BIG-IP® Service Provider: SIP
Administration

Version 13.0







Table of Contents

Table of Contents

Introduction to SIP Message Routing FrameworK.. ... 5
Introduction to SIP Message Routing Framework............cccovvvivieeeiii e, 5

Y O A= T =S PEREP 7
SIP OVEIVIBW. ...ttt et e e e e e e et e et e et e e e e e e s e e e a bbb bb e e e e aaaaeeeeeannsnbbeneeeas 7

(0= T o= 1] |11 15T T PR RTT TR 7

(@] o 1= =11 ] 111, o Yo [= =SSR 9
OPEIALION MOUES.....cooiiitiiie ettt e e s e bt e e e s et e e e e anbbee e e e e nees 9

LOAA BAlANCING. ...ttt 9

ALG without SNAT (No Address Translation)...........ccceeeeviiieeeiiniieie e 24
Disaggregation (DAG) MOGES.......coooiiiiiiiiieie ettt e e e e e e e e e e s e anabbeeeees 31
Disaggregation (DAG) MOUES........ccceii ittt e e e e e e e e s e s st areeeaeaeeeaanan 31

How to configureé DAG MOUES........cccoiiiiiiiiiiieeiee e e e e e e e ee e 31

D= = 1U ] T PRSPPI 31
Source/Destination DAG (SP-DAG)........ccccciiiiiiiieiee et 32

Round RobIiN DAG (RR-DAG).....ccccoiiiiiiiiieeie ettt r et e e e e e s aeaee s 32
DEPIOYMENT USE CASES....ciiiiiiiiiie ittt ettt e st e e ettt e e e st bt e e e s aab b e e e s sbbe e e e e s snbbeeeeeaae 35
[D]=T 0] (o) Y70 0 1=T o) fl U A=Y TN @5 1T = L P 35

Basic Load BalanCing (LB).......ccccuuuiiiiiiiiiee e e et e e e e e 35

Load Balancing With PEerSiStENCE. ...........uuuiiiiiiee et 36

SIP ALG without Address TranSIatioN............ceeeiiiiiiee i 38

High Availability (HA) FAIIOVET..........cooiiiiii e 43
High Availability (HA) FAIlOVET.........cooo it 43

(@Y= Vo PRI 43
Configuration GUIAEIINE. ..........uuiiiiiiiie e e e 43

IRUIE SUPPOIT. ...ttt e st e e e s sttt e e e e rabb e e e e e eneeee 47
TRUIE SUPPOIT. ..ttt ettt et e e et e e e sk b e e e e s abb e e e e s anbe e e e e e abbneeeeaaas 47
OVBIVIBW. ...ttt ettt e e e e e e e e ettt e et e e aeaeeeeaaannnbbsseeeeaaaaeeeaeaannnne 47

MRF iRule Events and COMMAaNAS..........ccuuuiiiiiiiiiaaaeeeeieiie et 47

SIP iRule Events and COMMEANGUS......ccoiiiaiiiiiiiiieiiee e ee e e e e e e e e 52

