.</td>
</tr>
<tr>
<td>internet_client_ipv4_address</td>
<td>IP address of the inbound client connections from the internet.</td>
</tr>
<tr>
<td>internet_client_rtdomid</td>
<td>Route domain ID of the inbound client connecting from the internet.</td>
</tr>
<tr>
<td>lsn_address</td>
<td>IPV4/IPV6 translation address.</td>
</tr>
<tr>
<td>lsn_dnat_log_version</td>
<td>DNAT log version.</td>
</tr>
<tr>
<td>lsn_dnat_port_range_min</td>
<td>LSN pool translation port range low value.</td>
</tr>
<tr>
<td>lsn_dnat_port_range_max</td>
<td>LSN pool translation port range high value.</td>
</tr>
<tr>
<td>lsn_dnat_prefix_list</td>
<td>List of LSN pool translation prefixes.</td>
</tr>
<tr>
<td>lsn_dnat_source_list</td>
<td>List of all the virtual server source prefixes that are attached to this lsn pool.</td>
</tr>
<tr>
<td>lsn_dnat_state</td>
<td>DNAT algorithm internal state.</td>
</tr>
<tr>
<td>lsn_dnat_dag_id</td>
<td>LSN Deterministic NAT libdag identifier.</td>
</tr>
<tr>
<td>lsn_port</td>
<td>TCP/UDP translation port.</td>
</tr>
<tr>
<td>lsn_rtdomid</td>
<td>Translation address route domain ID.</td>
</tr>
<tr>
<td>lsn_result</td>
<td>Reason for translation failure.</td>
</tr>
<tr>
<td>lsn_pool_name</td>
<td>LSN pool name with complete path. For example, /Common/lsnp1.</td>
</tr>
<tr>
<td>protocol</td>
<td>UDP, TCP, or ICMP.</td>
</tr>
<tr>
<td>sa_trans_pool</td>
<td>Source Address Translation Pool name, for example, SNAT pool, LSN, or Automap.</td>
</tr>
<tr>
<td>start</td>
<td>The unixtime for the start of the translation.</td>
</tr>
<tr>
<td>timestamp</td>
<td>Unix time, always in UTC.</td>
</tr>
<tr>
<td>tmm_daglib_state</td>
<td>TMM DAG library state.</td>
</tr>
</tbody>
</table>

BIG-IP version 11.3.0 and 11.4.0 log reference

This reference content describes the logging format specific to BIG-IP software version 11.3.0 and 11.4.0.

This release provides the following logging changes:

- CGNAT HSL and Splunk logging introduced in 11.3.0, unchanged in 11.4.0.
Table 5: BIG-IP version 11.3.0 and 11.4.0 log reference

<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT44 session</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address> <client_rtdomid>:<client_port>"<lsn_address> <lsn_rtdomid>:<lsn_port>"</td>
</tr>
</tbody>
</table>
| | | Splunk: lsn_event="LSN_ADD",cli="<client_ipv4_address>
| | | %<client_rtdomid>:<client_port>" nat="<lsn_address>
| | | %<lsn_rtdomid>:<lsn_port>" |
| **NAT64 session** | HSL | "LSN_ADD""<client_ipv6_address> <client_rtdomid>:<client_port>"<lsn_address> <lsn_rtdomid>:<lsn_port>" |
| | | Splunk: lsn_event="LSN_ADD",cli="<client_ipv6_address>
| | | %<client_rtdomid>:<client_port>" nat="<lsn_address>
| | | %<lsn_rtdomid>:<lsn_port>" |
| **DSLITE session** | HSL | "LSN_ADD""<client_ipv6_address> <client_rtdomid>:<client_port>"<lsn_address> <lsn_rtdomid>:<lsn_port>"<dslite_ipv6_remote_ip> <dslite_rtdomid> |
| | | Splunk: lsn_event="LSN_ADD",cli="<client_ipv6_address>
| | | %<client_rtdomid>:<client_port>,dslite="<dslite_ipv6_remote_ip>%<dslite_rtdomid>" nat="<lsn_address>
| | | %<lsn_rtdomid>:<lsn_port>" |
| **NAT44/NAT64/DSLITE Translation failed** | HSL | "<date_time>"","bigip_mgmt_ip_address","bigip_hostname","lsn_event","NAPT - Translation failed","<client_ipv4_address/
| | | client_ipv6_address>"<client_port>"<lsn_address>
| | | <lsn_rtdomid>:<lsn_port>" |
| | | Splunk: hostname="bigip_hostname",bigip_mgmt_ip="bigip_mgmt_ip_address",client_ip="<client_ipv4_address/
| | | client_ipv6_address>"client_port="<client_port>,date_time="<date_time>,dest_ip="destination_address","dest_port="destination_port","device_product="CGNAT",device_vendor="F5",device_version="bigip_software_version",errdefs_msgno="1",errdefs_msg_name="LSN Translation Event",lsn_translated_client_ip="<lsn_address>",lsn_translated_client_port="<lsn_port>",lsn_event="LSN_E RR",lsn_result="NAPT - Translation failed",lsn_translated_route_domain="<lsn_rtdomid>" |
| **DNAT config** | HSL | "<date_time>"","bigip_mgmt_ip_address","bigip_hostname","lsn_dnat_log_version","LSN_CFG","lsn_result","<lsn_dnat_source_list>" |

BIG-IP CGNAT: Implementations
Using CGNAT Logging and Subscriber Traceability

BIG-IP 11.3.0 and 11.4.0 log formats

This reference content describes the log format changes specific to BIG-IP® software versions 11.3.0 and 11.4.0.

This release introduces CGNAT high-speed logging (HSL) and Splunk logging.

Table 6: NAT44 session create

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_ADD" '<client_ipv4_address>%<client_rtdomid>:<client_port>" '<lsn_address>%<lsn_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event="LSN_ADD",cli="<client_ipv4_address>%<client_rtdomid>:<client_port>" ,nat="<lsn_address>%<lsn_rtdomid>:<lsn_port>"</td>
</tr>
</tbody>
</table>

Note: IPFIX is not implemented for NAT44 session create.
Table 7: NAT64 session create

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> %<client_rtdomid>:<client_port>""<lsn_address> %<lsn_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address> %<lsn_rtdomid>:<lsn_port>"</td>
</tr>
</tbody>
</table>

Note: IPFIX is not implemented for NAT64 session create.

Table 8: DSLITE session create

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> %<client_rtdomid>:<client_port>""<lsn_address> %<lsn_rtdomid>:<lsn_port>""<dslite_ipv6_remote_ip>%<dslite_rtdomid>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",dslite="<dslite_ipv6_remote_ip> %<dslite_rtdomid>",nat="<lsn_address>%<lsn_rtdomid>:<lsn_port>"</td>
</tr>
</tbody>
</table>

Note: IPFIX is not implemented for DSLITE session create.

Table 9: NAT44/NAT64/DSLITE Translation failed

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"<date_time>","<bigip_mgmt_ip_address>","<bigip_hostname>","<lsn_event>","NAPT - Translation failed","<client_ipv4_address/client_ipv6_address>","<client_port>","<client_rtdomid>","<lsn_address>"","<lsn_port>"","<lsn_rtdomid>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>hostname="<bigip_hostname>",bigip_mgmt_ip="<bigip_mgmt_ip_address>"",client_ip="<client_ipv4_address/client_ipv6_address>"",client_port="<client_port>"",date_time="<date_time>"",dest_ip="<destination_address>"",dest_port="<destination_port>"",device_product="CGNAT",device_vendor="F5",device_version="<bigip_software_version>"",erdefines_msgno="1",erdefines_msg_name="LSN Translation Event",lsn_translated_client_ip="<lsn_address>"",lsn_translated_client_port="<lsn_port>"",lsn_event="LSN_ERR",lsn_result="NAPT - Translation failed",lsn_translated_route_domain="<lsn_rtdomid>"cli="<client_ipv4_address/client_ipv6_address>"",client_port="<client_port>"",nat="<lsn_address>:<lsn_port>"",dslite="<dslite_ipv6_remote_ip>"",severity="6",route_domain="<client_rtdomid>"</td>
</tr>
</tbody>
</table>

Note: IPFIX is not implemented for NAT44/NAT64/DSLITE Translation failed.
Table 10: DNAT config

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"<date_time>","<bigip_mgmt_ip_address>","<bigip_hostname>","<lsn_dnat_log_version>","LSN_CFG","<lsn_result>","<lsn_dnat_source_list>","<lsn_dnat_prefix_list>","<lsn_dnat_port_range_min>","<lsn_dnat_port_range_max>","<tmm_daglib_state>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>hostname="<bigip_hostname>",bigip_mgmt_ip="<bigip_mgmt_ip_address>" ,date_time="<date_time>",device_product="CGNAT",device_vendor="F5",device_version="<bigip_software_version>",errdefs_msgno="2",errdefs_msg_name="LSNDNAT Config Event",lsn_event="LSN_CFG",lsn_dnat_state="<lsn_dnat_state>",lsn_dnat_source_list="<lsn_dnat_source_list>",lsn_dnat_prefix_list="<lsn_dnat_prefix_list>",lsn_dnat_port_range_min="<lsn_dnat_port_range_min>",lsn_dnat_port_range_max="<lsn_dnat_port_range_max>",lsn_dnat_log_version="<lsn_dnat_log_version>",lsn_result="DNAT config change",severity="6",tmm_daglib_state="<tmm_daglib_state>"</td>
</tr>
</tbody>
</table>

Note: IPFIX is not implemented for DNAT config.

Table 11: DNAT session delete

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv4_address>%<client_rtdomid>:<client_port>""<lsn_address>%<lsn_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event="LSN_DELETE",cli="<client_ipv4_address>%<client_rtdomid>:<client_port>" ,nat="<lsn_address>%<lsn_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>LTM log</td>
<td>DNAT connection: dnat: start=<start time in secs> end=<end time in secs> server=<destination_address> ,<destination_port> local=<lsn_address>,<lsn_port> proto=<protocol_id> client=<client_ipv4_address></td>
</tr>
</tbody>
</table>

Note: IPFIX is not implemented for DNAT session delete.

BIG-IP version 11.5.0 log reference

This reference content describes the logging format specific to BIG-IP software version 11.5.0.

This release provides the following logging changes:
- IPFIX logging introduced, egress_rtdomid used in logs instead of lsn_rtdomid and following new logs were added
- Log delete for NAT44/NAT64/DSLITE events
- Log create/delete for inbound connections
- Log quota exceeded events
- Log outbound create/delete with destination address/port
- Log start-time/duration in delete for outbounds
Table 12: BIG-IP version 11.5.0 log reference

<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT44 session create</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", lsn_event="LSN_ADD", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>NAT44 session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", lsn_event="LSN_DELETE", start="<start>", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>NAT44 session create (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", dest_ip="<destination_address>%<destination_port>", lsn_event="LSN_ADD", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>NAT44 session delete (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", dest_ip="<destination_address>%<destination_port>", start="<start>", lsn_event="LSN_DELETE", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>NAT44 inbound session create</td>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv4_address> %<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>"</td>
</tr>
</tbody>
</table>
| Splunk | | ip_protocol="<protocol>", dest_ip="<lsn_address>, dest_port="<lsn_port>", lsn_event="LSN_INBOUND_ADD", cli="
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT44 inbound session delete</td>
<td>HSL</td>
<td>"LSN_INBOUND_DELETE""<$internet_client_ipv4_address>$%<internet_client_rtdomid>:<internet_client_port>""<$protocol>""<$client_ipv4_address>$%<client_rtdomid>:<client_port>""<$lsn_address>""<$lsn_port>""<$start>""<$duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<$protocol>"",dest_ip="<$lsn_address>",dest_port="<$lsn_port>",lsn_event="LSN_INBOUND_DELETE",cli="<$internet_client_ipv4_address>$%<internet_client_rtdomid>:<internet_client_port>",nat="<$client_ipv4_address>$%<client_rtdomid>:<client_port>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 session create</td>
<td>HSL</td>
<td>"LSN_ADD""<$client_ipv6_address>$%<client_rtdomid>:<client_port>""<$protocol>""<$lsn_address>""<$egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<$protocol>",lsn_event="LSN_ADD",cli="<$client_ipv6_address>$%<client_rtdomid>:<client_port>",nat="<$lsn_address>"%<egress_rtdomid>:<lsn_port>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<$client_ipv6_address>$%<client_rtdomid>:<client_port>""<$protocol>""<$lsn_address>""<$egress_rtdomid>:<lsn_port>""<$start>""<$duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<$protocol>",lsn_event="LSN_DELETE",start="<$start>",cli="<$client_ipv6_address>$%<client_rtdomid>:<client_port>",nat="<$lsn_address>"%<egress_rtdomid>:<lsn_port>",duration="<$duration>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 session create (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_ADD""<$client_ipv6_address>$%<client_rtdomid>:<client_port>""<$protocol>""<$lsn_address>""<$egress_rtdomid>:<lsn_port>""<$destination_address>""<$destination_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<$protocol>",dest_ip="<$destination_address>",dest_port="destination_port",lsn_event="LSN_ADD",cli="<$client_ipv6_address>$%<client_rtdomid>:<client_port>",nat="<$lsn_address>"%<egress_rtdomid>:<lsn_port>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 session delete (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_DELETE""<$client_ipv6_address>$%<client_rtdomid>:<client_port>""<$protocol>""<$lsn_address>""<$egress_rtdomid>:<lsn_port>""<$destination_address>""<$destination_port>""<$start>""<$duration>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol=<protocol>, dest_ip=<destination_address>, dest_port=<destination_port>, lsn_event=LSN_DELETE, start=<start>, cli=<client_ipv6_address>, nat=<lsn_address>, egress_rtdomid:<lsn_port>, duration=<duration></td>
<td></td>
</tr>
<tr>
<td>NAT64 inbound</td>
<td>HSL</td>
<td>"LSN_INBOUND_ADD"<internet_client_ipv4_address>, <internet_client_rtdomid>:<internet_client_port>, protocol=<protocol>, client_ipv6_address=<client_ipv6_address>, client_rtdomid:<client_port>, lsn_address=<lsn_address>, lsn_port=<lsn_port></td>
</tr>
<tr>
<td>session create</td>
<td>Splunk</td>
<td>ip_protocol=<protocol>, dest_ip=lsn_address, dest_port=<lsn_port>, lsn_event=LSN_INBOUND_ADD, cli=<internet_client_ipv4_address>, <internet_client_rtdomid>:<internet_client_port>, protocol=<protocol>, client_ipv6_address=<client_ipv6_address>, client_rtdomid:<client_port>, lsn_address=<lsn_address>, lsn_port=<lsn_port></td>
</tr>
<tr>
<td>NAT64 inbound</td>
<td>HSL</td>
<td>"LSN_INBOUND_DELETE"<internet_client_ipv4_address>, <internet_client_rtdomid>:<internet_client_port>, protocol=<protocol>, client_ipv6_address=<client_ipv6_address>, client_rtdomid:<client_port>, lsn_address=<lsn_address>, lsn_port=<lsn_port>, start=<start>, duration=<duration></td>
</tr>
<tr>
<td>session delete</td>
<td>Splunk</td>
<td>ip_protocol=<protocol>, dest_ip=lsn_address, dest_port=<lsn_port>, lsn_event=LSN_INBOUND_DELETE, cli=<internet_client_ipv4_address>, <internet_client_rtdomid>:<internet_client_port>, protocol=<protocol>, client_ipv6_address=<client_ipv6_address>, client_rtdomid:<client_port>, lsn_address=<lsn_address>, lsn_port=<lsn_port></td>
</tr>
<tr>
<td>DSLITE session</td>
<td>HSL</td>
<td>"LSN_ADD"<dslite_ipv6_remote_ip>, <dslite_rtdomid>:<client_ipv6_address>, <client_rtdomid>:<client_port>, protocol=<lsn_address>, egress_rtdomid:<lsn_port></td>
</tr>
<tr>
<td>create</td>
<td>Splunk</td>
<td>ip_protocol=<protocol>, lsn_event=LSN_ADD, cli=<client_ipv6_address>, <client_rtdomid>:<client_port>, nat=<lsn_address>, egress_rtdomid:<lsn_port>, dslite=dslite_ipv6_remote_ip%<dslite_rtdomid></td>
</tr>
<tr>
<td>DSLITE session</td>
<td>HSL</td>
<td>"LSN_DELETE"<dslite_ipv6_remote_ip>, <dslite_rtdomid>:<client_ipv6_address>, <client_rtdomid>:<client_port>, protocol=<lsn_address>, egress_rtdomid:<lsn_port>, start=<start>, duration=<duration></td>
</tr>
<tr>
<td>delete</td>
<td>Splunk</td>
<td>ip_protocol=<protocol>, lsn_event=LSN_DELETE, start=<start>, cli=<client_ipv6_address>, <client_rtdomid>:<client_port>, nat=<lsn_address>, egress_rtdomid:<lsn_port>, dslite=dslite_ipv6_remote_ip%<dslite_rtdomid>, duration=<duration></td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| DSLITE session create (with log.lsn.session.destination enabled) | HSL | "LSN_ADD""<dslite_ipv6_remote_ip><
%<dslite_rtdomid>""<client_ipv6_address>
%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>
%<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>"
|
| Splunk | | ip_protocol="<protocol>",dest_ip="destination_address""dest_port="destination_port",lsn_event="LSN_ADD",cli="<client_ipv6_address>
%<client_rtdomid>:<client_port>""<lsn_address>
%<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>""<start>""<duration>"
|
| DSLITE session delete (with log.lsn.session.destination enabled) | HSL | "LSN_DELETE""<dslite_ipv6_remote_ip><
%<dslite_rtdomid>""<client_ipv6_address>
%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>
%<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>""<start>""<duration>"
|
| Splunk | | ip_protocol="<protocol>",dest_ip="destination_address""dest_port="destination_port",lsn_event="LSN_DELETE",start="<start>"cli="<client_ipv6_address>
%<client_rtdomid>:<client_port>""<lsn_address>
%<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>""<duration>"
|
| DSLITE inbound session create | HSL | "LSN_INBOUND_ADD""<dslite_ipv6_remote_ip><
%<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address>
%<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>"
|
| Splunk | | ip_protocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>,lsn_event="LSN_INBOUND_ADD",cli="<internet_client_ipv4_address>
%<internet_client_rtdomid>:<internet_client_port>""<client_ipv6_address>
%<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>"
|
| DSLITE inbound session delete | HSL | "LSN_INBOUND_DELETE""<dslite_ipv6_remote_ip><
%<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address>
%<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>""<start>""<duration>"
|
| Splunk | | ip_protocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>,lsn_event="LSN_INBOUND_DELETE",cli="<internet_client_ipv4_address>
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation failed</td>
<td>HSL</td>
<td>"<date_time>","<bigip_mgmt_ip_address>","<bigip_hostname>","<lsn_event>","NAPT - Translation failed","<client_ipv4_address/client_ipv6_address>";<client_port>";<client_rtdomid>";<protocol>";<lsn_address>";<lsn_port>";<lsn_rtdomid>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>hostname="<bigip_hostname>",bigip_mgmt_ip="<bigip_mgmt_ip_address>";client_ip="<clientIpv4_address/client_ipv6_address>";client_port="<client_port>";date_time="<date_time>";dest_ip="<destination_address>";dest_port="<destination_port>";device_product="CGNAT";device_vendor="F5";device_version="<bigip_software_version>";errdefs_msgno="1";errdefs_msg_name="LSN Translation Event";lsn_translated_client_ip="<lsn_address>";lsn_translated_client_port="<lsn_port>";lsn_event="LSN_E RR";lsn_result="NAPT - Translation failed";lsn_translated_route_domain="<lsn_rtdomid>";clnt="<client_ipv4_address/client_ipv6_address>";client_port="<client_port>";nat="<lsn_address>";lsn_port="<lsn_port>";dslite="<dslite_ipv6_remote_ip>";severity="6";route_domain="<client_rtdomid>"</td>
</tr>
<tr>
<td>DNAT config</td>
<td>HSL</td>
<td>"<date_time>","<bigip_mgmt_ip_address>","<bigip_hostname>","<lsn_dnat_log_version>";"LSN_CFG";"<lsn_result>";"<lsn_pool_name>";"<lsn_dnat_source_list>";"<lsn_dnat_prefix_list>";"<lsn_dnat_port_range_min>";"<lsn_dnat_port_range_max>";"<tmm_daglib_state>";"<lsn_dnat_state>";"<lsn_dnat_dag_id>";"<timestamp>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>hostname="<bigip_hostname>",bigip_mgmt_ip="<bigip_mgmt_ip_address>";date_time="<date_time>";device_product="CGNAT";device_vendor="F5";device_version="<bigip_software_version>";errdefs_msgno="2";errdefs_msg_name="LSNDNAT Config Event";lsn_event="LSN_CFG";lsn_dnat_dstate="<lsn_dnat_dstate>";lsn_dnat_source_list="<lsn_dnat_source_list>";lsn_dnat_prefix_list="<lsn_dnat_prefix_list>";lsn_dnat_port_range_min="<lsn_dnat_port_range_min>";lsn_dnat_port_range_max="<lsn_dnat_port_range_max>";lsn_dnat_log_version="<lsn_dnat_log_version>";lsn_result="DNAT config change";severity="6";tmm_daglib_state="<tmm_daglib_state>";lsn_pool_name="<lsn_pool_name>";lsn_dnat_dstate="<lsn_dnat_dstate>";lsn_dnat_dag_id="<lsn_dnat_dag_id>";timestamp="<timestamp>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>--</td>
</tr>
</tbody>
</table>
| DNAT session delete | HSL | "LSN_CONNECTION","\<start\>","\<end\>","\<client_ipv4_address>
| | | %\<client_rtdomid>:\<client_port>"\"\<protocol\>","\<lsn_address>
| | | %\<lsn_rtdomid>:\<lsn_port>"","\<destination_port>" |
| Splunk | | ip_protocol="\<protocol\>",lsn_event="LSN_CONNECTION",cli="\<client_ipv4_address>
| | | %\<client_rtdomid>:\<client_port>",nat="\<lsn_address>
| | | %\<lsn_rtdomid>:\<lsn_port>",destination_port="\<destination_port>",start="\<start\>",end="\<end\>" |
| NAT44 client quota exceeded | HSL | "LSN_QUOTA_EXCEEDED"","\<client_ipv4_address>
| | | %\<client_rtdomid>:\<client_port>"\"\<protocol\>""\<sa_translation_pool>
| Splunk | | ip_protocol="\<protocol\>",lsn_event="LSN_QUOTA_EXCEEDED",cli="\<client_ipv4_address>
| | | %\<client_rtdomid>:\<client_port>",sa_translation_pool="\<sa_translation_pool>" |
| NAT64 client quota exceeded | HSL | "LSN_QUOTA_EXCEEDED"","\<client_ipv6_address>
| | | %\<client_rtdomid>:\<client_port>"\"\<protocol\>""\<sa_translation_pool>
| Splunk | | ip_protocol="\<protocol\>",lsn_event="LSN_QUOTA_EXCEEDED",cli="\<client_ipv4_address>
| | | %\<client_rtdomid>:\<client_port>",sa_translation_pool="\<sa_translation_pool>" |
| DSLITE client quota exceeded| HSL | "LSN_QUOTA_EXCEEDED"","\<dslite_ipv6_remote_ip>
| | | %\<client_rtdomid>":"\<client_ipv4_address>
| | | %\<client_rtdomid>:\<client_port>"\"\<protocol\>""\<sa_translation_pool>
| Splunk | | ip_protocol="\<protocol\>",lsn_event="LSN_QUOTA_EXCEEDED",dslite="\<dslite_ipv6_remote_ip>
| | | %\<client_rtdomid>":"\<client_ipv4_address>
| | | %\<client_rtdomid>:\<client_port>"",sa_translation_pool="\<sa_translation_pool>" |

BIG-IP 11.5.0 log formats

This reference content describes the log format changes specific to BIG-IP® software version 11.5.0.

This release includes the following changes:

- Log delete for NAT44/NAT64/DSLITE events.
- Log create/delete for inbound connections.
- Log quota exceeded events.
- Log outbound create/delete with destination address/port.
- Log start-time/duration in delete for outbounds.
Table 13: NAT44 session create/delete format changes

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without destination address/port</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address>%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"LSN_DELETE""<client_ipv4_address>%<client_rtdomid>:<client_port>""<protocol>""<lsn_address> <destination_address> <destination_port> <start> <duration></td>
</tr>
<tr>
<td>With destination address/port</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address>%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>" <destination_address> <destination_port></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"LSN_DELETE""<client_ipv4_address>%<client_rtdomid>:<client_port>""<protocol>""<lsn_address> <destination_address> <destination_port> <start> <duration></td>
</tr>
<tr>
<td>Without destination address/port</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",lsn_event="LSN_ADD",cli="<client_ipv4_address>%<client_rtdomid>:<client_port>"nat="<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ip_protocol="<protocol>",lsn_event="LSN_DELETE",start="<start>",cli="<client_ipv4_address>%<client_rtdomid>:<client_port>"nat="<lsn_address>%<egress_rtdomid>:<lsn_port>" duration="<duration>"</td>
</tr>
<tr>
<td>With destination address/port</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address> <destination_port>"lsn_event="LSN_ADD",cli="<client_ipv4_address>%<client_rtdomid>:<client_port>"nat="<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address> <destination_port>"lsn_event="LSN_DELETE",cli="<client_ipv4_address>%<client_rtdomid>:<client_port>"nat="<lsn_address>%<egress_rtdomid>:<lsn_port>" duration="<duration>"</td>
</tr>
</tbody>
</table>

Table 14: IPFIX Create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMILLISECONDS</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Table 15: IPFIX Delete

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTsourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>1 (Private/internal realm – Subscriber side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td>Field</td>
<td>Bytes</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>1 (Private/internal realm – Subscriber side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Table 16: NAT44 inbound session create/delete format changes

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<internet_client_ipv4_address>%<internet_client_rtdomid>:<internet_client_port>""<protocol>" "<client_ipv4_address>%<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>" "LSN_INBOUND_DELETE""<internet_client_ipv4_address>%<internet_client_rtdomid>:<internet_client_port>""<protocol>" "<client_ipv4_address>%<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>" "<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", dest_ip="<lsn_address>", dest_port="<lsn_port>", lsn_event="LSN_INBOUND_ADD", cli="<internet_client_ipv4_address>%<internet_client_rtdomid>:<internet_client_port>" nat="<client_ipv4_address>%<client_rtdomid>:<client_port>" ip_protocol="<protocol>", dest_ip="<lsn_address>", dest_port="<lsn_port>", lsn_event="LSN_INBOUND_DELETE", cli="<internet_client_ipv4_address>%<internet_client_rtdomid>:<internet_client_port>" nat="<client_ipv4_address>%<client_rtdomid>:<client_port>"</td>
</tr>
</tbody>
</table>

Table 17: IPFIX

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Bytes</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
</tbody>
</table>

Table 18: NAT64 session create/delete

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without destination address/port</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address>%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"LSN_DELETE""<client_ipv6_address>%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>With destination address/port</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address>%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"LSN_DELETE""<client_ipv6_address>%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>"</td>
</tr>
<tr>
<td>Without destination address/port</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",lsn_event="LSN_ADD",cli="<client_ipv6_address>%<client_rtdomid>:<client_port>",nat="<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ip_protocol="<protocol>",lsn_event="LSN_DELETE",start="<start>",cli="<client_ipv6_address>%<client_rtdomid>:<client_port>",nat="<lsn_address>%<egress_rtdomid>:<lsn_port>""duration="<duration>"</td>
</tr>
</tbody>
</table>
Table 19: IPFIX Create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMillis</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTsourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>4</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
</tbody>
</table>
Table 20: IPFIX Delete

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTsourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>4</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event)</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Table 21: NAT64 inbound session create/delete format changes

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>""LSN_INBOUND_DELETE""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>""<start>""<duration>""</td>
</tr>
</tbody>
</table>
Table 22: IPFIX

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMILLISECONDS</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv6Address</td>
<td>16</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
</tbody>
</table>

Table 23: DSLITE session create/delete

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without destination address/port</td>
<td>HSL</td>
<td>"LSN_ADD""<dslite_ipv6_remote_ip>%<dslite_rtdomid>:<client_ipv6_address> %<client_rtdomid>:<client_port>" "<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Description</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>With destination address/port</td>
<td>HSL</td>
<td>"LSN_ADD""<dslite_ipv6_remote_ip> %<dslite_rtdomid>"<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>" <lsn_address> %<egress_rtdomid>:<lsn_port>"<destination_address>"<destination_port>" "LSN_DELETE""<dslite_ipv6_remote_ip> %<dslite_rtdomid>"<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>" <lsn_address> %<egress_rtdomid>:<lsn_port>"<destination_address>"<destination_port>"</td>
</tr>
<tr>
<td>Without destination address/port</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>"",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>" ip_protocol="<protocol>",lsn_event="LSN_DELETE",start=""<start>"", cli="<client_ipv6_address> %<client_rtdomid>:<client_port>"",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>" duration=""<duration>"</td>
</tr>
<tr>
<td>With destination address/port</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address>"dest_port="<destination_port>"",lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>"",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>" ip_protocol="<protocol>",dest_ip="<destination_address>"dest_port="<destination_port>"",lsn_event="LSN_DELETE",start=""<start>"", cli="<client_ipv6_address> %<client_rtdomid>:<client_port>"",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>" duration=""<duration>"</td>
</tr>
</tbody>
</table>
Table 24: IPFIX Create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTsourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td>IPv6 address for remote endpoint of the DS-Lite tunnel.</td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
</tbody>
</table>

Table 25: IPFIX Delete

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTsourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Bytes</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td>IPv6 address for remote endpoint of the DS-Lite tunnel.</td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Table 26: DSLITE inbound session create/delete

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<dslite_ipv6_remote_ip
&<dslite_rtdomid>""<internet_client_ipv4_address
&<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address
&<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>"LSN_INBOUND_DELETE""<dslite_ipv6_remote_ip
&<dslite_rtdomid>""<internet_client_ipv4_address
&<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address
&<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", dest_ip="<lsn_address", dest_port="<lsn_port>"<lsln_event="LSN_INBOUND_ADD", cli="<internet_client_ipv4_address
&<internet_client_rtdomid>:<internet_client_port>""<client_ipv6_address
&<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>ip_protocol="<protocol>", dest_ip="<lsn_address", dest_port="<lsn_port>"<lsln_event="LSN_INBOUND_DELETE", cli="<internet_client_ipv4_address
&<internet_client_rtdomid>:<internet_client_port>""<client_ipv6_address
&<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
</tbody>
</table>
Table 27: IPFIX Create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv6Address</td>
<td>16</td>
<td>DLTIE remote endpoint IPv6 address.</td>
</tr>
<tr>
<td>postNatDestinationIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
</tbody>
</table>

Table 28: Translation failed

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"<date_time">","<bigip_mgmt_ip_address>"","<bigip_hostname>"","<lsn_event>","NAPT - Translation failed","<client_ipv4_address/\nclient_ipv6_address>"","<client_port>"","<client_rtdomid>"","<protocol>" ,"<lsn_address>"","<lsn_port>"","<lsn_rtdomid>"</td>
</tr>
</tbody>
</table>
| Splunk| hostname="<bigip_hostname>"\nbigip_mgmt_ip="<bigip_mgmt_ip_address>"\nclient_ip="<client_ipv4_address/\nclient_ipv6_address>"\nclient_port="<client_port>"\ndate_time="<date_time>"\ndest_ip="<destination_address>"\ndest_port="<destination_port>"\ndevice_product="CGNAT"\ndevice_vendor="F5"\ndevice_version="<bigip_software_version>"\nerrdefs_msgno="1"\nerrdefs_msg_name="LSN Translation Event"\nlsn_translated_client_ip="<lsn_address>"\nlsn_translated_client_port="<lsn_port>"\nlsn_event="LSN_ERR"\nlsn_result="NAPT - Translation failed"\nlsn_translated_route_domain="<lsn_rtdomid>"\ncli="<client_ipv4_address/\nclient_ipv6_address>:<client_port>"\nnat="<lsn_address>:<lsn_port>"\nd"
Table 29: IPFIX

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMillisecs</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>Translation failed.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9 compatible configurations.</td>
</tr>
</tbody>
</table>

Table 30: IPFIX

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMillisecs</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>Translation failed.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9 compatible configurations.</td>
</tr>
</tbody>
</table>

Table 31: IPFIX

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMillisecs</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td>IPv4 address used by F5 CGNAT in the IPv4-mapped IPv6 format, for the DS-Lite tunnel terminated on the BIG-IP.</td>
</tr>
<tr>
<td>Field</td>
<td>Bytes</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td>IPv6 address for remote endpoint of the DS-Lite tunnel.</td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>Translation failed.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>Varia</td>
<td>ble This IE is omitted for NetFlow v9 compatible configurations.</td>
</tr>
</tbody>
</table>

Table 32: DNAT config

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"<date_time>"","<bigip_mgmt_ip_address>"","<bigip_hostname>"","<lsn_dnat_log_version>"","LSN_CFG","<lsn_result>"","<lsn_pool_name>"","<lsn_dnat_source_list>"","<lsn_dnat_prefix_list>"","<lsn_dnat_port_range_min>"","<lsn_dnat_port_range_max>"","<tmn_daglib_state>"","<lsn_dnat_state>"","<lsn_dnat_dag_id>"","<timestamp>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>hostname="<bigip_hostname>"",bigip_mgmt_ip="<bigip_mgmt_ip_address>"",date_time="<date_time>"",device_product="CGNAT",device_vendor="F5",device_version="<bigip_software_version>"",errdefs_msgno="2",errdefs_msg_name="LSNDNAT Config Event",lsn_event="LSN_CFG",lsn_dnat_state="<lsn_dnat_state>"",lsn_dnat_source_list="<lsn_dnat_source_list>"",lsn_dnat_prefix_list="<lsn_dnat_prefix_list>"",lsn_dnat_port_range_min="<lsn_dnat_port_range_min>"",lsn_dnat_port_range_max="<lsn_dnat_port_range_max>"",lsn_dnat_log_version="<lsn_dnat_log_version>"",lsn_result="DNAT config change",severity="6",tmn_daglib_state="<tmn_daglib_state>"",lsn_pool_name="<lsn_pool_name>"",lsn_dnat_state="<lsn_dnat_state>"",lsn_dnat_dag_id="<lsn_dnat_dag_id>"",timestamp="<timestamp>"</td>
</tr>
</tbody>
</table>

Note: IPFIX is not implemented for DNAT configuration.

Table 33: DNAT session delete

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_CONNECTION","<start>","<end>"","<client_ipv4_address>%<client_rtdomid>:<client_port>"","protocol>"","<lsn_address>%<lsn_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>"",lsn_event="LSN_CONNECTION",cli="<client_ipv4_address>%<client_rtdomid>:<client_port>"",nat="<lsn_address>%<lsn_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>LTM</td>
<td>log DNAAT connection: dnat: start=<start time in secs> end=<end time in secs> server=<destination_address>,<destination_port></td>
</tr>
</tbody>
</table>

123
Table 34: NAT44 client quota exceeded

<table>
<thead>
<tr>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_QUOTA_EXCEEDED""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>",lsn_event="LSN_QUOTA_EXCEEDED",cli="<client_ipv4_address> %<client_rtdomid>:<client_port>",sa_translation_pool="<sa_trans_pool>"</td>
</tr>
</tbody>
</table>

Note: IPFIX is not implemented for DNAT session delete.

Table 35: IPFIX

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>Session Quota Exceeded/Port Quota Exceeded.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9 compatible configurations.</td>
</tr>
</tbody>
</table>

Table 36: NAT64 client quota exceeded

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL</td>
<td>"LSN_QUOTA_EXCEEDED""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>",lsn_event="LSN_QUOTA_EXCEEDED",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",sa_translation_pool="<sa_trans_pool>"</td>
</tr>
</tbody>
</table>

Table 37: IPFIX

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>Session Quota Exceeded/Port Quota Exceeded.</td>
</tr>
</tbody>
</table>
Table 38: DSLITE client quota exceeded

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| HSL | "LSN_QUOTA_EXCEEDED""<dslite_ipv6_remote_ip>
%<dslite_rtdomid>""<client_ipv4_address>
%<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>" |
| Splunk| `ip_protocol="<protocol>",lsn_event="LSN_QUOTA_EXCEEDED",dslite="<dslite_ipv6_remote_ip>%<dslite_rtdomid>",cli="<client_ipv4_address>%<client_rtdomid>:<client_port>""`, `sa_translation_pool="<sa_trans_pool>"` |

Table 39: IPFIX

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td>IPv6 address for remote endpoint of the DS-Lite tunnel.</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>Session Quota Exceeded/Port Quota Exceeded</td>
</tr>
<tr>
<td>natPoolName</td>
<td>Varia ble</td>
<td>This IE is omitted for NetFlow v9 compatible configurations.</td>
</tr>
</tbody>
</table>

BIG-IP version 11.6.0 log reference

This reference content describes the logging format specific to BIG-IP software version 11.6.0.

This release provides the following logging changes:

- PBA Logging introduced.
- Added ports exhausted message for NAT44, NAT64, and DSLITE
- Log for DNAT inbound connections on connection end

Table 40: BIG-IP version 11.6.0 log reference

<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
</table>
| NAT44 session create | HSL | "LSN_ADD""<client_ipv4_address>
%<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>" |
<p>| | Splunk| <code>ip_protocol="<protocol>",lsn_event="LSN_ADD",cli="<client_ipv4_address>"</code> |</p>
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT44 session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", lsn_event="LSN_DELETE", start="<start>", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>"nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"duration="<duration>"</td>
</tr>
<tr>
<td>NAT44 session create</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", dest_ip="<destination_address>""dest_port="<destination_port>"lsn_event="LSN_ADD", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>"nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>NAT44 session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", dest_ip="<destination_address>""dest_port="<destination_port>"lsn_event="LSN_DELETE", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>"nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"duration="<duration>"</td>
</tr>
<tr>
<td>NAT44 inbound session create</td>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv4_address> %<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", dest_ip="<lsn_address>""dest_port="<lsn_port>"lsn_event="LSN_INBOUND_ADD", cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>"nat="<client_ipv4_address> %<client_rtdomid>:<client_port>"</td>
</tr>
<tr>
<td>NAT44 inbound session delete</td>
<td>HSL</td>
<td>"LSN_INBOUND_DELETE""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv4_address> %<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", dest_ip="<lsn_address>""dest_port="<lsn_port>"lsn_event="LSN_INBOUND_DELETE", cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>"nat="<client_ipv4_address> %<client_rtdomid>:<client_port>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>NAT64 session create</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol=""<protocol>"",lsn_event="LSN_ADD",cli=""<client_ipv6_address> %<client_rtdomid>:<client_port>"",nat=""<lsn_address>""%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>NAT64 session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol=""<protocol>"",lsn_event="LSN_DELETE",start=""<start>"",cli=""<client_ipv6_address> %<client_rtdomid>:<client_port>"",nat=""<lsn_address>""%<egress_rtdomid>:<lsn_port>"",duration=""<duration>"</td>
</tr>
<tr>
<td>NAT64 session create</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<destination_address>""<destination_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol=""<protocol>"",dest_ip="<destination_address>""dest_port="destination_port>""lsn_event="LSN_ADD",cli=""<client_ipv6_address> %<client_rtdomid>:<client_port>"",nat=""<lsn_address>""%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>NAT64 session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<destination_address>""<destination_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol=""<protocol>"",dest_ip="<destination_address>""dest_port="destination_port>""lsn_event="LSN_DELETE",start=""<start>"",cli=""<client_ipv6_address> %<client_rtdomid>:<client_port>"",nat=""<lsn_address>""%<egress_rtdomid>:<lsn_port>"",duration=""<duration>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>NAT64 inbound session create</td>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip Protocol="<protocol>", dest_ip="<lsn_address>, dest_port="<lsn_port>, lsn_event="LSN_INBOUND_ADD", cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>"nat="<client_ipv6_address> %<client_rtdomid>:<client_port>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 inbound session delete</td>
<td>HSL</td>
<td>"LSN_INBOUND_DELETE""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip Protocol="<protocol>", dest_ip="<lsn_address>, dest_port="<lsn_port>, lsn_event="LSN_INBOUND_DELETE", cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>"nat="<client_ipv6_address> %<client_rtdomid>:<client_port>"</td>
<td></td>
</tr>
<tr>
<td>DSLITE session create</td>
<td>HSL</td>
<td>"LSN_ADD""<dslite_ipv6_remote_ip> %<dslite_rtdomid>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>%<egress_rtdomid>:<lsn_port>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip Protocol="<protocol>", lsn_event="LSN_ADD", cli="<client_ipv6_address> %<client_rtdomid>:<client_port>"nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"</td>
<td></td>
</tr>
<tr>
<td>DSLITE session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<dslite_ipv6_remote_ip> %<dslite_rtdomid>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip Protocol="<protocol>", lsn_event="LSN_DELETE", start=""<start>, cli="<client_ipv6_address> %<client_rtdomid>:<client_port>"nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"duration=""<duration>"</td>
<td></td>
</tr>
<tr>
<td>DSLITE session create</td>
<td>HSL</td>
<td>"LSN_ADD""<dslite_ipv6_remote_ip> %<dslite_rtdomid>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address></td>
</tr>
</tbody>
</table>