QL0 8 | o] 1=7=3 g To o | 1 T R 57
JLLCe 101 o1 =2 g loTo] 11T P PP P PPPPPI 57

LOG MESSAGES. ....eeeeieii ettt 57

SIPAD TOOL. ...t e et e e e e 60

MREF DEDUGGING. ... utteeteeiititie ettt et e st st ae e e e e enneeas 63

Debugging RequeSt ROULING.........uueiiiiiiiiiieiiiiie et 65

O J PSSP 69



Table of Contents

A O PR STRSRRI 69
Advanced-ProtoCols LICENSE.........ccuiiiiiiiiiiiiee e 69
Bi-DireCtional PerSISIENCE. ........uiiiiiiiiieee e e e 69
Connection AUtO-INItIAIZALION. ..........eiiiiiiiie e 71
IRUIES ON All IrANSPOITS. ... .eeeieeeiiiii ettt 71
Sharing iRule variables between conNections.............cooviiieiiiie 72
The effect of message pipelining on iRule variables............cccocciiiinie 72
SNAT settings of the outgoing transSport USEd...........ccueveeiiiiiiiiiiniiiiee e 73
CONNECHION REUSE......oiiiiiiie ettt st e e e s sabaeeee e 73
LB OPErating MOUE. ......cooiiiiiiiie ittt e e 74
ALG without SNAT (No Address Translation)...........cceeeeeiiiieee e, 75
Routing using a virtual with SNAT none may select a source port of zero............ 75
SIP ENUM Resolution Capability using iRUIE............ccooiiiiiiiiiiiieiiece e 76

LEGAI NOTICES. ...ttt e e e e e e e ettt et e e e e e e e e s s bbbt e aeeeeeaaaeeesaaannns 77

[T T U 1] (= PEERURR 77



Introduction to SIP Message Routing Framework

Introduction to SIP Message Routing Framework

A BIG-IP" system provides advanced Message Routing Framework (MRF) capabilities. The BIG-IP SIP
solution is based on MRF framework. This guide is designed to introduce the reader to BIG-IP MRF and
SIP concepts. Finally, various SIP use cases will be documented to help the reader with their deployment
needs.



Introduction to SIP Message Routing Framework



SIP Overview

SIP Overview

A BIG-IP” system's message routing framework (MRF) SIP solution provides high scalability,
availability, and reliability to SIP Proxies, Session Border Controllers, Media Servers and many other SIP
devices. The BIG-IP LTM can distribute and balance SIP and RTP traffic among multiple SIP devices, to
help maintain availability, under high call volumes. Additionally, the F5 solution can perform advanced
health checks on the SIP devices, routing SIP clients away from unstable or unreliable devices and
providing increased reliability to existing SIP solutions.

Capabilities

This section provides a concise summary of the BIG-IP® MRF SIP solution.

Load Balancing

* Route SIP control messages, without modifying SIP headers.
* The following headers can be configured to be automatically modified.

* VIA Header inserted

* Record Router Header inserted

* Decrementing max forwards
* Any header attribute can be modified via iRule.
* Natively route messages based on:

*  From URI

*+ ToURI

* Request URI

+ Originating Virtual Server
* Route messages via iRule on any attribute of the message.
* Response routing natively using data added to the inserted VIA Header.
* Response routing available via iRule:

* Add private header to request
* Insertion of VIA Header to request via iRule
* Route to upstream device using received VIA Header
+ Remember data from request processing
+ Bi-directional persistence support.

* Persistence key selection via configuration or custom key via iRule
+ Connection Re-Use Support
* High Availability (HA)

+ Connection mirroring
* Persistence table replication

ALG without SNAT (No Address Translation)

* Snoop control messages flowing through to manage media flows.
¢ iRule can be used to rewrite headers.
* Create media records in session db.



SIP Overview

+ Create deny listeners to drop media packets received before the callee responds with its media details.
* Create media flows to forward packets between caller and callee.
* High Availability (HA)

+ Call table replication (supports failback)
+ Control connection mirroring (can be recreated on failback by endpoint)
* Media flow mirroring

SRTP Compliance (RFC 3711)
We do not support SRTP in ALG without SNAT mode.



Operation Modes

Operation Modes

Load Balancing

Configuration Objects
Virtual Server

A virtual server is a traffic-management object on the BIG-IP” system that is represented by an IP
address and a service. Clients on an external network can send application traffic to a virtual server,
which then directs the traffic according to your configuration instructions.

The virtual server configuration contains a destination address and mask which specifies what IP
addresses and port the virtual server will listen for incoming packets. The virtual server object also
contains a source address allowing it to limit packets to those packets that originate from a range of
devices.