Using CGNAT Logging and Subscriber Traceability
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>%<egress_rtdomid>:<lsn_port>"<destination_address>""<destination_port>"</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address>",lsn_event="LSN_ADD",cli="<client_ipv6_address>",nat="<lsn_address>",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"</td>
</tr>
<tr>
<td></td>
<td>DSLITE session delete</td>
<td>HSL "LSN_DELETE""<dslite_ipv6_remote_ip><client_ipv6_address><client_rtdomid>:<lsn_port><lsn_address>"<protocol>"<destination_address>"<destination_port>"<start>"<duration>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address>",lsn_event="LSN_DELETE",start="<start>",cli="<client_ipv6_address>",nat="<lsn_address>",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"</td>
</tr>
<tr>
<td></td>
<td>DSLITE inbound session create</td>
<td>HSL "LSN_INBOUND_ADD""<dslite_ipv6_remote_ip><internet_client_ipv4_address><internet_client_rtdomid>:<internet_client_port>"<protocol>""<client_ipv6_address>",nat="<client_ipv6_address>",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>,lsn_event="LSN_INBOUND_ADD",cli="<internet_client_ipv4_address>",nat="<client_ipv6_address>",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"</td>
</tr>
<tr>
<td></td>
<td>DSLITE inbound session delete</td>
<td>HSL "LSN_INBOUND_DELETE""<dslite_ipv6_remote_ip><internet_client_ipv4_address><internet_client_rtdomid>:<internet_client_port>"<protocol>""<client_ipv6_address>",nat="<client_ipv6_address>",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>,lsn_event="LSN_INBOUND_DELETE",cli="<internet_client_ipv4_address>",nat="<client_ipv6_address>",dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Translation failed</td>
<td>HSL</td>
<td>"<date_time>"","<bigip_mgmt_ip_address>"","<bigip_host name>"","<lsn_event>"","NAPT - Translation failed"","<client_ipv4_address/ client_ipv6_address>"","<client_port>"","<client_rtdom id>"","<protocol>"","<lsn_address>"","<lsn_port>"","<lsn_rtdomid>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>hostname="<bigip_hostname>"",bigip_mgmt_ip="<bigip_mgmt_ip_address>"",client_ip="<client_ipv4_address/ client_ipv6_address>"",client_port="<client_port>"",date_time="<date_time>"",dest_ip="<destination_address>"",dest_port="<destination_port>"",device_product="CGNAT",device_vendor="F5",device_version="<bigip_software_version>"",errdefs_msgno="1",errdefs_msg_name="LSN Translation Event",lsn_translated_client_ip="<lsn_address>"",lsn_translated_client_port="<lsn_port>"",lsn_event="LSN_E RR",lsn_result="NAPT - Translation failed",lsn_translated_route_domain="<lsn_rtdomid>"</td>
</tr>
<tr>
<td>DNAT config</td>
<td>HSL</td>
<td>"<date_time>"","<bigip_mgmt_ip_address>"","<bigip_host name>"","<lsn_dnat_log_version>"","LSN_CFG","<lsn_event>"","<lsn_dnat_log_version>"","<lsn_dnat_source_list>"","<lsn_dnat_prefix_list>"","<lsn_dnat_port_range_min>"","<lsn_dnat_port_range_max>"","<tmm_daglib_state>"","<lsn_dnat_state>"","<lsn_dnat_dag_id>"","<timestamp>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>hostname="<bigip_hostname>"",bigip_mgmt_ip="<bigip_mgmt_ip_address>"",date_time="<date_time>"",device_product="CGNAT",device_vendor="F5",device_version="<bigip_software_version>"",errdefs_msgno="2",errdefs_msg_name="LSNDNAT Config Event",lsn_event="LSN_CFG",lsn_dnat_state="<lsn_dnat_state>"",lsn_dnat_source_list="<lsn_dnat_source_list>"",lsn_dnat_prefix_list="<lsn_dnat_prefix_list>"",lsn_dnat_port_range_min="<lsn_dnat_port_range_min>"",lsn_dnat_port_range_max="<lsn_dnat_port_range_max>"",lsn_dnat_log_version="<lsn_dnat_log_version>"",lsn_result="DNAT config change",severity="6",tmm_daglib_state="<tmm_daglib_state>"</td>
</tr>
</tbody>
</table>
| DNAT session delete (on connection end, and inbound connection end) | HSL | "LSN_CONNECTION","<start>","<end>"","<client_ipv4_address/ %<client_rtdomid>:<client_port>"","<protocol>"","<lsn_address>","<lsn_dnat_log_version>"","<lsn_dnat_source_list>"","<lsn_dnat_prefix_list>"","<lsn_dnat_port_range_min>"","<lsn_dnat_port_range_max>"","<tmm_daglib_state>"",lsn_dnat_state="<lsn_dnat_state>"",lsn_dnat_dag_id="<lsn_dnat_dag_id>"",timestamp="<timestamp>"
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splunk</td>
<td>HSL</td>
<td>"LSN_QUOTA_EXCEEDED""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>HSL</td>
<td>"LSN_QUOTA_EXCEEDED""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>HSL</td>
<td>"LSN_QUOTA_EXCEEDED""<dslite_ipv6_remote_ip> %<dslite_rtdomid>:<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>NAT44 client quota exceeded</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_DELETE", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<lsn_rtdomid>:<lsn_port>", destination_port="<destination_port>", start="<start>", end="<end>"</td>
</tr>
<tr>
<td>NAT64 client quota exceeded</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_QUOTA_EXCEEDED", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", sa_translation_pool="<sa_translation_pool>"</td>
</tr>
<tr>
<td>DSLITE client quota exceeded</td>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_QUOTA_EXCEEDED", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", sa_translation_pool="<sa_translation_pool>"</td>
</tr>
<tr>
<td>NAT44 Port-block allocated</td>
<td>Splunk</td>
<td>lsn_event="LSN_PB_ALLOCATED", lsn_client="<client_ipv4_address> %<client_rtdomid> %<lsn_address> %<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>NAT44 Port-block released</td>
<td>Splunk</td>
<td>lsn_event="LSN_PB_RELEASED", lsn_client="<client_ipv4_address> %<client_rtdomid> %<lsn_address> %<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>NAT44 Client block limit reached</td>
<td>HSL</td>
<td>"LSN_BLOCK_QUOTA_EXCEEDED""<client_ip4_address %client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", lsn_event="LSN_QUOTA_EXCEEDED", cli="<client_ip4_address %client_rtdomid>:<client_port>", sa_translation_pool ="<sa_translation_pool>"</td>
</tr>
<tr>
<td>NAT44 Ports Exhausted</td>
<td>HSL</td>
<td>"LSN_PORTS_EXHAUSTED""<client_ip4_address %client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", lsn_event="LSN_PORTS_EXHAUSTED", cli="<client_ip4_address %client_rtdomid>:<client_port>", sa_translation_pool ="<sa_translation_pool>"</td>
</tr>
<tr>
<td>NAT64 Port-block allocated</td>
<td>HSL</td>
<td>"LSN_PB_ALLOCATED""<client_ipv6_address %client_rtdomid>%<lsn_address %lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>lsn_event="LSN_PB_ALLOCATED", lsn_client="<client_ipv6_address %client_rtdomid>", lsn_pb="<lsn_address %lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>NAT64 Port-block released</td>
<td>HSL</td>
<td>"LSN_PB_RELEASED""<client_ipv6_address %client_rtdomid>%<lsn_address %lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>lsn_event="LSN_PB_RELEASED", lsn_client="<client_ipv6_address %client_rtdomid>", lsn_pb="<lsn_address %lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>NAT64 Client block limit reached</td>
<td>HSL</td>
<td>"LSN_BLOCK_QUOTA_EXCEEDED""<client_ip6_address %client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", lsn_event="LSN_QUOTA_EXCEEDED", cli="<client_ip6_address %client_rtdomid>:<client_port>", sa_translation_pool ="<sa_translation_pool>"</td>
</tr>
<tr>
<td>NAT64 Ports Exhausted</td>
<td>HSL</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_PORTS_EXHAUSTED", cli="<client_ipv6_address %client_rtdomid>:<client_port>", sa_translation_pool ="<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>", lsn_event="LSN_PORTS_EXHAUSTED", cli="<client_ipv6_address %client_rtdomid>:<client_port>", sa_translation_pool ="<sa_translation_pool>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>DSLITE Port-block allocated</td>
<td>HSL</td>
<td>"LSN_PB_ALLOCATED""<dslite_ipv6_remote_ip></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<dslite_rtdomid>""<lsn_address></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>lsn_event="LSN_PB_ALLOCATED",</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lsn_dslite_client="<dslite_ipv6_remote_ip>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<dslite_rtdomid>""<lsn_address></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>DSLITE Port-block released</td>
<td>HSL</td>
<td>"LSN_PB_ALLOCATED",</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lsn_dslite_client="<dslite_ipv6_remote_ip>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<dslite_rtdomid>""<lsn_address></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>lsn_event="LSN_PB_RELEASED",</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lsn_dslite_client="<dslite_ipv6_remote_ip>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<dslite_rtdomid>""<lsn_address></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>DSLITE Client block limit reached</td>
<td>HSL</td>
<td>"LSN_BLOCK_QUOTA_EXCEEDED""<dslite_ipv6_remote_ip></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<dslite_rtdomid>""<client_ipv4_address></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool></td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_BLOCK_QUOTA_EXCEEDED",</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dslite="<dslite_ipv6_remote_ip>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<dslite_rtdomid>""<client_ipv4_address></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>="<sa_translation_pool>"</td>
</tr>
<tr>
<td>DSLITE Ports Exhausted</td>
<td>HSL</td>
<td>"LSN_PORTS_EXHAUSTED""<dslite_ipv6_remote_ip></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<dslite_rtdomid>""<client_ipv4_address></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_PORTS_EXHAUSTED",</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dslite="<dslite_ipv6_remote_ip>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<dslite_rtdomid>""<client_ipv4_address></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>="<sa_translation_pool>"</td>
</tr>
</tbody>
</table>

BIG-IP version 11.6.0 log formats

This reference content describes the log format changes specific to BIG-IP® software version 11.6.0.

This release includes log messages for the following translation modes:
Port Block Allocation (PBA)

Table 41: PBA log format changes

<table>
<thead>
<tr>
<th>Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port block allocated</td>
<td>HSL</td>
<td>NAT44: "LSN_PB_ALLOCATED""<client_ipv4_address> %<client_rtdomid>" %<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAT64: "LSN_PB_ALLOCATED""<client_ipv6_address> %<client_rtdomid>" %<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSLITE: "LSN_PB_ALLOCATED""<dslite_ipv6_remote_ip> %<dslite_rtdomid>" %<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>NAT44: lsn_event="LSN_PB_ALLOCATED", lsn_client="<client_ipv4_address> %<client_rtdomid>", lsn_pb="<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAT64: lsn_event="LSN_PB_ALLOCATED", lsn_client="<client_ipv6_address> %<client_rtdomid>", lsn_pb="<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSLITE: lsn_event="LSN_PB_ALLOCATED", lsn_dslite_client="<dslite_ipv6_remote_ip> %<dslite_rtdomid>", lsn_pb="<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td>Port-block released</td>
<td>HSL</td>
<td>NAT44: "LSN_PB_RELEASED""<client_ipv4_address> %<client_rtdomid>" %<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAT64: "LSN_PB_RELEASED""<client_ipv6_address> %<client_rtdomid>" %<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSLITE: "LSN_PB_RELEASED""<dslite_ipv6_remote_ip> %<dslite_rtdomid>" %<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>NAT44: lsn_event="LSN_PB_RELEASED", lsn_client="<client_ipv4_address> %<client_rtdomid>" %<lsn_address> %<lsn_rtdomid>:<port_range_start>- <port_range_end>"</td>
</tr>
<tr>
<td>Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Message</td>
<td>HSL</td>
<td>NAT44: "LSN_BLOCK_QUOTA_EXCEEDED""<Client IPV4 address%rtdomid>:<Client port>""<LSN pool name>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAT64: "LSN_BLOCK_QUOTA_EXCEEDED""<Client IPV6 address%rtdomid>:<Client port>""<LSN pool name>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSLITE: "LSN_BLOCK_QUOTA_EXCEEDED""<DSLITE IPV6 address%rtdomid>:<Client IPV4 address%rtdomid>:<Client port>""<LSN pool name>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>NAT44: lsn_event="LSN_BLOCK_QUOTA_EXCEEDED", cli="<Client IPV4 address%rtdomid>:<Client port>", sa_translation_pool="<LSN pool name>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAT64: lsn_event="LSN_BLOCK_QUOTA_EXCEEDED", cli="<Client IPV6 address%rtdomid>:<Client port>", sa_translation_pool="<LSN pool name>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSLITE: lsn_event="LSN_BLOCK_QUOTA_EXCEEDED", cli="<Client IPV6 address%rtdomid>:<Client port>", dslite="<DSLITE IPV6 address%rtdomid>", sa_translation_pool="<LSN pool name>"</td>
</tr>
<tr>
<td>Ports exhausted</td>
<td>HSL</td>
<td>NAT44: "LSN_PORTS_EXHAUSTED""<client_ip4_address%client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAT64: "LSN_PORTS_EXHAUSTED""<client_ip6_address%client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSLITE: "LSN_PORTS_EXHAUSTED""<dslite_ipv6_remote_ip%dslite_rtdomid>:<client_ipv4_address%client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
</tr>
<tr>
<td>Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Splunk</td>
<td>NAT44:</td>
<td>ip_protocol="<protocol>",lsn_event="LSN_PORTS_EXHAUSTED",cli="<client_ipv4_address> %<client_rtdomid>:<client_port>",sa_translation_pool="<sa_trans_pool>"</td>
</tr>
<tr>
<td></td>
<td>NAT64:</td>
<td>ip_protocol="<protocol>",lsn_event="LSN_PORTS_EXHAUSTED",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",sa_translation_pool="<sa_trans_pool>"</td>
</tr>
<tr>
<td></td>
<td>DSLITE:</td>
<td>ip_protocol="<protocol>",lsn_event="LSN_PORTS_EXHAUSTED",dslite="<dslite_ipv6_remote_ip> %<dslite_rtdomid>",cli="<client_ipv4_address> %<client_rtdomid>:<client_port>",sa_translation_pool="<sa_trans_pool>"</td>
</tr>
</tbody>
</table>

IPFIX

Table 42: NAT44 port-block allocated/released:

<table>
<thead>
<tr>
<th>Field</th>
<th>Size (Bytes)</th>
<th>IANA IPFIX ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time stamp</td>
<td>8</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>ingress VRF ID</td>
<td>4</td>
<td>234</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>egress VRF ID</td>
<td>4</td>
<td>235</td>
<td>The egress routing domain ID.</td>
</tr>
<tr>
<td>source IPv4 Address</td>
<td>4</td>
<td>8</td>
<td>Not applicable</td>
</tr>
<tr>
<td>post NAT Source IPv4 Address</td>
<td>4</td>
<td>225</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Port Range Start</td>
<td>2</td>
<td>361</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Port Range End</td>
<td>2</td>
<td>362</td>
<td>Not applicable</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>13 for allocation. 14 for released.</td>
</tr>
</tbody>
</table>

Table 43: NAT64 port-block allocated/released:

<table>
<thead>
<tr>
<th>Field</th>
<th>Size (Bytes)</th>
<th>IANA IPFIX ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time stamp</td>
<td>8</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>ingress VRF ID</td>
<td>4</td>
<td>234</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>egress VRF ID</td>
<td>4</td>
<td>235</td>
<td>The egress routing domain ID.</td>
</tr>
<tr>
<td>source IPv4 Address</td>
<td>16</td>
<td>8</td>
<td>Not applicable</td>
</tr>
<tr>
<td>post NAT Source IPv4 Address</td>
<td>4</td>
<td>225</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Field</td>
<td>Size (Bytes)</td>
<td>IANA IPFIX ID</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>PortRangeStart</td>
<td>2</td>
<td>361</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PortRangeEnd</td>
<td>2</td>
<td>362</td>
<td>Not applicable</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>13 for allocation. 14 for released.</td>
</tr>
</tbody>
</table>

Table 44: DSLITE port-block allocated/released:

<table>
<thead>
<tr>
<th>Field</th>
<th>Size (Bytes)</th>
<th>IANA IPFIX ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeStam</td>
<td>8</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>234</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>235</td>
<td>The egress routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>16</td>
<td>8</td>
<td>DSLITE remote endpoint address.</td>
</tr>
<tr>
<td>postNATSsourceIPv4Address</td>
<td>4</td>
<td>235</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PortRangeStart</td>
<td>2</td>
<td>361</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PortRangeEnd</td>
<td>2</td>
<td>362</td>
<td>Not applicable</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>13 for allocation. 14 for released.</td>
</tr>
</tbody>
</table>

Table 45: NAT44 client block limit reached OR ports exhausted:

<table>
<thead>
<tr>
<th>Field</th>
<th>Size (Bytes)</th>
<th>IANA IPFIX ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>234</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td>8</td>
<td>The egress routing domain ID.</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>Client block limit reached (15) or ports exhausted (16).</td>
</tr>
<tr>
<td>natPoolName</td>
<td>Variable</td>
<td>284</td>
<td>This IE is omitted for NetFlow v9 compatible configurations.</td>
</tr>
</tbody>
</table>

Table 46: NAT64 client block limit reached OR ports exhausted:

<table>
<thead>
<tr>
<th>Field</th>
<th>Size (Bytes)</th>
<th>IANA IPFIX ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>234</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>16</td>
<td>27</td>
<td>The egress routing domain ID.</td>
</tr>
<tr>
<td>Field</td>
<td>Size (Bytes)</td>
<td>IANA IPFIX ID</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>Client block limit reached (15) or ports exhausted (16).</td>
</tr>
<tr>
<td>natPoolName</td>
<td>Variable</td>
<td>284</td>
<td>This IE is omitted for NetFlow v9 compatible configurations.</td>
</tr>
</tbody>
</table>

Table 47: DSLITE client block limit reached OR ports exhausted:

<table>
<thead>
<tr>
<th>Field</th>
<th>Size (Bytes)</th>
<th>IANA IPFIX ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>Client block limit reached (15) or ports exhausted (16).</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>16</td>
<td>27</td>
<td>IPv6 address for remote endpoint of the DS-Lite tunnel.</td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>234</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>Variable</td>
<td>284</td>
<td>This IE is omitted for NetFlow v9 compatible configurations.</td>
</tr>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

BIG-IP version 12.0.0 log reference

This reference content describes the logging format specific to BIG-IP software version 12.0.0.

This release provides the following logging changes:
- Port-block released (added start and duration)
- Start time added to LSN_ADD messages.

Table 48: BIG-IP version 12.0.0 log reference

<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT44 session</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address> %<client_rtdomid>:<client_port>"</td>
</tr>
<tr>
<td>create</td>
<td></td>
<td>"<protocol>""<lsn_address>%<egress_rtdomid >:<lsn_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_ADD", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid >:<lsn_port>", start="<start>"</td>
</tr>
<tr>
<td>NAT44 session</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid >:<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>NAT44 session create (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address> %client_rtdomid:<client_port>""<protocol>" "<lsn_address>%egress_rtdomid:>lsn_port>""destination_address>""destination_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address>"dest_port="<destination_port>"lsn_event="LSN_ADD",cli="<client_ipv4_address> %client_rtdomid:<client_port>"nat="$client_ipv4_address> %egress_rtdomid:>lsn_port>"duration="<duration>"</td>
</tr>
<tr>
<td>NAT44 session delete (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv4_address> %client_rtdomid:<client_port>""<protocol>" "<lsn_address>%egress_rtdomid:>lsn_port>""destination_address>""destination_port>""<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address>"dest_port="<destination_port>"lsn_event="LSN_DELETE",cli="<client_ipv4_address> %client_rtdomid:<client_port>"nat="$client_ipv4_address> %egress_rtdomid:>lsn_port>"duration="<duration>"</td>
</tr>
<tr>
<td>NAT44 inbound session create</td>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<internet_client_ipv4_address> %internet_client_rtdomid:<internet_client_port>""<protocol>""<internet_client_ipv4_address> %internet_client_rtdomid:<internet_client_port>""<lsn_address>""<lsn_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address>,dest_port="<lsn_port>"lsn_event="LSN_INBOUND_ADD",cli="<internet_client_ipv4_address> %internet_client_rtdomid:<internet_client_port>"nat="$client_ipv4_address> %client_rtdomid:<client_port>"duration="<duration>"</td>
</tr>
<tr>
<td>NAT44 inbound session delete</td>
<td>HSL</td>
<td>"LSN_INBOUND_DELETE""<internet_client_ipv4_address> %internet_client_rtdomid:<internet_client_port>""<protocol>""<internet_client_ipv4_address> %internet_client_rtdomid:<internet_client_port>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address>,dest_port="<lsn_port>"lsn_event="LSN_INBOUND_DELETE",cli="<internet_client_ipv4_address> %internet_client_rtdomid:<internet_client_port>"duration="<duration>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>NAT64 session create</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> %<client_rtdomid>:<client_port>" "<protocol>""<lsn_address>" %<egress_rtdomid>:<lsn_port>""<start>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_ADD", cli="<client_ipv6_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>" %<egress_rtdomid>:<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_DELETE", start="<start>", cli="<client_ipv6_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 session create (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> "<protocol>""<lsn_address>" %<egress_rtdomid>:<lsn_port>""<destination_address>" "<destination_port>""<start>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", dest_ip="<destination_address>" dest_port="destination_port>" lsn_event="LSN_ADD", cli="<client_ipv6_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 session delete (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>" %<egress_rtdomid>:<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_DELETE", start="<start>", cli="<client_ipv6_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 inbound session create</td>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<client_ipv6_address> %<egress_rtdomid>:<client_port>""<lsn_address>""<lsn_port>""<start>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", dest_ip="<lsn_address> dest_port="<lsn_port>", lsn_event="LSN_INBOUND_ADD", cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>"</td>
<td></td>
</tr>
</tbody>
</table>

Using CGNAT Logging and Subscriber Traceability

140
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT64 inbound session delete</td>
<td>HSL</td>
<td>"LSN_INBOUND_DELETE"<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>"<protocol>"%<client_ipv6_address> %<client_rtdomid>:<client_port>"%<lsn_address><lsn_port>"<start>"<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>,lsn_event="LSN_INBOUND_DELETE",cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>",nat="<client_ipv6_address> %<client_rtdomid>:<client_port>"</td>
</tr>
<tr>
<td>DSLITE session create</td>
<td>HSL</td>
<td>"LSN_ADD"<dslite_ipv6_remote_ip> %<dslite_rtdomid><client_ipv6_address> %<client_rtdomid>:<client_port>"%<protocol>"%<lsn_address>%<egress_rtdomid>:<lsn_port>"<start>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>",lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address>%<egress_rtdomid>:<lsn_port>",dslite="<dslite_ipv6_remote_ip><dslite_rtdomid>"</td>
</tr>
<tr>
<td>DSLITE session delete</td>
<td>HSL</td>
<td>"LSN_DELETE"<dslite_ipv6_remote_ip> %<dslite_rtdomid><client_ipv6_address> %<client_rtdomid>:<client_port>"%<protocol>"%<lsn_address>%<egress_rtdomid>:<lsn_port>"<start>"<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>",lsn_event="LSN_DELETE",start="<start>",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address>%<egress_rtdomid>:<lsn_port>",dslite="<dslite_ipv6_remote_ip><dslite_rtdomid>"</td>
</tr>
</tbody>
</table>
| **DSLITE session create (with log.lsn.session.destination enabled)** | HSL | "LSN_ADD"<dslite_ipv6_remote_ip> %<dslite_rtdomid><client_ipv6_address> %<client_rtdomid>:<client_port>"%<protocol>"%<lsn_address>%<egress_rtdomid>:<lsn_port>""destination_address"
"destination_port>"<start>" |
| **Splunk** | | ip_protocol="<protocol>",dest_ip="destination_address","dest_port="<destination_port>,lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address>%<egress_rtdomid>:<lsn_port>",dslite="<dslite_ipv6_remote_ip><dslite_rtdomid>" |

BIG-IP CGNAT: Implementations

141
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSLITE session delete (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_DELETE""<dslite_ipv6_remote_ip> %<dslite_rtdomid>"<client_ipv6_address> %<client_rtdomid>:<client_port>"<protocol>"<lsn_address> %<egress_rtdomid>:<lsn_port>"<destination_address>""<destination_port>""<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<destination_address>"<destination_port>,lsn_event="LSN_DELETE",start="<start>",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>,nat="<lsn_address> %<egress_rtdomid>:<lsn_port>,dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>",duration="<duration>"</td>
</tr>
<tr>
<td>DSLITE inbound session create</td>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<dslite_ipv6_remote_ip> %<dslite_rtdomid>"<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>"<protocol>"<client_ipv6_address> %<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>,lsn_event="LSN_INBOUND_ADD",cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>nat="<client_ipv6_address> %<client_rtdomid>:<client_port>,dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>",start="<start>"</td>
</tr>
<tr>
<td>DSLITE inbound session delete</td>
<td>HSL</td>
<td>"LSN_INBOUND_DELETE""<dslite_ipv6_remote_ip> %<dslite_rtdomid>"<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>"<protocol>"<client_ipv6_address> %<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>,lsn_event="LSN_INBOUND_DELETE",cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>nat="<client_ipv6_address> %<client_rtdomid>:<client_port>,dslite="<dslite_ipv6_remote_ip%<dslite_rtdomid>"</td>
</tr>
<tr>
<td>Translation failed</td>
<td>HSL</td>
<td>"<date_time>""<bigip_mgmt_ip_address>""<bigip_hostname>""<lsn_event>""NAPT - Translation failed""<client_ipv4_address/client_ipv6_address>""<client_port>""<client_rtdomid>""<protocol>""<lsn_address>""<lsn_port>""<lsn_rtdomid>"</td>
</tr>
</tbody>
</table>
| | Splunk | hostname="<bigip_hostname>"bigip_mgmt_ip="<bigip_mgmt_ip_address>client_ip="<client_ipv4_address>"
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNAT config</td>
<td>HSL</td>
<td>"<date_time>"","<bigip_mgmt_ip_address>"","<bigip_hostname>"","<date_time>"","<bigip_port_range_min>"","<bigip_port_range_max>"","<bigip_dnat_log_version>"","<bigip_dnat_prefix_list>"","<bigip_dnat_source_list>"","<bigip_dnat_state>"","<bigip_dnat_state_change>"","<bigip_dnat_time>"","<bigip_dnat_total>"","<date_time>"","<device_port>"","<device_product>"","<device_vendor>"","<device_version>"","<errdefs_msgno>"","<errdefs_msg_name>"</td>
</tr>
</tbody>
</table>
| Splunk | | hostname="<bigip_hostname>"",bigip_mgmt_ip="<bigip_mgmt_ip_address>"",date_time="<date_time>"",device_product="CGNAT",device_vendor="F5",device_version="<bigip_softwa re_version>"",errdefs_msgno="2",errdefs_msg_name="LSDNAT Config Event",lsn_event="LSN_CFG",lsn_dnat_state="<lsn_dnat_state>"",lsn_dnat_source_list="<lsn_dnat_source_list>"",lsn_dnat_prefix_list="<lsn_dnat_prefix_list>"",lsn_dnat_port_range_min="<lsn_dnat_port_range_min>"",lsn_dnat_port_range_max="<lsn_dnat_port_range_max>"",lsn_dnat_log_version="<lsn_dnat_log_version>"",lsn_result="DNAT config change",severity="6",tmm_daglib_state="<tmm_daglib_state>"",lsn_pool_name="<lsn_pool_name>"",lsn_dnat_state="<lsn_dnat_state>"",lsn_dnat_dag_id="<lsn_dnat_dag_id>"”
<p>| | | timestamp="<timestamp>" |
| DNAT session delete (on connection end, and inbound connection end) | HSL | "LSN_CONNECTION","<start>"","<end>"","<client_ipv4_address>"%<client_rtdomid>:<client_port>""%<lsn_rtdomid>:<lsn_port>"","<destination_port>" |
| Splunk | | ip_protocol="<protocol>"",lsn_event="LSN_CONNECTION",cli="<client_ipv4_address>"%<lsn_rtdomid>:<lsn_port>"nat="<lsn_address>"%<lsn_rtdomid>:<lsn_port>"destination_port="<destination_port>"",start="<start>"",end="<end>" |</p>
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
</table>
| NAT44 client quota exceeded | HSL | "LSN_QUOTA_EXCEEDED""<client_ipv4_address>
%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>" |
| Splunk | ip_protocol=""<protocol>"", lsn_event="LSN_QUOTA_EXCEEDED",
cli=""<client_ipv4_address>
%<client_rtdomid>:<client_port>"", sa_translation_pool=""<sa_translation_pool>" |
| NAT64 client quota exceeded | HSL | "LSN_QUOTA_EXCEEDED""<client_ipv6_address>
%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>" |
| Splunk | ip_protocol=""<protocol>"", lsn_event="LSN_QUOTA_EXCEEDED",
cli=""<client_ipv6_address>
%<client_rtdomid>:<client_port>"", sa_translation_pool=""<sa_translation_pool>" |
| DSLITE client quota exceeded | HSL | "LSN_QUOTA_EXCEEDED""<dslite_ipv6_remote_ip>
%<dslite_rtdomid>""<client_ipv4_address>
%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>" |
| Splunk | ip_protocol=""<protocol>"", lsn_event="LSN_QUOTA_EXCEEDED",
dslite=""<dslite_ipv6_remote_ip>
%<dslite_rtdomid>"", cli=""<client_ipv4_address>
%<client_rtdomid>:<client_port>"", sa_translation_pool=""<sa_translation_pool>" |
| NAT44 Port-block allocated | HSL | "LSN_PB_ALLOCATED""<client_ipv4_address>
%<client_rtdomid>:<lsn_address>
%<lsn_rtdomid>:<port_range_start>-<port_range_end>" |
| Splunk | lsn_event="LSN_PB_ALLOCATED",
lsn_client=""<client_ipv4_address>
%<client_rtdomid>"",
lsn_pb=""<lsn_address>
%<lsn_rtdomid>:<port_range_start>-<port_range_end>" |
| NAT44 Port-block released | HSL | "LSN_PB_RELEASED""<client_ipv4_address>
%<client_rtdomid>:<lsn_address>
%<lsn_rtdomid>:<port_range_start>-<port_range_end>""<start>""<duration>" |
| Splunk | lsn_event="LSN_PB_RELEASED",
lsn_client=""<client_ipv4_address>
%<client_rtdomid>"",
lsn_pb=""<lsn_address>
%<lsn_rtdomid>:<port_range_start>-<port_range_end>"", start=""<start>"", duration=""<duration>" |
| NAT44 Client block limit reached | HSL | "LSN_BLOCK_QUOTA_EXCEEDED""<client_ipv4_address>
%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>" |
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_QUOTA_EXCEEDED", cli="<client_ipv4_address >%<client_rtdomid>:<client_port>", sa_translation_pool ="<sa_trans_pool>"</td>
<td></td>
</tr>
<tr>
<td>NAT44 Ports Exhausted</td>
<td>HSL</td>
<td>"LSN_PORTS_EXHAUSTED"<client_ipv4_address >%<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_PORTS_EXHAUSTED", cli="<client_ipv4_address >%<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 Port-block allocated</td>
<td>HSL</td>
<td>"LSN_PB_ALLOCATED"<client_ipv6_address >%<client_rtdomid>:<client_port>%<lsn_rtdomid>:<lsn_address>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event="LSN_PB_ALLOCATED", lsn_client="<client_ipv6_address >%<client_rtdomid>", lsn_pb="<lsn_address >%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 Port-block released</td>
<td>HSL</td>
<td>"LSN_PB_RELEASED"<client_ipv6_address >%<client_rtdomid>:<client_port>%<lsn_rtdomid>:<lsn_address>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event="LSN_PB_RELEASED", lsn_client="<client_ipv6_address >%<client_rtdomid>", lsn_pb="<lsn_address >%<lsn_rtdomid>:<port_range_start>-<port_range_end>%<lsn_address>%<lsn_rtdomid>:<lsn_address>%<start>%<duration>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 Client block limit reached</td>
<td>HSL</td>
<td>"LSN_BLOCK_QUOTA_EXCEEDED"<client_ipv6_address >%<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_QUOTA_EXCEEDED", cli="<client_ipv6_address >%<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 Ports Exhausted</td>
<td>HSL</td>
<td>"LSN_PORTS_EXHAUSTED"<client_ipv6_address >%<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_PORTS_EXHAUSTED", cli="<client_ipv6_address >%<client_rtdomid>:<client_port>""<protocol>""<sa_trans_pool>"</td>
<td></td>
</tr>
<tr>
<td>DSLITE Port-block allocated</td>
<td>HSL</td>
<td>"LSN_PB_ALLOCATED"<dslite_ipv6_remote_ip >%<lsn_rtdomid>%<lsn_address>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>lsn_event="LSN_PB_ALLOCATED", lsn_dslite_client="<dslite_ipv6_remote_ip>%<dslite_rtdomid>", lsn_pb="<lsn_address>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>DSLITE Port-block released</td>
<td>HSL</td>
<td>"LSN_PB_RELEASED""<dslite_ipv6_remote_ip>%<dslite_rtdomid>"%<lsn_address>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"<start>"<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>lsn_event="LSN_PB_RELEASED", lsn_dslite_client="<dslite_ipv6_remote_ip>%<dslite_rtdomid>", lsn_pb="<lsn_address>%<lsn_rtdomid>:<port_range_start>-<port_range_end>"<start>"<duration>"</td>
</tr>
<tr>
<td>DSLITE Client block limit reached</td>
<td>HSL</td>
<td>"LSN_BLOCK_QUOTA_EXCEEDED""<dslite_ipv6_remote_ip>%<client_ipv4_address>%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>"<lsn_event="LSN_BLOCK_QUOTA_EXCEEDED"dslite="<dslite_ipv6_remote_ip>%<dslite_rtdomid>", cli="<client_ipv4_address>%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>DSLITE Ports Exhausted</td>
<td>HSL</td>
<td>"LSN_PORTS_EXHAUSTED""<dslite_ipv6_remote_ip>%<client_ipv4_address>%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td>ip_protocol="<protocol>"<lsn_event="LSN_PORTS_EXHAUSTED"dslite="<dslite_ipv6_remote_ip>%<dslite_rtdomid>", cli="<client_ipv4_address>%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>"</td>
</tr>
</tbody>
</table>

BIG-IP version 12.0.0 log formats

This reference content describes the log format changes specific to BIG-IP® software version 12.0.0.

This release includes log messages for the following:

- Port-block released (added start and duration)
- Start time added to LSN_ADD messages and LSN_INBOUND_CREATE messages

Table 49: Log format changes

<table>
<thead>
<tr>
<th>Translation Mode</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Block Allocation (PBA) log formats</td>
<td>HSL</td>
<td>NAT44:="LSN_PB_RELEASED""<Client_IPV4_address%<rtomid>""<Translated_IPV4_address%<rtomid>:<Port_range_start>-<Port_range_end>"<start>"<duration>"</td>
</tr>
<tr>
<td>Translation Mode</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>NAT64:</td>
<td>"LSN_PB_RELEASED""<Client IPV6 address %rtdomid>""<Translated IPV4 address %rtdomid>:<Port range start>-<Port range end>""<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>DSLITE:</td>
<td>"LSN_PB_RELEASED""<DSLITE IPV6 address %rtdomid>""<Translated IPV4 address %rtdomid>:<Port range start>-<Port range end>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>NAT44:</td>
<td>lsn_event="LSN_PB_RELEASED", lsn_client="<Client IPV4 address%rtdomid>", lsn_pb="<Translated IPV4 address %rtdomid>:<Port range start>-<Port range end>""<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>DSLITE:</td>
<td>lsn_event="LSN_PB_RELEASED", lsn_dslite_client="<DSLITE IPV6 address %rtdomid>", lsn_pb="<Translated IPV4 address %rtdomid>:<Port range start>-<Port range end>""<start>""<duration>"</td>
</tr>
<tr>
<td></td>
<td>HSL:</td>
<td>"LSN_ADD""<client_ipv4_address>""<lsn_address>""<lsn_rtdomid>""<lsn_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td>HSL:</td>
<td>With destination logging (log.lsn.session.destination) enabled:</td>
</tr>
<tr>
<td></td>
<td>HSL:</td>
<td>"LSN_ADD""<client_ipv4_address>""<lsn_address>""<lsn_rtdomid>""<lsn_port>""<protocol>""<egress_rtdomid>""<destination_address>""<destination_port>""<start>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>SPLUNK:</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_ADD", cli="<client_ipv4_address>""<client_rtdomid>""<client_port>"", nat="<lsn_address>""<egress_rtdomid>""<lsn_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td>SPLUNK:</td>
<td>With destination logging (log.lsn.session.destination) enabled:</td>
</tr>
<tr>
<td></td>
<td>SPLUNK:</td>
<td>ip_protocol="<protocol>", dest_ip="<destination_address>""dest_port="<destination_port>"", lsn_event="LSN_ADD", cli="<client_ipv4_address>""<client_rtdomid>""<client_port>"", nat="<lsn_address>""<egress_rtdomid>""<lsn_port>""<start>"</td>
</tr>
<tr>
<td>Translation Mode</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>NAT 64 session create</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With destination logging (log.lsn.session.destination) enabled:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"LSN_ADD""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol">,lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>",start="<start>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With destination logging (log.lsn.session.destination) enabled:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ip_protocol="<protocol">,dest_ip="<destination_address>"dest_port="<destination_port>",lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>",start="<start>"</td>
</tr>
<tr>
<td>DSLITE session create</td>
<td>HSL</td>
<td>"LSN_ADD""<dslite_ipv6_remote_ip> %<dslite_rtdomid>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With destination logging (log.lsn.session.destination) enabled:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"LSN_ADD""<dsliteIpv6_remote_ip> %<dslite_rtdomid>""<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol">,lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>",dslite="<dslite_ipv6_remote_ip %<dslite_rtdomid>",start="<start>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With destination logging (log.lsn.session.destination) enabled:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ip_protocol="<protocol">,dest_ip="<destination_address>"dest_port="<destination_port>",lsn_event="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>""<start>"</td>
</tr>
<tr>
<td>Translation Mode</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| NAT44 Inbound session create | HSL | "LSN_INBOUND_ADD"<internet_client_ip4_address>\n%<internet_client_rtdomid>:<internet_client_port>"<protocol>"<client_ip4_address>\n%<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>"
|
| Splunk | | ip_protocol="<protocol>",dest_ip="<lsn_address>",dest_port="<lsn_port>",lsn_event="LSN_INBOUND_ADD",cli="<internet_client_ip4_address>\n%<internet_client_rtdomid>:<internet_client_port>"<protocol>"<client_ip4_address>\n%<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>"
|
| NAT64 Inbound session create | HSL | "LSN_INBOUND_ADD"<internet_client_ip4_address>\n%<internet_client_rtdomid>:<internet_client_port>"<protocol>"<client_ip6_address>\n%<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>"
|
| Splunk | | ip_protocol="<protocol>",dest_ip="<lsn_address>",dest_port="<lsn_port>",lsn_event="LSN_INBOUND_ADD",cli="<internet_client_ip4_address>\n%<internet_client_rtdomid>:<internet_client_port>"<protocol>"<client_ip6_address>\n%<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>"
|
| DSLITE Inbound session create | HSL | "LSN_INBOUND_ADD"<dslite_ip6_remote_ip>\n%<dslite_rtdomid>:<internet_client_ip4_address>\n%<internet_client_rtdomid>:<internet_client_port>"<protocol>"<client_ip6_address>\n%<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>"
|
| Splunk | | ip_protocol="<protocol>",dest_ip="<lsn_address>",dest_port="<lsn_port>",lsn_event="LSN_INBOUND_ADD",cli="<internet_client_ip4_address>\n%<internet_client_rtdomid>:<internet_client_port>"<protocol>"<client_ip6_address>\n%<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>"
|
BIG-IP version 12.1.0 log formats

This reference content describes the log format changes specific to BIG-IP® software version 12.1.0.

This release includes log messages for translation failures, specifically, when a suggested resource is unavailable for iRules, or a preserve strict source port setting applies.

Table 50: Log format changes

<table>
<thead>
<tr>
<th>Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation failed - iRules suggested port busy</td>
<td>HSL</td>
<td>"<date_time>"","<bigip_mgmt_ip_address>"","<bigip_hostname>"","<lsn_event>"","Translation failed - iRule port busy","<client_ipv4_address/client_ipv6_address>"","<client_port>"","<client_rtdomid>"","<protocol>"","<lsn_address>"","<lsn_port>"","<lsn_rtdomid>"</td>
</tr>
<tr>
<td>Translation failed - iRules suggested address busy</td>
<td>HSL</td>
<td>"<date_time>"","<bigip_mgmt_ip_address>"","<bigip_hostname>"","<lsn_event>"","Translation failed - iRule address busy","<client_ipv4_address/client_ipv6_address>"","<client_port>"","<client_rtdomid>"","<protocol>"","<lsn_address>"","<lsn_port>"","<lsn_rtdomid>"</td>
</tr>
<tr>
<td>Translation failed - Preserve strict source port busy</td>
<td>HSL</td>
<td>"<date_time>"","<bigip_mgmt_ip_address>"","<bigip_hostname>"","<lsn_event>"","Translation failed - Preserve strict source port busy","<client_ipv4_address/client_ipv6_address>"","<client_port>"","<client_rtdomid>"","<protocol>"","<lsn_address>"","<lsn_port>"","<lsn_rtdomid>"</td>
</tr>
</tbody>
</table>

BIG-IP version 12.1.1 log reference

This reference content describes the logging format specific to BIG-IP software version 12.1.1.