The behavior of a virtual server is determined by the set of profiles attached to the virtual server. To
configure a MRF SIP virtual server, transport profile (TCP, UDP or SCTP), a sipsession profile and a
siprouter profile must be attached to the virtual server.

The behavior of a virtual can further be extended by assigning iRules to the virtual.

All virtual servers that share the same siprouter profile will share the same router instance. The routing
instance owns the route table, the persistence table and flowmap table (a table of all open connection
usable for message forwarding).

+ A virtual server of type "message-routing" assigned with "session" & "router" profile is part of a SIP
router-instance.

+ Persistence is configured through the SIP session profile, hence a persist profile must not be attached
to the virtual server.

* One or more iRules can be attached. The rules are validated against the configured transport and the
events/commands as supported by SIP and MRF.

* Source-address-translation can be configured in the virtual server. For server side flows the transport-
config parameters overrides the virtual server setting for source address translation. If a route does not
specify a transport-config, than the transport of the originator of the message will be as the transport
for the outgoing connection. For example if the SIP message originated on a virtual server, the
parameters of the virtual server will be used to create the outgoing connection. This includes the
source-address-translation settings of the virtual server.

* A static route object containing wildcard attributes can be used as a default route. The configured by
adding a SIP route with empty request-uri, from-uri and to-uri attributes to the siprouter profile used
by the virtual server.

+ Static routes can be configured to only operate on messages originating for specific virtuals. This
allows each virtual using the same router instance to have independent default routes.

» The virtual can be configured to listen on all or selected set of VLANS.

+ All virtuals that needs to work together as one router-instance must share the same "router" profile.

+ All virtuals that are to acts as one router-instance, must have the all their corresponding Virtual
Addresses in the same traffic group. The traffic group of the siprouter profile must match the traffic-
group of the virtual's virtual address.

ltm virtual <virtual name> {
cmp-enabled yes



Operation Modes

destination <ip address>:<port>

enabled |

disabled

ip-protocol <tcp|udp|sctp>
mask <netmask>

profiles {

siprouter
sipsession
<tcp|udp|sctp>
<other profiles>

}

rules <list of iRules|none>
source 0.0.0.0/0

vlans {

<list of vlans>

}

vlans-enabled | vlans-disabled

SIP Router Profile

Profile
sip_router

Has>

1
M Fool
1

1 M
sip_route mr_peer
1
1
mr_transport

A SIP router profile provides the router-instance level characteristics such as mode of operation,
routes and more. This profile defines attributes that are to be the same across the entire router-
instance. In addition, it holds the static routes to be used across the entire router-instance.

A route is made of peers, where a peer may have a pool and a transport config

Figure 1: SIP Router Profile Entity-Relationship

If a peer does not contain a pool, the local address of the originating connection is used as the remote
address of the outgoing connection

If a peer does not contain a transport-config, the settings of the originating connections transport
(virtual or transport-config) is used to create the outgoing connection.

The router profile binds the multiple virtuals (that clients connect to) and peers (that connect to
backend servers), together with common shared states.

For ALG, no routes are configured for the router profile. The local address of the originating flow is
used as the remote address of the outgoing connection.

ltm message-routing sip profile router siprouter {
defaults-from none

inherited-traffic-group <true|false>
max-pending-bytes <integer>
max-pending-messages <integer>

max-retries <integer>

mirror <enabled|disabled>
mirrored-message-sweeper-interval <integer>
operation-mode load-balancing

10

routes {



<static routes>*

}

session {

BIG-IP Service Provider: SIP Administration

max-session-timeout <integer>
transaction-timeout <integer>

}

traffic-group <traffic group name>
use-local-connection <enabled|disabled>

Table 1: SIP router profile attributes

using this router instance, and all
outgoing connection created by
this router instance.