This release provides the following logging changes:

• Log specific translation failed messages when a suggested resource is unavailable (for iRules and source port preserve strict).

Table 51: BIG-IP version 12.1.1 log reference

<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT44 session create</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<start>"</td>
</tr>
<tr>
<td></td>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_ADD", cli="<client_ipv4_address> %<client_rtdomid>:<client_port>", nat="<lsn_address> %<egress_rtdomid>:<lsn_port>", start="<start>"</td>
</tr>
<tr>
<td>NAT44 session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv4_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address> %<egress_rtdomid>:<lsn_port>""<start>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| NAT44 session create (with log.lsn.session.destination enabled) | HSL | "LSN_ADD"%<client_ipv4_address>
%<client_rtdomid>:<client_port>""%<protocol>""%<lsn_address>
%<egress_rtdomid>:<lsn_port>""%<destination_address>""<duration>" |
| Splunk | ip_protocol="%<protocol>",dest_ip="%<destination_address>"dest_port="%<destination_port>"lsn_event="LSN_ADD",cli="%<client_ipv4_address>
%<client_rtdomid>:<client_port>",nat="%<lsn_address>
%<egress_rtdomid>:<lsn_port>""<duration>" |
| NAT44 session delete (with log.lsn.session.destination enabled) | HSL | "LSN_DELETE"%<client_ipv4_address>
%<client_rtdomid>:<client_port>""%<protocol>""%<lsn_address>
%<egress_rtdomid>:<lsn_port>""%<destination_address>""<duration>" |
| Splunk | ip_protocol="%<protocol>",dest_ip="%<destination_address>"dest_port="%<destination_port>"lsn_event="LSN_DELETE",cli="%<client_ipv4_address>
%<client_rtdomid>:<client_port>",nat="%<lsn_address>
%<egress_rtdomid>:<lsn_port>""<duration>" |
| NAT44 inbound session create | HSL | "LSN_INBOUND_ADD"%<internet_client_ipv4_address>
%<internet_client_rtdomid>:<internet_client_port>""%<protocol>""%<client_ipv4_address>
%<client_rtdomid>:<client_port>""%<lsn_address>""<lsn_port>""<start>" |
| Splunk | ip_protocol="%<protocol>",dest_ip="%<lsn_address>,dest_port="%<lsn_port>,lsn_event="LSN_INBOUND_ADD",cli="%<internet_client_ipv4_address>
%<internet_client_rtdomid>:<internet_client_port>",nat="%<client_ipv4_address>
%<client_rtdomid>:<client_port>""<start>" |
| NAT44 inbound session delete | HSL | "LSN_INBOUND_DELETE"%<internet_client_ipv4_address>
%<internet_client_rtdomid>:<internet_client_port>""%<protocol>""%<client_ipv4_address>
%<client_rtdomid>:<client_port>""%<lsn_address>""<lsn_port>""<start>""<duration>" |
| Splunk | ip_protocol="%<protocol>",dest_ip="%<lsn_address>,dest_port="%<lsn_port>,lsn_event="LSN_INBOUND_DELETE",cli="%<internet_client_ipv4_address>
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>%<internet_client_rtdomid>:<internet_client_port>";nat=""<client_ipv4_address> \n%<client_rtdomid>:<client_port>"</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> \n%<client_rtdomid>:<client_port>";"<protocol>";"<lsn_address>\n%<egress_rtdomid>:<lsn_port>";"<start>"</td>
</tr>
<tr>
<td>NAT64 session create</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Splunk</td>
</tr>
<tr>
<td>ip_protocol=""<protocol>"",lsn_event=""LSN_ADD",cli=""<client_ipv6_address> \n%<client_rtdomid>:<client_port>";nat=""<lsn_address> \n%<egress_rtdomid>:<lsn_port>";start=""<start>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%<client_rtdomid>:<client_port>"</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv6_address> \n%<client_rtdomid>:<client_port>";"<protocol>";"<lsn_address>\n%<egress_rtdomid>:<lsn_port>";"<start>";"<duration>"</td>
</tr>
<tr>
<td>NAT64 session delete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Splunk</td>
</tr>
<tr>
<td>ip_protocol=""<protocol>"",lsn_event=""LSN_DELETE",start=""<start>";cli=""<client_ipv6_address> \n%<client_rtdomid>:<client_port>";nat=""<lsn_address> \n%<egress_rtdomid>:<lsn_port>";start=""<start>";"<duration>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%<client_rtdomid>:<client_port>"</td>
<td>HSL</td>
<td>"LSN_ADD""<client_ipv6_address> \n%<client_rtdomid>:<client_port>";"<protocol>";"<lsn_address>\n%<egress_rtdomid>:<lsn_port>";"<destination_address> \n""<destination_port>";"<start>"</td>
</tr>
<tr>
<td>NAT64 session create (with log.lsn.session.destination enabled)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Splunk</td>
</tr>
<tr>
<td>ip_protocol=""<protocol>"",dest_ip=""<destination_address>\n""dest_port=""destination_port>";lsn_event=""LSN_ADD",cli=""<client_ipv6_address> \n%<client_rtdomid>:<client_port>";nat=""<lsn_address> \n%<egress_rtdomid>:<lsn_port>";start=""<start>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%<client_rtdomid>:<client_port>"</td>
<td>HSL</td>
<td>"LSN_DELETE""<client_ipv6_address> \n%<client_rtdomid>:<client_port>";"<protocol>";"<lsn_address>\n%<egress_rtdomid>:<lsn_port>";"<destination_address> \n""<destination_port>";"<start>";"<duration>"</td>
</tr>
<tr>
<td>NAT64 session delete (with log.lsn.session.destination enabled)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Splunk</td>
</tr>
<tr>
<td>ip_protocol=""<protocol>"",dest_ip=""<destination_address>\n""dest_port=""destination_port>";lsn_event=""LSN_DELETE",start=""<start>";cli=""<client_ipv6_address> \n%<client_rtdomid>:<client_port>";nat=""<lsn_address> \n%<egress_rtdomid>:<lsn_port>";duration=""<duration>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%<internet_client_rtdomid>:<internet_client_port>"</td>
<td>HSL</td>
<td>"LSN_INBOUND_ADD""<internet_client_ipv4_address> \n%<internet_client_rtdomid>:<internet_client_port>";"<protocol>";"<client_ipv6_address> \n%<client_rtdomid>:<client_port>";"<lsn_address>\n%<lsn_rtdomid>:<lsn_port>";"<start>"</td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td><code>iptypeprotocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>",lsnevent="LSN_INBOUND_ADD",cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>",nat="<client_ipv6_address> %<client_rtdomid>:<client_port>",start="<start>"</code></td>
</tr>
<tr>
<td>NAT64 inbound session delete</td>
<td>HSL</td>
<td>"LSN_INBOUND_DELETE""<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>""<protocol>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td><code>iptypeprotocol="<protocol>",dest_ip="<lsn_address>,dest_port="<lsn_port>",lsnevent="LSN_INBOUND_ADD",cli="<internet_client_ipv4_address> %<internet_client_rtdomid>:<internet_client_port>",nat="<client_ipv6_address> %<client_rtdomid>:<client_port>",start="<start>"</code></td>
</tr>
<tr>
<td>DSLITE session create</td>
<td>HSL</td>
<td>"LSN_ADD""<dslite_ipv6_remote_ip> %<dslite_rtdomid>:"<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td><code>iptypeprotocol="<protocol>",lsnevent="LSN_ADD",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>""<start>"</code></td>
</tr>
<tr>
<td>DSLITE session delete</td>
<td>HSL</td>
<td>"LSN_DELETE""<dslite_ipv6_remote_ip> %<dslite_rtdomid>:"<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<start>""<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td><code>iptypeprotocol="<protocol>",lsnevent="LSN_DELETE",cli="<client_ipv6_address> %<client_rtdomid>:<client_port>",nat="<lsn_address> %<egress_rtdomid>:<lsn_port>""<destination_address>""<destination_port>""<start>""<duration>"</code></td>
</tr>
<tr>
<td>DSLITE session create (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td>"LSN_ADD""<dslite_ipv6_remote_ip> %<dslite_rtdomid>:"<client_ipv6_address> %<client_rtdomid>:<client_port>""<protocol>""<lsn_address>""<lsn_port>""<destination_address>""<destination_port>""<start>""<duration>"`</td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td><code>iptypeprotocol="<protocol>",dest_ip="<destination_address>""dest_port="<destination_port>",lsnevent="LSN_ADD",cli="<client_ipv6_address>"</code></td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>DSLITE session delete (with log.lsn.session.destination enabled)</td>
<td>HSL</td>
<td><code>LSN_DELETE""dslite_ipv6_remote_ip"<client_rtdomid>:<client_port>"<protocol>"<lsn_address>"<lsn_port>"<destination_address>"<duration>"</code></td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td><code>ip_protocol="<protocol>",dest_ip="<destination_address>",dest_port="<destination_port>",lsn_event="LSN_DELETE",start="<start>",cli="<client_ipv6_address>"<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<destination_address>"<duration></code></td>
</tr>
<tr>
<td>DSLITE inbound session create</td>
<td>HSL</td>
<td><code>LSN_INBOUND_ADD""dslite_ipv6_remote_ip"<client_rtdomid>:<client_port>"<protocol>"<lsn_address>"<lsn_port>"<start></code></td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td><code>ip_protocol="<protocol>",dest_ip="<destination_address>,dest_port="<destination_port>",lsn_event="LSN_INBOUND_ADD",cli="<internet_client_ipv4_address>"<internet_client_rtdomid>:<internet_client_port>"<client_ipv6_address>"<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start></code></td>
</tr>
<tr>
<td>DSLITE inbound session delete</td>
<td>HSL</td>
<td><code>LSN_INBOUND_DELETE""dslite_ipv6_remote_ip"<client_rtdomid>:<client_port>"<protocol>"<lsn_address>"<lsn_port>"<start>"<duration></code></td>
</tr>
<tr>
<td>Splunk</td>
<td></td>
<td><code>ip_protocol="<protocol>",dest_ip="<destination_address>,dest_port="<destination_port>",lsn_event="LSN_INBOUND_DELETE",cli="<internet_client_ipv4_address>"<internet_client_rtdomid>:<internet_client_port>"<client_ipv6_address>"<client_rtdomid>:<client_port>"<lsn_address>"<lsn_port>"<start>"<duration></code></td>
</tr>
<tr>
<td>Translation failed</td>
<td>HSL</td>
<td><code><date_time>,"<bigip_mgmt_ip_address>,"<bigip_hostname>,"<lsn_event>,"<lsn_result>,"<client_ipv4_address/client_ipv6_address>"<client_port>"<client_rtdomid></code></td>
</tr>
<tr>
<td>Log Message</td>
<td>Type</td>
<td>Format</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>id","<protocol>","<lsn_address>","<lsn_port>"","<lsn_rtdomid>"</td>
<td>Splunk</td>
<td>hostname="<bigip_hostname>",bigip_mgmt_ip="<bigip_mgmt_ip_address>",client_ip="<client_ipv4_address/client_ipv6_address>",client_port="<client_port>",date_time="<date_time>",dest_ip="<destination_address>",dest_port="<destination_port>",device_product="CGNAT",device_vendor="F5",device_version="<bigip_software_version>",errdefs_msgno="1",errdefs_msg_name="LSN Translation Event",lsn_translated_client_ip="<lsn_address>",lsn_translated_client_port="<lsn_port>",lsn_event="LSN E RR",lsn_result="<lsn_result>",lsn_translated_route_domain="<lsn_rtdomid>",cli="<client_ipv4_address/client_ipv6_address>:<client_port>",nat="<lsn_address>:<lsn_port>",dslite="<dslite_ipv6_remote_ip>",severity="6",route_domain="<client_rtdomid>"</td>
</tr>
<tr>
<td>"<date_time>"","<bigip_mgmt_ip_address>"","<bigip_hostname>"","<lsn_dnat_log_version>"","<LSN_CFG>"","<lsn_result>"","<lsn_pool_name>"","<lsn_dnat_source_list>"","<lsn_dnat_prefix_list>"","<lsn_dnat_port_range_min>"","<lsn_dnat_port_range_max>"","<tmm_daglib_state>"","<lsn_dnat_state>"","<lsn_dnat_dag_id>"","<timestamp>"</td>
<td>HSL</td>
<td></td>
</tr>
</tbody>
</table>
| "LSN_CONNECTION","<start>","<end>"","<client_ipv4_address>
%<client_rtdomid>:<client_port>"","<protocol>","<lsn_address>"","<lsn_port>"","<destination_port>" | HSL |
| ip_protocol="<protocol>",lsn_event="LSN_CONNECTION",cli="<client_ipv4_address>
%<client_rtdomid>:<client_port>"",nat="<lsn_address>" | Splunk|
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
</table>
| %<lsn_rtdomid>:<lsn_port>,destination_port="<destination_port>",start="<start>",end="<end>" | HSL | "LSN_QUOTA_EXCEEDED""<client_ipv4_address>
%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>" |
| Splunk | | ip_protocol="<protocol>",lsn_event="LSN_QUOTA_EXCEEDED",cli="<client_ipv4_address>
%<client_rtdomid>:<client_port>""<sa_translation_pool>" |
| NAT64 client quota exceeded | HSL | "LSN_QUOTA_EXCEEDED""<client_ipv6_address>
%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>" |
| Splunk | | ip_protocol="<protocol>",lsn_event="LSN_QUOTA_EXCEEDED",cli="<client_ipv6_address>
%<client_rtdomid>:<client_port>""<sa_translation_pool>" |
| DSLITE client quota exceeded | HSL | "LSN_QUOTA_EXCEEDED""<dslite_ipv6_remote_ip>
%<client_rtdomid>:<client_ipv4_address>
%<client_rtdomid>:<client_port>""<protocol>""<sa_translation_pool>" |
| Splunk | | ip_protocol="<protocol>",lsn_event="LSN_QUOTA_EXCEEDED",dslite="<dslite_ipv6_remote_ip>
%<dslite_rtdomid>:<client_ipv4_address>
%<client_rtdomid>:<client_port>""<sa_translation_pool>" |
| NAT44 Port-block allocated | HSL | "LSN_PB_ALLOCATED""<client_ipv4_address>
%<client_rtdomid>:<lsn_address>
%<lsn_rtdomid>:<port_range_start>-<port_range_end>" |
| Splunk | | lsn_event="LSN_PB_ALLOCATED",
lsn_client="<client_ipv4_address>"%<client_rtdomid>",
lsn_pb="<lsn_address>"%<lsn_rtdomid>:<port_range_start>-<port_range_end>" |
| NAT44 Port-block released | HSL | "LSN_PB_RELEASED""<client_ipv4_address>
%<client_rtdomid>:<lsn_address>
%<lsn_rtdomid>:<port_range_start>-<port_range_end>" |
| Splunk | | lsn_event="LSN_PB_RELEASED",
lsn_client="<client_ipv4_address>"%<client_rtdomid>",
lsn_pb="<lsn_address>"%<lsn_rtdomid>:<port_range_start>-<port_range_end>" |

Using CGNAT Logging and Subscriber Traceability
<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT44 Client block limit reached</td>
<td>HSL</td>
<td>"LSN_BLOCK_QUOTA_EXCEEDED""<client_ip4_address %client_rtdomid>:<client_port>" "<protocol>" "<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol=""<protocol>"", lsn_event="LSN_BLOCK_QUOTA_EXCEEDED", cli=""<client_ip4_address %client_rtdomid>:<client_port>"" sa_translation_pool=""<sa_translation_pool>"</td>
<td></td>
</tr>
<tr>
<td>IPFIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT44 Ports Exhausted</td>
<td>HSL</td>
<td>"LSN_PORTS_EXHAUSTED""<client_ip4_address %client_rtdomid>:<client_port>" "<protocol>" "<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol=""<protocol>"", lsn_event="LSN_PORTS_EXHAUSTED", cli=""<client_ip4_address %client_rtdomid>:<client_port>"" sa_translation_pool=""<sa_translation_pool>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 Port-block allocated</td>
<td>HSL</td>
<td>"LSN_PB_ALLOCATED""<client_ipv6_address %client_rtdomid>:<client_port>" "<lsn_address %lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event=""LSN_PB_ALLOCATED", lsn_client=""<client_ipv6_address %client_rtdomid>"", lsn_pb=""<lsn_address %lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 Port-block released</td>
<td>HSL</td>
<td>"LSN_PB_RELEASED""<client_ipv6_address %client_rtdomid>:<client_port>" "<lsn_address %lsn_rtdomid>:<port_range_start>-<port_range_end>" "<start>" "<duration>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event=""LSN_PB_RELEASED", lsn_client=""<client_ipv6_address %client_rtdomid>"", lsn_pb=""<lsn_address %lsn_rtdomid>:<port_range_start>-<port_range_end>"", start=""<start>"", duration=""<duration>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 Client block limit reached</td>
<td>HSL</td>
<td>"LSN_BLOCK_QUOTA_EXCEEDED""<client_ip6_address %client_rtdomid>:<client_port>" "<protocol>" "<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol=""<protocol>"", lsn_event="LSN_BLOCK_QUOTA_EXCEEDED", cli=""<client_ip6_address %client_rtdomid>:<client_port>"" sa_translation_pool=""<sa_translation_pool>"</td>
<td></td>
</tr>
<tr>
<td>NAT64 Ports Exhausted</td>
<td>HSL</td>
<td>"LSN_PORTS_EXHAUSTED""<client_ip6_address %client_rtdomid>:<client_port>" "<protocol>" "<sa_translation_pool>"</td>
</tr>
</tbody>
</table>
BIG-IP 13.0.0 log formats

This reference content describes the log format changes specific to BIG-IP® software version 13.0.0.

This release includes the following changes:

<table>
<thead>
<tr>
<th>Log Message</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSLITE Port-block allocated</td>
<td>HSL</td>
<td>"LSN_PB_ALLOCATED""<dslite_ipv6_remote_ip> %<dslite_rtdomid>"<lsn_address> %<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_PORTS_EXHAUSTED", cli="<client_ipv6_address> %<client_rtdomid>:<client_port>", sa_translation_pool ="<sa_trans_pool>"</td>
<td></td>
</tr>
<tr>
<td>DSLITE Port-block released</td>
<td>HSL</td>
<td>"LSN_PB_RELEASED""<dslite_ipv6_remote_ip> %<dslite_rtdomid>"<lsn_address> %<lsn_rtdomid>:<port_range_start>-<port_range_end>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>lsn_event="LSN_PB_RELEASED", lsn_dslite_client="<dslite_ipv6_remote_ip> %<dslite_rtdomid>", lsn_pb="<lsn_address> %<lsn_rtdomid>:<port_range_start>-<port_range_end>", start="<start>", duration="<duration>"</td>
<td></td>
</tr>
<tr>
<td>DSLITE Client block limit reached</td>
<td>HSL</td>
<td>"LSN_BLOCK_QUOTA_EXCEEDED""<dslite_ipv6_remote_ip> %<client_ipv4_address> %<client_rtdomid>:<client_port>"<protocol>"<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_BLOCK_QUOTA_EXCEEDED", dslite="<dslite_ipv6_remote_ip> %<client_ipv4_address> %<client_rtdomid>:<client_port>"<protocol>"<sa_translation_pool>"</td>
<td></td>
</tr>
<tr>
<td>DSLITE Ports Exhausted</td>
<td>HSL</td>
<td>"LSN_PORTS_EXHAUSTED""<dslite_ipv6_remote_ip> %<client_ipv4_address> %<client_rtdomid>:<client_port>"<protocol>"<sa_translation_pool>"</td>
</tr>
<tr>
<td>Splunk</td>
<td>ip_protocol="<protocol>", lsn_event="LSN_PORTS_EXHAUSTED", dslite="<dslite_ipv6_remote_ip> %<client_ipv4_address> %<client_rtdomid>:<client_port>"<protocol>"<sa_translation_pool>"</td>
<td></td>
</tr>
</tbody>
</table>

This reference content describes the log format changes specific to BIG-IP® software version 13.0.0.

This release includes the following changes:
In IPFIX logs, added `flowStartMilliseconds` to inbound/outbound NAT44, NAT64, and DSLITE create events, as well as PBA allocated/released events.

Table 52: IPFIX NAT44 outbound Create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>observationTimeMillisecs</code></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td><code>ingressVRFID</code></td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td><code>egressVRFID</code></td>
<td>4</td>
<td>The LSN routing domain ID.</td>
</tr>
<tr>
<td><code>sourceIPv4Address</code></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><code>postNATSourceIPv4Address</code></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><code>protocolIdentifier</code></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><code>sourceTransportPort</code></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td><code>postNAPTsourceTransportPort</code></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td><code>destinationIPv4Address</code></td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td><code>destinationTransportPort</code></td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td><code>natOriginatingAddressRealm</code></td>
<td>1</td>
<td>1 (Private/internal realm – Subscriber side).</td>
</tr>
<tr>
<td><code>natEvent</code></td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td><code>flowStartMilliseconds</code></td>
<td>8</td>
<td>Start time, in ms since Epoch(1/1/1970).</td>
</tr>
</tbody>
</table>

Table 53: IPFIX inbound create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>observationTimeMillisecs</code></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td><code>ingressVRFID</code></td>
<td>4</td>
<td>The LSN routing domain ID</td>
</tr>
<tr>
<td><code>egressVRFID</code></td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td><code>sourceIPv4Address</code></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><code>protocolIdentifier</code></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><code>sourceTransportPort</code></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td><code>destinationIPv4Address</code></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><code>postNAPTsourceTransportPort</code></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td><code>destinationTransportPort</code></td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td><code>postNAPTDestinationTransportPort</code></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td><code>natOriginatingAddressRealm</code></td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
</tbody>
</table>
Table 54: NAT64 outbound create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>Start time, in ms since Epoch(1/1/1970).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMillisecond</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTsourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>4</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>Start time, in ms since Epoch(1/1/1970).</td>
</tr>
</tbody>
</table>

Table 55: NAT64 inbound create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv6Address</td>
<td>16</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Using CGNAT Logging and Subscriber Traceability
<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>Start time, in ms since Epoch(1/1/1970).</td>
</tr>
</tbody>
</table>

Table 56: DSLITE outbound create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTsourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td>IPv6 address for remote endpoint of the DS-Lite tunnel</td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>2</td>
<td>0, if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>Start time, in ms since Epoch(1/1/1970).</td>
</tr>
</tbody>
</table>

Table 57: DSLITE inbound create

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>The LSN routing domain ID</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>The client routing domain ID</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Table 58: NAT44 port-block allocated/released

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>postNATDestinationIPv6Address</td>
<td>16</td>
<td>DILITE remote endpoint IPv6 address</td>
</tr>
<tr>
<td>postNatDestinationIPv4Address</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>1</td>
<td>2 (Public/external realm – Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>1 (Create Event) or 2 (Delete Event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>Start time, in ms since Epoch(1/1/1970).</td>
</tr>
</tbody>
</table>

Table 59: NAT44 port-block allocated/released

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>IANA IPFIX ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeStamp</td>
<td>8</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>234</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>235</td>
<td>The egress routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>PortRangeStart</td>
<td>2</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>PortRangeEnd</td>
<td>2</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>13 for allocation, 14 for released</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>152</td>
<td>Start time, in ms since Epoch(1/1/1970).</td>
</tr>
<tr>
<td>Field</td>
<td>Bytes</td>
<td>IANA IPFIX ID</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>13 for allocation, 14 for released</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>152</td>
<td>Start time, in ms since Epoch(1/1/1970)</td>
</tr>
</tbody>
</table>

Table 60: DSLITE port-block allocated/released

<table>
<thead>
<tr>
<th>Field</th>
<th>Bytes</th>
<th>IANA IPFIX ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeStamp</td>
<td>8</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>4</td>
<td>234</td>
<td>The client routing domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>4</td>
<td>235</td>
<td>The egress routing domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>16</td>
<td>27</td>
<td>DSLITE remote endpoint address.</td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>4</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>PortRangeStart</td>
<td>2</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>PortRangeEnd</td>
<td>2</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>natEvent</td>
<td>1</td>
<td>230</td>
<td>13 for allocation, 14 for released</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>152</td>
<td>Start time, in ms since Epoch(1/1/1970)</td>
</tr>
</tbody>
</table>
Deploying Stateless Network Address Translation

Overview: 6rd configuration on BIG-IP systems

The 6rd (rapid deployment) feature is a solution to the IPv6 address transition. It provides a stateless protocol mechanism for tunneling IPv6 traffic from the IPv6 Internet over a service provider's (SP's) IPv4 network to the customer's IPv6 networks. As specified in RFC5969, 6rd uses an SP's own IPv6 address prefix rather than the well-known IPv6 in IPv4 prefix (2002::/16), which means that the operational domain of 6rd is limited to the SP network, and is under the SP's control.

Fully compliant with RFC5969, the BIG-IP® system supports the border relay (BR) functionality by automatically mapping the tunnel's IPv4 address at the customer premises to IPv6 address spaces using the 6rd domain configuration information. Using a BIG-IP system, an SP can deploy a single 6rd domain or multiple 6rd domains. When supporting multiple 6rd domains, a separate tunnel is required to accommodate each 6rd domain, which is specified in the associated 6rd tunnel profile.

When you deploy 6rd using a BIG-IP system as the BR device, you need to create 6rd tunnels using wildcard remote addresses. This implementation documents the configuration of a BIG-IP device as a BR device.

![Figure 14: Example of a 6rd configuration](image)

This table shows examples of 6rd parameter values, based on the illustration. You set these values in the v6rd profile you create.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Prefix</td>
<td>10</td>
</tr>
<tr>
<td>IPv4 Prefix Length</td>
<td>8</td>
</tr>
</tbody>
</table>
Task summary

Before you configure a 6rd network, ensure that you have licensed and provisioned CGNAT on the BIG-IP system. Also, the BIG-IP system must have an IPv6 address and an IPv6 default gateway.

Task list

- **Using a profile to define a 6rd domain**
- **Configuring a BIG-IP system as a border relay (BR) device**
- **Creating a forwarding virtual server for a tunnel**
- **Assigning a self IP address to an IP tunnel endpoint**
- **Routing traffic through a 6rd tunnel interface**

Using a profile to define a 6rd domain

You must create a new v6rd profile to specify the parameters for a 6rd tunnel. The system-supplied v6rd profile, v6rd, provides the defaults, but does not suffice as a 6rd profile, as configured. For example, the required 6rd prefix is not specified.

1. On the Main tab, click **Network > Tunnels > Profiles > v6rd > Create**. The New 6RD Profile screen opens.
2. In the **Name** field, type a unique name for the profile.
3. Select the **Custom** check box.
4. For the **IPv4 Prefix** setting, type the IPv4 prefix that is assumed to be the customer edge (CE) device's IPv4 address, which is not included in the customer's IPv6 6rd prefix. A value of 0.0.0.0 indicates that all 32 bits of the CE's IPv4 address are to be extracted from its 6rd IPv6 prefix.

 Note: If you do not provide an IPv4 prefix, the system derives it from the tunnel local address you specify when creating the tunnel.

5. For the **IPv4 Prefix Length** setting, type the number of identical high-order bits shared by all CE and BR IPv4 addresses in the 6rd domain you are configuring.
6. For the **6rd Prefix** setting, type the IPv6 prefix for the 6rd domain you are configuring.
7. For the **6rd Prefix Length** setting, type the length of the IPv6 prefix for the 6rd domain you are configuring.
8. Click **Finished**.

To apply this profile to traffic, you must associate it with a tunnel.

Configuring a BIG-IP system as a border relay (BR) device

Before creating a 6rd tunnel on a BIG-IP system, you must have configured a v6rd tunnel profile. You can create a 6rd tunnel on a BIG-IP system to carry IPv6 traffic over an IPv4 network, allowing your users to seamlessly access the IPv6 Internet.

1. On the Main tab, click **Network > Tunnels > Tunnel List > Create or Carrier Grade NAT > Tunnels > Create**.

2. In the **Name** field, type a unique name for the tunnel.
3. From the **Profile** list, select **v6rd**.
4. In the **Local Address** field, type the IPv4 address of the BIG-IP device you are configuring.
5. For the **Remote Address** list, retain the default selection, **Any**.
6. Click **Finished**.

After you create the 6rd tunnel at the BR, you must configure your network routing to send remote traffic through the tunnel.

Creating a forwarding virtual server for a tunnel

You can create a forwarding virtual server to intercept IP traffic and direct it to a tunnel.

1. On the Main tab, click **Local Traffic > Virtual Servers**.
 The Virtual Server List screen opens.
2. Click the **Create** button.
 The New Virtual Server screen opens.
3. In the **Name** field, type a unique name for the virtual server.
4. From the **Type** list, select **Forwarding (IP)**.
5. In the **Destination Address** field, type **::/0** to accept any IPv6 traffic.
6. In the **Service Port** field, type * or select * All Ports from the list.
7. From the **Protocol** list, select * All Protocols.
8. Click **Finished**.

Now that you have created a virtual server to intercept the IP traffic, you need to create a route to direct this traffic to the tunnel interface.

Assigning a self IP address to an IP tunnel endpoint

Ensure that you have created an IP tunnel before starting this task.

Self IP addresses can enable the BIG-IP® system, and other devices on the network, to route application traffic through the associated tunnel, similar to routing through VLANs and VLAN groups.

Note: If the other side of the tunnel needs to be reachable, make sure the self IP addresses that you assign to both sides of the tunnel are in the same subnet.

1. On the Main tab, click **Network > Self IPs**.
2. Click **Create**.
 The New Self IP screen opens.
3. In the **Name** field, type a unique name for the self IP address.
4. In the **IP Address** field, type the IP address of the tunnel.
 The system accepts IPv4 and IPv6 addresses.

 Note: This is not the same as the IP address of the tunnel local endpoint.

5. In the **Netmask** field, type the network mask for the specified IP address.
 For example, you can type 255.255.255.0.
6. From the **VLAN/Tunnel** list, select the tunnel with which to associate this self IP address.
7. Click **Finished**.
 The screen refreshes, and displays the new self IP address.
Assigning a self IP to a tunnel ensures that the tunnel appears as a resource for routing traffic.
To direct traffic through the tunnel, add a route for which you specify the tunnel as the resource.

Routing traffic through a 6rd tunnel interface
Before starting this task, ensure that you have created a 6rd tunnel, and have assigned a self IP address to the tunnel.
You can route traffic through a tunnel interface, much like you use a VLAN or VLAN group.
1. On the Main tab, click **Network > Routes**.
2. Click **Add**.
The New Route screen opens.
3. In the **Name** field, type a unique user name.
 This name can be any combination of alphanumeric characters, including an IP address.
4. In the **Destination** field, type the 6rd IPv6 network address.
5. In the **Netmask** field, type the network mask for the destination IP address.
6. From the **Resource** list, select **Use VLAN/Tunnel**.
7. From the **VLAN/Tunnel** list, select the name of the v6rd tunnel you created.
8. Click **Finished**.
The system now routes traffic destined for the IP address you specified through the tunnel you selected.

Overview: MAP configuration on BIG-IP systems
Mapping of Address and Port (MAP) is an IPv4 to IPv6 transition technology. The BIG-IP® system plays the role of the border relay (BR) in a MAP deployment. At the time of this writing, the implementation of MAP on the BIG-IP system complies with the IETF Standards Track draft Mapping of Address and Port with Encapsulation (MAP) draft-ietf-software-map-10.

Note: You must configure the customer edge (CE) functionality of the MAP solution on the CE device, not on the BIG-IP system.

This illustration shows the position of a BIG-IP system in a MAP configuration. As the BR device, the BIG-IP system decapsulates the encapsulated IPv6 traffic and forwards it to the public IPv4 Internet.

Figure 15: Example of a MAP configuration
About Mapping of Address and Port (MAP)

MAP is a deterministic algorithm that uses MAP-domain configuration information to map between IPv4 and IPv6 addresses to transport IPv4 traffic over the IPv6 infrastructure. MAP is nearly stateless, and it does not require the border relay (BR) device to perform NAT on the traffic. Instead, the translation of private to public IPv4 addresses is delegated to the customer edge (CE) devices, such as customer-premises equipment (CPEs). Mapping of Address and Port (MAP) uses a port mapping algorithm to provide IPv4 connectivity over an IPv6 network. The MAP implementation has two variants, which share the same architecture.

- MAP-E (Encapsulated), which uses the IPv4-in-IPv6 tunneling approach, is on the IETF standards track, and is now referred to as simply MAP.
- MAP-T (Translated), which uses the IPv4-from/to-IPv6 address translation approach, is on the IETF experimental track. MAP-T is not supported on the BIG-IP system in this release.

Both MAP and MAP-T assume that the service provider internal network has already been migrated to IPv6, but the CE is still running dual stack. IPv6 subscribers behind the CE can use regular addressing methods to reach the public IPv6 Internet. MAP focuses on how the CEs should forward IPv4 subscriber traffic to and from the Internet.

About Mapping of Address and Port with Translation (MAP-T)

In a MAP-T deployment, the customer edge (CE) device implements a combination of stateful NAPT44 translation and stateless MAP translation, using a source IPv4 address and port number to forward IPv4 traffic across the upstream IPv6 network. The border relay (BR) is responsible for connecting one or more MAP domains to external IPv4 networks. It converts the inbound IPv6 packet from the CEs back to NAT'd IPv4, using the corresponding MAP configurations.

About Mapping of Address and Port with Encapsulation (MAP)

In a MAP (formerly MAP-E) deployment, the customer edge (CE) device implements a combination of NAPT44 followed by IPv4-in-IPv6 encapsulation. The source IPv6 address of the encapsulating header is derived from the source IPv4 address and port number, according to MAP configurations. At the border relay (BR), the IPv6 traffic is decapsulated to recover the NAT'd IPv4 packet, which the system then forwards to the Internet.

The MAP CE devices and BRs form a MAP domain. The MAP domain is defined by the algorithms and parameters for mapping IPv4 address and port numbers to a subscriber. All CE nodes within the same MAP domain must use the same subnet ID, as configured in the ip4-prefix attribute of the BR configuration, to correctly synthesize the MAP IPv6 address.

MAP relies on port sharing, which means that it supports only ICMP and port-based transport protocols. This excludes PPTP (which uses GRE) and any transports other than TCP, UDP, or ICMP. Because the port sharing ratio and IPv6 prefix are mathematically interdependent, you must correctly size your IPv6 network to ensure that your implementation of MAP accommodates enough subscribers.

The BR handles traffic between itself and a given MAP domain, which means that it has at least one IPv4 interface and one IPv6 interface. Its job is to aggregate the MAP tunnels. Within the MAP Domain, IPv4 traffic follows IPv6 routing, and the BR is reachable using IPv6 anycast addressing for load balancing and resiliency.

The port set ID (PSID) algorithmically represents different groups of non-overlapping, contiguous L4 ports that a CE device can use for port translation, allowing different CE devices to share the same source IPv4 address. As an anti-spoofing measure, the PSID is embedded within the IPv6 address for validation at the BR.
A MAP Domain encapsulates and decapsulates IPv4 traffic using a Basic Mapping Rule (BMR) specified in the MAP draft. The objective of a BMR is to provision a source IPv6 address that generates sets of source IPv4 translation endpoints. The embedded address (EA) bits serve to uniquely identify these endpoints.

- The BMR enables the CE to provision multiple sets of IPv4 ports (NAT pools) for subscribers to use.
- The BMR allows the CE to construct the associated upstream source MAP IPv6 address;
- The BMR must be applied consistently to all CEs and BRs within a given MAP domain.

Due to the deterministic mapping of IPv4 address and port numbers to subscribers, MAP may originate tunnels heading toward subscribers given the IPv4 flow information.

Task summary

Before you configure the BIG-IP® system as a BR device for a MAP domain, ensure that you have licensed and provisioned CGNAT on the BIG-IP system. Also, the BIG-IP system must have an IPv6 self IP address, an IPv6 default gateway, and an IPv4 self IP address on the side of the BIG-IP system that faces the Internet.

Make sure that the CE devices are configured for MAP. For instructions on configuring a CE device, consult the manufacturer's documentation.

Task list

Using a profile to define a MAP domain

Configuring a tunnel for Mapping Address and Port

Creating a forwarding virtual server for IPv4 traffic

Creating a forwarding virtual server for IPv6 traffic

Assigning a self IP address to a MAP tunnel endpoint

Viewing MAP tunnel statistics

Using a profile to define a MAP domain

You must create a new MAP profile to specify the parameters for a MAP tunnel, by customizing the system-supplied MAP profile, map.

1. On the Main tab, click **Network > Tunnels > Profiles > MAP > Create**. The New MAP Profile screen opens.
2. In the **Name** field, type a unique name for the profile.
3. From the **Parent Profile** list, select **map**.
4. Select the **Custom** check box.
5. For the **IPv6 Prefix** setting, type the IPv6 prefix of the MAP domain.
6. For the **IPv4 Prefix** setting, type the IPv4 prefix of the MAP domain.
7. For the **Embedded Address Bits Length** setting, type the length, in bits, of the Embedded Address (EA) of the MAP domain.
8. For the **Port Offset** setting, type the length, in bits, of the port offset of the MAP domain.
 - This value must be less than 16.
9. Click **Finished**.

The MAP profile you created now appears in the **Encapsulation Type** list on the New Tunnel and Tunnel Properties screens.
Configuring a tunnel for Mapping Address and Port

Before creating a MAP tunnel on a BIG-IP® system, you must have configured a MAP tunnel profile.

You create a MAP tunnel on a BIG-IP® system to carry IPv4 traffic over an IPv6 network, allowing users to seamlessly access the IPv4 Internet.

1. On the Main tab, click Network > Tunnels > Tunnel List > Create, or Carrier Grade NAT > Tunnels > Create.
2. In the Name field, type a unique name for the tunnel.
3. From the Profile list, select the MAP profile you created previously.
4. In the Local Address field, type the IPv6 address of the local BIG-IP device.
5. For the Remote Address list, retain the default selection, Any.
6. Click Finished.

After you create a MAP tunnel, you must create two virtual servers to forward IPv4 and IPv6 traffic.

Creating a forwarding virtual server for IPv4 traffic

After you configure a MAP tunnel to transport IPv4 traffic over an IPv6 network, you need to create a virtual server to intercept the IPv4 traffic and forward the packets to their destinations.

1. On the Main tab, click Local Traffic > Virtual Servers.
 The Virtual Server List screen opens.
2. Click the Create button.
 The New Virtual Server screen opens.
3. In the Name field, type a unique name for the virtual server.
4. From the Type list, select Forwarding (IP).
5. In the Destination Address field, type 0.0.0.0 to accept any IPv4 traffic.
6. Click Finished.

Creating a forwarding virtual server for IPv6 traffic

After you configure a MAP tunnel to transport IPv4 and IPv6 traffic over an IPv6 network, you need to create a virtual server to intercept the IPv6 traffic and forward the packets to their destinations.

1. On the Main tab, click Local Traffic > Virtual Servers.
 The Virtual Server List screen opens.
2. Click the Create button.
 The New Virtual Server screen opens.
3. In the Name field, type a unique name for the virtual server.
4. From the Type list, select Forwarding (IP).
5. In the Destination Address field, type ::/0 to accept any IPv6 traffic.
6. Click Finished.

Assigning a self IP address to a MAP tunnel endpoint

Before starting this task, ensure that you have created a MAP tunnel.

Self IP addresses can enable the BIG-IP® system, and other devices on the network, to route application traffic through the associated tunnel, similar to routing through VLANs and VLAN groups. If you specify a public IPv4 address in the same range as the CE devices, the system automatically creates a connected
route on the BIG-IP platform, which can be used to route back IPv4 traffic to this MAP domain. The alternative is to add a static route manually.

1. On the Main tab, click **Network > Self IPs**.
2. Click **Create**.
 The New Self IP screen opens.
3. In the **Name** field, type a unique name for the self IP address.
4. In the **IP Address** field, type the IPv4 address of the tunnel, which is an IP address that belongs to the network of the CE devices.

 Note: This is **not the same as the IP address of the tunnel local endpoint**.

5. In the **Netmask** field, type the network mask for the specified IP address.
6. From the **VLAN/Tunnel** list, select the tunnel with which to associate this self IP address.
7. Click **Finished**.
 The screen refreshes, and displays the new self IP address.

Assigning a self IP address to a tunnel ensures that the tunnel appears as a resource for routing traffic. This screen snippet shows a sample list of the self IP addresses required on the BIG-IP system for a MAP configuration, including the self IP address of the tunnel.

![Network >> Self IPs](image)

Figure 16: Self IP addresses required for a MAP configuration

- The **External** self IP address is an IPv4 address on the side of the BIG-IP system that faces the Internet.
- The **Internal** self IP address is an IPv6 address on the BIG-IP system, which is configured as a BR device.
- The **Tunnel** self IP address is the one you just created in this task.

Viewing MAP tunnel statistics

Using the **tmsh** command-line interface, you can view statistics to help you diagnose issues with MAP tunnels.

1. Access the **tmsh** command-line utility.
2. Type this command at the prompt.
tmsh show net tunnels map profile

This example shows the statistics displayed for the MAP tunnel using the profile `map-profile`.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy-Mismatched Packets</td>
<td>0</td>
</tr>
<tr>
<td>Misdirected Packets</td>
<td>4</td>
</tr>
<tr>
<td>Address Sharing Ratio</td>
<td>256</td>
</tr>
<tr>
<td>Ports per User</td>
<td>256</td>
</tr>
</tbody>
</table>

- Spoof Packets: The number of IPv4 packets that fail MAP self-consistency checks.
- Misdirected Packets: The number of IPv4 packets sent to the wrong MAP domain or wrong protocol number.
- Address Sharing Ratio: The number of users sharing one IP address.
- Ports per user: The number of ports each user behind the CE can use.

Overview: Lightweight 4over6 Configuration on BIG-IP systems

Lightweight 4over6 (lw4o6) functionality is an IPv4 to IPv6 transition technology that provides IPv4 service over an IPv6-only network. A lw4o6 configuration refines DS-Lite functionality to reduce the network address and port translation (NAPT44) states in a service provider's network. In a lw4o6 configuration, lwB4 customer edge (CE) devices, provisioned with a public IP address and a port set, perform NAPT, as well as encapsulation and decapsulation. The implementation of lw4o6 on the BIG-IP® system complies with RFC 7596.

Note: You must configure the CE functionality of the lw4o6 solution on the CE device, not on the BIG-IP system.

A lw4o6 configuration includes the following components:

- lwB4. Provides NAPT, as well as encapsulation and decapsulation of IPv4 and IPv6. Each lwB4 must be provisioned with a public IPv4 address and port set, restricting the external ports used by NAPT to source packets.
- lwAFTR. Encapsulates and decapsulates IPv4 and IPv6. It also forwards incoming packets to the applicable lwB4, and forwards outgoing packets to the IPv4 network.
- Provisioning. Configures the lwB4 with the public IPv4 address and port set.

This illustration shows the position of a BIG-IP system in a lw4o6 configuration. The BIG-IP system decapsulates the encapsulated IPv6 traffic and forwards it to the public IPv4 Internet. The reverse sequence is performed for response traffic.

Illustration of a lw4o6 deployment

In this example, a service provider transports encapsulated IPv4 traffic over its IPv6 network.
An example lw4o6 table

This topic includes an example of a lw4o6 binding table.

An example lw4o6 table.

```
# text_csv
# psid_len 1
#
# IPv4                  IPv6 prefix         PSID
10.100.10.211,      2015:a000:0000:0000,     0,
10.100.10.211,      2015:a000:0000:0000,     1,
10.100.10.212,      2015:a000:0000:0001,     0,
10.100.10.212,      2015:a000:0000:0001,     1,
10.100.10.213,      2015:a000:0000:0002,     0,
10.100.10.213,      2015:a000:0000:0002,     1,
10.100.10.215,      2015:a000:0000:0003,     0,
10.100.10.215,      2015:a000:0000:0003,     1,
#end file
```

Task summary

Before you configure the BIG-IP® system for a lw4o6 domain, ensure that you have licensed CGNAT on the BIG-IP system. Optionally, the BIG-IP system can provide an IPv6 self IP address, an IPv6 default gateway, and an IPv4 self IP address on the side of the BIG-IP system that faces the Internet.

Make sure that the CE devices are configured for lw4o6. For instructions on configuring a CE device, consult the manufacturer's documentation.
Task list

Importing an lw4o6 table
Using a profile to define a lw4o6 domain
Configuring a tunnel for lw4o6
Creating a forwarding virtual server for IPv4 traffic
Assigning a self IP address to an lw4o6 tunnel endpoint
Viewing lw4o6 tunnel statistics

Importing an lw4o6 table

Using the BIG-IP® Configuration utility, you can import an lw4o6 file from another system to use when creating an lw4o6 profile.

1. On the Main tab, click System > File Management > lw4o6 Tables > Import.
2. Browse for the file and click Open.
 - The name of the file you select appears in the File Name setting.
3. In the Name field, type a new name for the file, such as lwtunneltbl.
4. Click the Import button.
 - The new name appears in the list of imported files.

After importing an lw4o6 file onto the system, you must create an lw4o6 profile, specifying the lw4o6 file that you imported.

Using a profile to define a lw4o6 domain

You must create a new lw4o6 profile to specify the parameters for a lw4o6 tunnel. You do this by customizing the system-supplied lw4o6 profile, lw4o6.

1. On the Main tab, click Network > Tunnels > Profiles > lw4o6 > Create, or click Carrier Grade NAT > Tunnel Profiles > lw4o6 > Create.
 - The New lw4o6 Profile screen opens.
2. In the Name field, type a unique name for the profile.
3. From the lw4o6 Table list, select a table.
4. In the PSID Length field, type a value for the port set identifier.
 - Note: Specifying this value for the port set identifier allows only TCP, UDP, or ICMP traffic to pass through the lw4o6 tunnel. You can, however, specify a value of 0 and select the Pass All Protocols check box to allow all IP sub-protocols to pass through.
5. To pass through all IP sub-protocols, select the Pass All Protocols check box, and ensure that the PSID Length value is 0.
 - Note: If you specify a PSID Length value other than 0, the Pass All Protocols check box is cleared to allow only TCP, UDP, or ICMP traffic to pass through the lw4o6 tunnel.
6. Click Finished.
 - The lw4o6 profile you created now appears in the Profiles list on the New Tunnel screens.

Configuring a tunnel for lw4o6

Before creating an lw4o6 tunnel on a BIG-IP® system, you must have configured an lw4o6 tunnel profile.

You create an lw4o6 tunnel on a BIG-IP® system to carry IPv4 traffic over an IPv6 network, allowing users to seamlessly access the IPv4 Internet.
1. On the Main tab, click **Network > Tunnels > Tunnel List > Create or Carrier Grade NAT > Tunnels > Create**.

2. In the **Name** field, type a unique name for the tunnel.

3. From the **Profile** list, select **lw4o6** or the lw4o6 profile you created previously.

4. In the **Local Address** field, type the IPv6 address of the local BIG-IP device.

5. For the **Remote Address** list, retain the default selection, **Any**.

6. Click **Finished**.

 After you create an lw4o6 tunnel, you must create a virtual server to forward IPv4 traffic.

Creating a forwarding virtual server for IPv4 traffic

After you configure an lw4o6 tunnel to transport IPv4 traffic over an IPv6 network, you need to create a virtual server to intercept the IPv4 traffic and forward the packets to their destinations.

1. On the Main tab, click **Carrier Grade NAT > Virtual Servers**.

 The Virtual Server List screen opens.

2. Click the **Create** button.

 The New Virtual Server screen opens.

3. In the **Name** field, type a unique name for the virtual server.

4. From the **Type** list, select **Forwarding (IP)**.

5. In the **Destination Address** field, type **0.0.0.0** to accept any IPv4 traffic.

6. Click **Finished**.

Assigning a self IP address to an lw4o6 tunnel endpoint

Before starting this task, ensure that you have created an lw4o6 tunnel.

Self IP addresses can enable the BIG-IP® system, and other devices on the network, to route application traffic through the associated tunnel, similar to routing through VLANs and VLAN groups. If you specify a public IPv4 address in the same range as the CE devices, the system automatically creates a connected route on the BIG-IP platform, which can be used to route IPv4 traffic back to this lw4o6 domain. The alternative is to add a static route manually.

1. On the Main tab, click **Network > Self IPs**.

2. Click **Create**.

 The New Self IP screen opens.

3. In the **Name** field, type a unique name for the self IP address.

4. In the **IP Address** field, type the IPv4 address of the tunnel, which is an IP address that belongs to the network of the CE devices.

 Note: This is not the same as the **IP address of the tunnel local endpoint**.

5. In the **Netmask** field, type the network mask for the specified IP address.

6. From the **VLAN/Tunnel** list, select the tunnel with which to associate this self IP address.

7. Click **Finished**.

 The screen refreshes, and displays the new self IP address.

Assigning a self IP address to a tunnel ensures that the tunnel appears as a resource for routing traffic.

- The **External** self IP address is an IPv4 address on the side of the BIG-IP system that faces the Internet.
- The **Internal** self IP address is an IPv6 address on the BIG-IP system.
• The Tunnel self IP address is the one you just created in this task.

Viewing lw4o6 tunnel statistics

Using the `tmsh` command-line interface, you can view statistics to help you diagnose issues with lw4o6 tunnels.

1. Access the `tmsh` command-line utility.
2. Type this command at the prompt.
   ```bash
   tmsh show net tunnels lw4o6 lw4o6_profile
   ```

The screen displays lw4o6 tunnel statistics for the specified lw4o6 profile.
IPFIX Templates for CGNAT Events

Overview: IPFIX logging templates

The IP Flow Information Export (IPFIX) Protocol is a logging mechanism for IP events. This appendix defines the IPFIX information elements (IEs) and templates used to log the F5 CGNAT events. An IE is the smallest form of useful information in an IPFIX log message, such as an IP address or a timestamp for the event. An IPFIX template is an ordered collection of specific IEs used to record one IP event, such as the establishment of an inbound NAT64 session.

IPFIX information elements for CGNAT events

Information elements (IEs) are individual fields in an IPFIX template. An IPFIX template describes a single CGNAT event. These tables list all the IEs used in F5 CGNAT events, and differentiate IEs defined by IANA from IEs defined by F5 products.

IANA-Defined IPFIX information elements

Information Elements

IANA maintains a list of standard IPFIX information elements (IEs), each with a unique element identifier, at http://www.iana.org/assignments/ipfix/ipfix.xml. The F5 CGNAT implementation uses a subset of these IEs to publish CGNAT events. This subset is summarized in the table below. Please refer to the IANA site for the official description of each field.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>161</td>
<td>4</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
</tr>
<tr>
<td>natPoolName</td>
<td>284</td>
<td>Variable</td>
</tr>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
</tr>
<tr>
<td>portRangeEnd</td>
<td>362</td>
<td>2</td>
</tr>
<tr>
<td>portRangeStart</td>
<td>361</td>
<td>2</td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>228</td>
<td>2</td>
</tr>
<tr>
<td>postNAPTSourceTransportPort</td>
<td>227</td>
<td>2</td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>226</td>
<td>4</td>
</tr>
</tbody>
</table>
IPFIX Templates for CGNAT Events

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>postNATDestinationIPv6Address</td>
<td>282</td>
<td>16</td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: IPFIX, unlike NetFlow v9, supports variable-length IEs, where the length is encoded within the field in the Data Record. NetFlow v9 collectors (and their variants) cannot correctly process variable-length IEs, so they are omitted from logs sent to those collector types.

IPFIX enterprise information elements

Description
IPFIX provides specifications for enterprises to define their own Information Elements. F5 currently does not use any non-standard IEs for CGNAT Events.

Individual IPFIX templates for each event

These tables specify the IPFIX templates used by F5 to publish CGNAT Events.

Each template contains a natEvent information element (IE). This element is currently defined by IANA to contain values of 1 (Create Event), 2 (Delete Event) and 3 (Pool Exhausted). In the future, it is possible that IANA will standardize additional values to distinguish between NAT44 and NAT64 events, and to allow for additional types of NAT events. For example, the https://datatracker.ietf.org/doc/draft-ietf-behave-ipfix-nat-logging Internet Draft proposes additional values for this IE for such events.

F5 uses the standard Create and Delete natEvent values in its IPFIX Data Records, rather than new (non-standard) specific values for NAT44 Create, NAT64 Create, and so on.

You can infer the semantics of each template (for example, whether or not the template applies to NAT44 Create, NAT64 Create, or DS-Lite Create) from the template's contents rather than from distinct values in the natEvent IE.

F5 CGNAT might generate different variants of NAT Session Create/Delete events, to cater to customer requirements such as the need to publish destination address information, or to specifically omit such information. Each variant has a distinct template.

The “Pool Exhausted” natEvent value is insufficiently descriptive to cover the possible NAT failure cases. Therefore, pending future updates to the natEvent Information Element, F5 uses some non-standard values to cover the following cases:

- 10 – Translation Failure
- 11 – Session Quota Exceeded
- 12 – Port Quota Exceeded
- 13 - Port Block Allocated
- 14 - Port Block Released
- 15 - Port Block Allocation (PBA) Client Block Limit Exceeded
- 16 - PBA Port Quota Exceeded
The following tables enumerate and define the IPFIX templates, and include the possible \textit{natEvent} values for each template.

NAT44 session create – outbound variant

Description

This event is generated when a NAT44 client session is received from the subscriber side, and the LSN process successfully translates the source address/port.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTSourceTransportPort</td>
<td>227</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>1 (private/internal realm, subscriber side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>1 (for Create event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
</tbody>
</table>

NAT44 session delete – outbound variant

Description

This event is generated when a NAT44 client session is received from the subscriber side and the LSN process finishes the session.

By default, the BIG-IP® system does not record "delete session" events like this one. This default exists to improve performance, but it prevents the system from ever sending IPFIX logs matching this template.

To enable "delete session" events and IPFIX logs matching this template, use the following \texttt{tmsh} command:

\begin{verbatim}
modify sys db log.lsn.session.end value enable
\end{verbatim}

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>Information Element (IE)</td>
<td>ID</td>
<td>Size (Bytes)</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTSourceTransportPort</td>
<td>227</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>1 (private/ internal realm, subscriber side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>2 (for Delete event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>161</td>
<td>4</td>
<td>Duration in ms.</td>
</tr>
</tbody>
</table>

NAT44 session create – inbound variant

Description

This event is generated when an inbound NAT44 client session is received from the internet side and connects to a client on the subscriber side.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>226</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>228</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>2 (public/ external realm, Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>1 (for Create event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
</tbody>
</table>
NAT44 session delete – inbound variant

Description
This event is generated when an inbound NAT44 client session is received from the internet side and connects to a client on the subscriber side. This event is the deletion of the inbound connection.

By default, the BIG-IP® system does not record "delete session" events like this one. This default exists to improve performance, but it prevents the system from ever sending IPFIX logs matching this template. To enable "delete session" events and IPFIX logs matching this template, use the following tmsh command:

```
modify sys db log.lsn.session.end value enable
```

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>226</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>228</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>2 (public/external realm, Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>2 (for Delete event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>161</td>
<td>4</td>
<td>Duration in ms.</td>
</tr>
</tbody>
</table>

NAT44 translation failed

Description
This event reports a NAT44 Translation Failure. The failure does not necessarily mean that all addresses or ports in the translation pool are already in use; the implementation may not be able to find a valid translation within the allowed time constraints or number of lookup attempts, as may happen if the pool has become highly fragmented.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
</tbody>
</table>
IPFIX Templates for CGNAT Events

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>10 for Transmission Failed.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>284</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9.</td>
</tr>
</tbody>
</table>

NAT44 quota exceeded

Description

This event is generated when an administratively configured policy prevents a successful NAT44 translation.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td>11 for Session Quota Exceeded, 12 for Port Quota Exceeded, 15 for PBA client block limit Exceeded, 16 for PBA Port Quota Exceeded.</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>11 for Session Quota Exceeded, 12 for Port Quota Exceeded, 15 for PBA client block limit Exceeded, 16 for PBA Port Quota Exceeded.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>284</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9.</td>
</tr>
</tbody>
</table>

NAT44 port block allocated or released

Description

This event is generated when the BIG-IP software allocates or releases a block of ports for a NAT44 client. The event only occurs when port-block allocation (PBA) is configured for the LSN pool. When an LSN pool uses PBA, it only issues an IPFIX log for every block of CGNAT translations. This reduces IPFIX traffic for CGNAT.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The egress routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>portRangeStart</td>
<td>361</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Information Element (IE)</td>
<td>ID</td>
<td>Size (Bytes)</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>portRangeEnd</td>
<td>362</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>13 for PBA, block Allocated, 14 for PBA, block released.</td>
</tr>
</tbody>
</table>

NAT64 session create – outbound variant

Description

This event is generated when a NAT64 client session is received from the subscriber side and the LSN process successfully translates the source address/port.

Note: The `destinationIPv6Address` is not reported, since the `postNATdestinationIPv4Address` value is derived algorithmically from the IPv6 representation in `destinationIPv6Address`, as specified in [RFC 6146](https://www.rfc-editor.org/rfc/rfc6146) and [RFC 6502](https://www.rfc-editor.org/rfc/rfc6502).

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTSourceTransportPort</td>
<td>227</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>226</td>
<td>4</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>1 (private/internal realm, subscriber side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>1 (for Create event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
</tbody>
</table>

NAT64 session delete – outbound variant

Description

This event is generated when a NAT64 client session is received from the subscriber side and the LSN process finishes the outbound session.

By default, the BIG-IP® system does not record "delete session" events like this one. This default exists to improve performance, but it prevents the system from ever sending IPFIX logs matching this template. To enable "delete session" events and IPFIX logs matching this template, use the following `tmsh` command:

```bash
BIG-IP CGNAT: Implementations
```
modify sys db log.lsn.session.end value enable

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTSourceTransportPort</td>
<td>227</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>226</td>
<td>4</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>1 (private/internal realm, subscriber side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>2 (for Delete event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>161</td>
<td>4</td>
<td>Duration in ms.</td>
</tr>
</tbody>
</table>

NAT64 session create – inbound variant

Description
This event is generated when a client session comes in from the internet side and successfully connects to a NAT64 client on the subscriber side.

Note: postNATSourceIPv6Address is not reported since this value can be derived algorithmically by appending the well-known NAT64 prefix 64:ff9b:: to sourceIPv4Address.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv6Address</td>
<td>282</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
NAT64 session delete – inbound variant

Description

This event is generated when a client session comes in from the internet side and successfully connects to a NAT64 client on the subscriber side. This event is the deletion of the inbound connection.

Note: `postNATSourceIPv6Address` is not reported since this value can be derived algorithmically from by appending the well-known NAT64 prefix 64:ff9b:: to `sourceIPv4Address`.

By default, the BIG-IP® system does not record "delete session" events like this one. This default exists to improve performance, but it prevents the system from ever sending IPFIX logs matching this template. To enable "delete session" events and IPFIX logs matching this template, use the following `tmsh` command:

```
m Perry modify sys db log.lsn.session.end value enable
```
IPFIX Templates for CGNAT Events

NAT64 translation failed

Description
This event reports a NAT64 Translation Failure. The failure does not necessarily mean that all addresses or ports in the translation pool are already in use; the implementation may not be able to find a valid translation within the allowed time constraints or number of lookup attempts, as may happen if the pool has become highly fragmented.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>10 for Transmission Failed.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>284</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9.</td>
</tr>
</tbody>
</table>

NAT64 quota exceeded

Description
This event is generated when an administratively configured policy prevents a successful NAT64 translation.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>11 for Session Quota Exceeded, 12 for Port Quota Exceeded, 15 for PBA client block limit Exceeded, 16 for PBA Port Quota Exceeded.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>284</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9.</td>
</tr>
</tbody>
</table>

NAT64 port block allocated or released

Description
This event is generated when the BIG-IP software allocates or releases a block of ports for a NAT64 client. The event only occurs when port-block allocation (PBA) is configured for the LSN pool. When an
LSN pool uses PBA, it only issues an IPFIX log for every block of CGNAT translations. This reduces IPFIX traffic for CGNAT.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>portRangeStart</td>
<td>361</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>portRangeEnd</td>
<td>362</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>13 for PBA, block Allocated, 14 for PBA, block released.</td>
</tr>
</tbody>
</table>

DS-Lite session create – outbound variant

Description

This event is generated when a DS-Lite client session is received on the subscriber side and the LSN process successfully translates the source address/port. The client's DS-Lite IPv6 remote endpoint address is reported using IE lsnDsLiteRemoteV6asSource.

Note: The sourceIPv6Address stores different information in this template from the equivalent NAT64 template. In the NAT64 create and delete templates, sourceIPv6Address holds the client's IPv6 address. In this DS-Lite template, it holds the remote endpoint address of the DS-Lite tunnel.

Note: The VRFID (or routing domain ID) for the DS-Lite tunnel is not currently provided; this attribute might be added in the future.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTSrcTransportPort</td>
<td>227</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
<td>DS-Lite remote endpoint IPv6 address.</td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td>0 (zero) if obscured.</td>
</tr>
</tbody>
</table>
DS-Lite session delete – outbound variant

Description

This event is generated when a DS-Lite client session is received from the subscriber side and the LSN process finishes with the outbound session.

Note: The `sourceIPv6Address` stores different information in this template from the equivalent NAT64 template. In the NAT64 create and delete templates, `sourceIPv6Address` holds the client's IPv6 address. In this DS-Lite template, it holds the remote endpoint address of the DS-Lite tunnel.

Note: The VRFID (or routing domain ID) for the DS-Lite tunnel is not currently provided; this attribute may be added in the future.

By default, the BIG-IP® system does not record "delete session" events like this one. This default exists to improve performance, but it prevents the system from ever sending IPFIX logs matching this template. To enable "delete session" events and IPFIX logs matching this template, use the following `tmsh` command:

```
modify sys db log.lsn.session.end value enable
```

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>1 (private/internal realm, subscriber side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>1 (for Create event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATSourceIPv4Address</td>
<td>225</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTSourceTransportPort</td>
<td>227</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
<td>DS-Lite remote endpoint IPv6 address.</td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td>0 (zero) if obscured.</td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>1 (private/internal realm, subscriber side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>2 (for Delete event).</td>
</tr>
</tbody>
</table>
DS-Lite session create – inbound variant

Description

This event is generated when an inbound client session comes in from the internet side and connects to a DS-Lite client on the subscriber side.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>161</td>
<td>4</td>
<td>Duration in ms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv6Address</td>
<td>282</td>
<td>16</td>
<td>DS-Lite remote endpoint IPv6 address.</td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>226</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>228</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>2 (public/external realm, Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>1 (for Create event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
</tbody>
</table>

DS-Lite session delete – inbound variant

Description

This event is generated when an inbound client session comes in from the internet side and connects to a DS-Lite client on the subscriber side. This event marks the end of the inbound connection, when the connection is deleted.

By default, the BIG-IP® system does not record "delete session" events like this one. This default exists to improve performance, but it prevents the system from ever sending IPFIX logs matching this template. To enable "delete session" events and IPFIX logs matching this template, use the following `tmsh` command:

```
modify sys db log.lsn.session.end value enable
```
DS-Lite translation failed

Description

This event reports a DS-Lite Translation Failure. The failure does not necessarily mean that all addresses or ports in the translation pool are already in use; the implementation may not be able to find a valid translation within the allowed time constraints or number of lookup attempts, as may happen if the pool has become highly fragmented.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "LSN" routing-domain ID.</td>
</tr>
<tr>
<td>egressVRFID</td>
<td>235</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv4Address</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>protocolIdentifier</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sourceTransportPort</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>destinationIPv4Address</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv6Address</td>
<td>282</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>postNATDestinationIPv4Address</td>
<td>226</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>destinationTransportPort</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>postNAPTDestinationTransportPort</td>
<td>228</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>natOriginatingAddressRealm</td>
<td>229</td>
<td>1</td>
<td>2 (public/external realm, Internet side).</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>2 (for Delete event).</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>152</td>
<td>8</td>
<td>Start time, in ms since Epoch (1/1/1970).</td>
</tr>
<tr>
<td>flowDurationMilliseconds</td>
<td>161</td>
<td>4</td>
<td>Duration in ms.</td>
</tr>
</tbody>
</table>

IPFIX Templates for CGNAT Events

192
DS-Lite quota exceeded

Description

This event is generated when an administratively configured policy prevents a successful NAT translation in a DS-Lite context.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>10 for Transmission Failed.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>284</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9.</td>
</tr>
</tbody>
</table>

DS-Lite port block allocated or released

Description

This event is generated when the BIG-IP software allocates or releases a block of ports for a DS-Lite client. This event only occurs when port-block allocation (PBA) is configured for the LSN pool. When an LSN pool uses PBA, it issues an IPFIX log for every block of CGNAT translations rather than each individual translation. This reduces IPFIX traffic for CGNAT.

<table>
<thead>
<tr>
<th>Information Element (IE)</th>
<th>ID</th>
<th>Size (Bytes)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>observationTimeMilliseconds</td>
<td>323</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ingressVRFID</td>
<td>234</td>
<td>4</td>
<td>The "client" routing-domain ID.</td>
</tr>
<tr>
<td>sourceIPv6Address</td>
<td>27</td>
<td>16</td>
<td>DS-Lite remote endpoint IPv6 address.</td>
</tr>
<tr>
<td>natEvent</td>
<td>230</td>
<td>1</td>
<td>11 for Session Quota Exceeded, 12 for Port Quota Exceeded, 15 for PBA client block limit Exceeded, 16 for PBA Port Quota Exceeded.</td>
</tr>
<tr>
<td>natPoolName</td>
<td>284</td>
<td>Variable</td>
<td>This IE is omitted for NetFlow v9.</td>
</tr>
</tbody>
</table>
Viewing CGNAT Statistics

Overview: Viewing CGNAT statistics

You can display current and historical carrier-grade network address translation (CGNAT) statistics in graphical charts on the BIG-IP® system. Several charts are available, and they show the following information:

- Translation endpoints for all active LSN pools
- Logging attempts and failures
- Port block allocation (PBA) translations
- Port Control Protocol (PCP) requests

The CGNAT statistics provide information that is useful for capacity planning, resource distribution planning, and for investigating potential network problems.

You can view the historical statistics for different periods of time. On systems with multiple slots, you can view the statistics for each slot. You can also export the information in any of the reports to PDF or comma-separated value (CSV) format, and save the reports or email them.

Viewing CGNAT statistics

Before you can view the carrier-grade network address translation (CGNAT) statistics described here, you need to enable CGNAT and provision the Application Visibility and Reporting (AVR) module.

You can view CGNAT statistics on the BIG-IP® system to help with system planning and troubleshooting.

1. On the Main tab, click **Statistics > Analytics > LSN Pools.**
 - The CGNAT translations chart opens showing active translations in a combined view showing statistics for all active LSN pools.
2. From the **Time Period** list, select the length of time for which to display statistics.
3. To focus in on the specific details you want more information about, point on the chart or click an item in the Details list to view the statistics for that pool.
 - For example, if you see that translation failures have occurred on one of the LSN pools, you can click on that pool in the Details list to display information about the pool.
4. You can filter the CGNAT information to display only certain information, such as:
 - Active translations
 - Translation requests
 - Translation failures
 - Translation from backup pool
5. Click the other items on the menu bar to see additional CGNAT statistics.
 - To see logging attempts and failures for LSN pools, click **Logging.**
 - To see active port blocks, port block allocations, blocks freed, ports where the client reached their limit, and zombie blocks that cannot be released due to active connections, click **PBA** and use the filters.
 - To see the number of Port Control Protocol (PCP) requests, click **PCP.**
6. If you want to export the information in any of the charts, click **Export** and specify your options for how and where to send the data.
 - To send reports by email, the system requires an SMTP configuration.
Viewing CGNAT Statistics

The statistics provide information about translation endpoints for active LSN pools, logging patterns, port block details, and PCP requests. As a result, you can become more familiar with the system network, and use the information for resource distribution planning and investigating networking problems.

Sample CGNAT translation statistics

This figure presents a sample CGNAT translation statistics report showing the active translations for several LSN pools during the past week, and it includes the total number of active translations.

![Sample CGNAT translation statistics](image)

Figure 18: Sample CGNAT translation statistics

Sample CGNAT logging statistics

This figure presents a sample CGNAT logging statistics report showing the logging attempts for several LSN pools during the past hour.
Sample CGNAT port block allocation statistics

This figure presents a sample CGNAT PBA statistics report showing the active port blocks for two LSN pools during the past hour.
Figure 20: Sample CGNAT PBA statistics
Legal Notices

Publication Date
This document was published on August 29, 2018.

Publication Number
MAN-0428-06

Copyright
Copyright © 2018, F5 Networks, Inc. All rights reserved.

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5 assumes no responsibility for the use of this information, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, copyright, or other intellectual property right of F5 except as specifically described by applicable user licenses. F5 reserves the right to change specifications at any time without notice.

Trademarks
For a current list of F5 trademarks and service marks, see http://www.f5.com/about/guidelines-policies/trademarks.

All other product and company names herein may be trademarks of their respective owners.

Patents
This product may be protected by one or more patents indicated at: https://f5.com/about-us/policies/patents.

Export Regulation Notice
This product may include cryptographic software. Under the Export Administration Act, the United States government may consider it a criminal offense to export this product from the United States.

RF Interference Warning
This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

FCC Compliance
This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This unit generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.
Any modifications to this device, unless expressly approved by the manufacturer, can void the user's authority to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance

This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance

This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to Information Technology products at the time of manufacture.
Index

6rd
 about 165
 configuring 166
 creating tunnels for 166
6rd profiles
 creating 166

A
 AFTR device, See DS-Lite
 ALG, See ALG profile configuring
 ALG profile
 FTP 45
 RTSP 63
 ALG profiles
 and protocols supported 10
 configuring 12, 17, 21
 application layer gateway, See ALG profile
 authentication algorithms
 negotiating 73

B
 B4 device
 and DS-Lite 23
 border relay (BR)
 configuring for 6rd 166
 configuring for MAP 171
 BR, See border relay (BR)

C
 carrier-grade network address translation (CGNAT), See CGNAT
 carrier-grade network address translation (CGNAT) persistence, See CGNAT
 CGN, See CGNAT
 CGNAT
 about 9
 about hairpinning 19, 24
 and deterministic NAT mapping 42
 and deterministic pools 38, 60, 76, 80
 carrier-grade network address translation (CGNAT)
 persistence 10
 configuring iRule for 12, 17, 21, 48, 65
 creating NAT64 virtual server for LSN pool 16, 30
 creating tunnels 13
 creating virtual server for LSN pool 12, 20, 37, 39
 IPv4 prefixes 11
 IPv6 prefixes 11
 CGNAT FTP to transfer files
 overview 45
 CGNAT high-speed logging
 configuring 91
 overview 89, 90
 CGNAT IPFIX logging
 configuring 95
 CGNAT IPFIX logging (continued)
 overview 95
 CGNAT log formats
 overview 99
 CGNAT logging statistics
 sample chart 196
 CGNAT NAPT logging
 overview 27
 CGNAT PBA logging
 about PBA translation mode 31
 overview 31
 CGNAT PBA route domains
 about configuring 32
 CGNAT PBA statistics
 sample chart 197
 CGNAT pools, See LSN pools
 CGNAT PPTP used for VPN tunnel
 overview 67
 CGNAT RTSP to stream media
 overview 63
 CGNAT SIP MRF ALG profile
 overview 56
 CGNAT statistics
 displaying in Analytics charts 195
 overview viewing in Analytics 195
 viewing in Analytics charts 195
 CGNAT translation statistics
 sample chart 197
 CGNAT tunnels
 creating 13
 collectors
 for IPFIX 96
 destinations
 for IPFIX logging 96
 for logging 93
 for logging locally 89
 for remote high-speed logging 92
 deterministic address translation mode
 about 37
 deterministic assignment of translation addresses 9
 deterministic NAT
 and mapping lookup, See DNAT utility
 See also CGNAT
 DNAT, See deterministic address translation mode
 DNAT utility
 commands 40
 downloading 41
 overview 40
 dnatutil
 commands 40
 DS-Lite
 about 23
 and AFTR devices 25
 creating AFTR endpoint 23, 25
 creating tunnels for 25
IPFIX template (continued)
creating virtual server for 25
IPFIX template
create inbound session 191
delete (finish) inbound session 191
delete (finish) outbound session 190
quota-exceeded event 193
translation failure 192
verifying traffic 26
DS-Lite session create
and IPFIX template 189
and outbound session 189

E
encryption algorithms
negotiating 73
encryption contents 74, 79

F
file transfer protocol profile, See FTP profile
forwarding virtual servers
creating for IPv4 traffic 171, 176
creating for IPv6 traffic 171
creating for tunnels 167
FTP
and ALG profile 10
FTP ALG, See ALG profile FTP
FTP ALG logging profile
creating 49, 53, 87
FTP ALG profile with FTPS enabled
about 50, 85
defined 50, 85
FTP profile
creating 47, 51, 86
FTP used to transfer files
overview 50, 85
FTP used to transfer files
overview 45
FTPS
enabling 51, 86

H
hairpinning
and NAT64 exception 19, 24
high-speed logging
and CGNAT 89–91
and LSN pools 90
and server pools 92

I
IKE (Internet Key Exchange)
defined 73
IKE peers
for data exchange 73
Internet Key Exchange, See IKE (Internet Key Exchange)
IP header encryption 74, 79
IP tunneling (continued)
and 6rd 165
and DS-Lite 23
and lw4o6 173
and MAP 168
IPFIX
and server pools 96
template
create inbound DS-Lite session 191
delete (finish) inbound DS-Lite session 191
delete (finish) inbound NAT44 session 183
delete (finish) inbound NAT64 session 187
delete (finish) outbound DS-Lite session 190
delete (finish) outbound NAT44 session 181
delete (finish) outbound NAT64 session 185
DS-Lite quota-exceeded event 193
DS-Lite translation failure 192
NAT44 PBA 184
NAT44 quota-exceeded event 184
NAT44 translation failure 183
NAT64 PBA 188, 193
NAT64 quota-exceeded event 188
NAT64 translation failure 188
template overview 179
IPFIX collectors
and destinations for log messages 96
and publishers for log messages 97
IPFIX logging
and CGNAT 95
and CGNAT, overview 95
creating a destination 96
IPFIX template
and inbound NAT44 session 182
and inbound NAT64 session 186
and outbound DS-Lite session 189
and outbound NAT44 session 181
and outbound NAT64 session 185
IPSec ALG
configuring for source address translation 72
IPSec ALG logging profile
creating 74, 79
IPSec ALG virtual server
creating 77, 82
IPSec ALG with manual keys
configuring for AFM with NAT 78
IPSec Tunnel mode, See Tunnel mode
IPSecALG profile
about 74
defined 74
IPv4
and transition to IPv6 23, 165, 168, 173
IPv4 over IPv6
using MAP 168, 169
using MAP-T 169
IPv4 prefixes, See CGNAT
IPv6 over IPv4
using 6rd 165
IPv6 prefixes, See CGNAT
iRules
and CGNAT 12, 17, 21, 48, 65
ISAKMP-SA security association 73
L

Large Scale NAT, See LSN pools
large-scale network address translation (LSNAT), See CGNAT
Lightweight 4over6, See lw4o6
log formats
 field descriptions 99
 version 11.3.0 changes 102
 version 11.4.0 changes 102
 version 11.5.0 100, 104
 version 11.5.0 changes 110
 version 11.6.0 125
 version 11.6.0 changes 133
 version 12.0.0 138
 version 12.1.0 changes 146, 150
 version 12.1.1 150
 version 13.0.0 changes 158
log publisher
 configuring FTP ALG profiles 49
 configuring IPsecALG profiles 82
 configuring LSN pools 95, 98
 configuring RTSP ALG profiles 67
 creating 74, 79
 creating IPsecALG profiles 77
logging
 and destinations 92, 93, 96
 and formatted destinations 89
 and LSN pools 90
 and pools 92, 96
 and publishers 90, 93, 97
 and the local Syslog database 89
logging profile
 configuring FTP ALG profiles 49
 configuring IPsecALG profiles 82
 configuring LSN pools 95, 98
 configuring RTSP ALG profiles 67
 creating IPsecALG profiles 77
LSN
 IANA IPFIX IEs for 179, 180
LSN logging profile
 creating 94, 98
LSN pool
 configuring 95, 98
LSN pools
 creating 11, 20, 47, 50, 54, 64, 70, 75, 80, 85
 creating a NAT64 16
 creating deterministic 38, 60, 76, 80
 creating for PBA 35, 60, 76, 81
 displaying statistics 95
 NAPT 29, 59, 75, 80
lw4o6
 about 173
 creating lwAFTR endpoint 173
lw4o6 (Lightweight 4 over 6)
 creating tunnels for 175
 viewing tunnel statistics for 177
lw4o6 (Lightweight 4over6)
 configuring 174
lw4o6 domain
 defining 175
lw4o6 profiles
 (continued)
 creating 175
 importing lw4o6 table for 175
 reporting 177
lw4o6 table
 example 174
 importing 175
lwAFTR device, See lw4o6
lwB4 device
 and lw4o6 173

M

MAP (Mapping of Address and Port)
 about 168, 169
 configuring 170
 creating tunnels for 171
 viewing tunnel statistics for 172
MAP domain
 defining 170
MAP profiles
 creating 170
 reporting 172
MAP-T
 about 169
MRF ALG profile
 SIP overview 56

N

NAPT 11, 20, 47, 50, 54, 64, 70, 85
napt log example 27, 28
NAPT logging
 overview 27
NAT44
 about 19
 and network diagram 19
 IPFIX template
 delete (finish) inbound session 183
 delete (finish) outbound session 181
 PBA 184
 quota-exceeded event 184
 translation failure 183
NAT44 session create
 and inbound session 182
 and IPFIX template 181, 182
 outbound session 181
NAT64
 about 15
 and network diagram 15
 creating LSN pool 16
 example 15
 IPFIX template
 delete (finish) inbound session 187
 delete (finish) outbound session 185
 PBA 188, 193
 quota-exceeded event 188
 translation failure 188
NAT64 session create
 and inbound session 186
 and IPFIX template 185, 186
 and outbound session 185
negotiation
 of security associations 73

P

packet encryption 74, 79
payload encryption 74, 79
PBA log
 examples 33
PBA logging
 about PBA translation mode 31
 overview 31
PBA mode
 about configuring 32
 displaying statistics 195
 for address translation 31
 overview 31
PCP client address translation
 overview 43
PCP profile
 adding to LSN pool 43
 creating 43
Phase 1 negotiation
 defined 73
Phase 2 negotiation
 defined 73
point-to-point tunneling protocol profile, See PPTP profile pools
 creating LSN 90
 for high-speed logging 92
 for IPFIX 96
port block allocation (PBA)
 sample statistics 197
Port Block Allocation logging, See PBA logging
port block allocation of translation addresses 9
PPTP
 and ALG profile 10
 creating virtual server for LSN pool 72
PPTP profile
 about 68
 creating 70
 defined 68
 log example 69
PPTP Profile
 log example 33
PPTP used for VPN tunnel
 overview 67
private NAT, See CGNAT profiles
 about PPTP 68
 about TFTP 54
 configuring FTP ALG 49
 configuring IPsecALG 82
 configuring RTSP ALG 67
 creating for 6rd tunnel 166
 creating for lw4o6 tunnel 175
 creating for MAP tunnel 170
 creating IPsecALG 77
 creating SIP session for firewall 57
 IPsecALG 74
publishers
 and logging 97
publishers (continued)
 for local Syslog logging 90
 publishers, and logging 93

R

real time streaming protocol profile, See RTSP profile
remote servers
 and destinations for log messages 92, 93
 and publishers for log messages 93
 for high-speed logging 92
reserved endpoints
 viewing 62
routes
 and tunnels 168
RTSP
 and ALG profile 10
RTSP ALG logging profile
 creating 66
RTSP profile
 creating 65
RTSP used to stream media
 overview 63

S

secure VPN tunnel
 overview creating with PPTP 67
security associations
 negotiating 73
self IP addresses
 and DS-Lite tunnels 25
 creating for IP tunnels 167
 creating for lw4o6 tunnels 176
 creating for MAP tunnels 171
servers
 and destinations for log messages 92, 93, 96
 and publishers for IPFIX logs 97
 and publishers for log messages 93
 for high-speed logging 92
SIP
 and ALG profile 10
SIP ALG
 LSN modes supported 59
SIP MRF ALG profile
 overview 56
SIP router profile
 about 57
 defined 57
SIP routing profile
 creating for firewall 58
SIP session profile
 about 57
 creating for firewall 57
 defined 57
SIP virtual server
 creating 61
static route
 adding for GRE traffic 71
streaming media
 overview using with RTSP 63
T

template, See IPFIX
TFTP ALG logging profile
 creating 55
TFTP profile
 about 54
 creating 54
 defined 54
TFTP used to transfer files
 overview 53
transferring files
 overview using with FTP 45, 50, 85
 overview using with TFTP 53
trivial file transfer protocol profile, See TFTP profile
Tunnel mode
 defined 74, 79
tunnel statistics
 viewing for lw4o6 177
tunnels
 adding routes for 168
 and 6rd 165
 and DS-Lite 23
 and lw4o6 173
 and MAP 168
 and self IP addresses 25, 167, 171, 176
 configuring for 6rd 166
 configuring for DS-Lite 25
 configuring for lw4o6 175
 configuring for MAP 171
 creating 6rd profile for 166
 creating lw4o6 profile for 175
 creating MAP profile for 170
 for CGNAT, See CGNAT tunnels
 verifying DS-Lite traffic 26

V

v6rd, See 6rd
v6rd profiles, See 6rd profiles
virtual server
 creating for CGNAT 12, 16, 20, 30, 37, 39
 creating for PPTP 72
 creating for transferring files using an FTP profile. 48, 52, 86
 creating for transferring files using an RTSP profile. 65
 creating for transferring files using an TFTP profile. 55
virtual servers
 creating for DS-Lite 25
 See also forwarding virtual servers
 See also forwarding virtual servers
VLANs
 creating for deterministic NAT 29, 36, 38
 creating for PBA NAT 29, 36, 38
VPN tunnel
 overview creating with PPTP 67

W

wildcard virtual servers
 creating 52, 87