Attribute Description Type Acceptable | Default
Values

operation-mode Sets the operation mode of the SIP | ENUM load-balancing load- )

routing instance. L balancing
application-

Must be set to load-balancing level-gateway

routes List of references to sip-route sip-route A list of sip-
object. The ordering of the route route objects
entries does not matter.

max-pending-messages | The maximum number of pending | UINT32 1 to 23768
messages that are held while 4294967295
waiting for a connection to a peer (32-bits)
to be created. Once reached any
additional messages to the peer is
flagged as undeliverable and
returned to the originator.

max-pending-bytes The maximum number of bytes UINT32 1to 64
contained within pending 4294967295
messages that is held while (32-bits)
waiting for a connection to a peer
to be created. Once reached any
additional messages to the peer is
flagged as undeliverable and
returned to the originator.

use-local-connection Controls whether connections BOOL Enabled/ Enabled
established by the ingress TMM Disabled
are preferred over connections
established by other TMMs when
selecting egress connection to
destination peer.

traffic-group The traffic group for the router traffic- default
instance. All virtual servers using | group (inherited
this router profile will have the from
their traffic group replaced by the partition)
traffic group of the router profile.

mirror Enables mirroring of all incoming | BOOL enabled/ disabled
connections for all virtual servers disabled

11



Operation Modes

restarts the timer. This may not
affect all transactions. The
scenarios where a BIG-IP” system
waits for response (like final
response for REGISTER request),
is impacted, by dropping any
persistent data maintained for this
request.

Attribute Description Type Acceptable | Default
Values
mirrored-message- This attribute sets the frequency of | UINT32 1000(ms)
sweeper-interval the mirrored message sweeper.
For virtual servers where
mirroring is enabled, the received
messages will be processed on
both the active device and the
standby device. On the standby
device, the messages are not
routed, instead they are stored in a
message store until the active
device sends a notification that the
message has been routed to the
standby device so that the standby
device can deliver the message to
the equivalent connection for
egress processing. A sweeper has
been implemented to drop
messages from the message store
if they remain in the store longer
than the time specified in this
attribute. The time shall be in
milliseconds.
media-proxy
max-media-sessions N/A in LB Mode UINT32 1to 10 (32- 6
bits)
media-inactivity- N/A in LB Mode UINT32 1 to 120 (32- 120
timeout bits)
session
dialog-establishment- | N/A in LB Mode UINT32 1to 32
timeout 4294967295
(32-bits)
max-session-timeout N/A in LB Mode UINT32 1 to 7200
4294967295
(32-bits)
transaction-timeout Specifies the maximum time in UINT32 1 to 180
seconds between request and its 4294967295
response. A provisional response (32-bits)

12




BIG-IP Service Provider: SIP Administration

Operation Mode

Table 2: SIP operation mode

operation- Description
mode

load-balancing | Configures the SIP routing instance to operate in load-balancing mode. See How to
configure DAG Modes for details.

application- Configures the SIP routing instance to operate in application level gateway mode
level-gateway (ALG). See Default DAG for details

SIP Route Table

« SIP routes are collected into a route table.

» Each SIP router instance maintains a route table.

*  When the SIP router receives a message for forwarding, the route table is used to determining the best
route to use for forwarding the message.

* The message's to-uri (RFC 3261 section 8.1.1.2), from-uri (RFC 3261 section 8.1.1.3), request-uri
(RFC 3261 section 8.1.1.1) attributes and originating virtual is matched against the routes in the route
table.

Table 3: SIP Route table example

Request-URI | From-URI To-URI Virtual Route Value
Default pool
* f5.com Subdomain pool
*@fS.com F5 domain pool
help@f5.com Helpdesk pool
*@external.com External pool
priority.user@isp.net | help@f5.com Special helpdesk
pool

Attributes Matching

+ The attributes is matched in the following order: to-uri, from-uri, request-uri and virtual.

+ Each URI is matched starting at the end of the attribute.

+ Because a URI key may contain a wildcard, a URI from a messages attribute may match multiple
attributes, the longest match for the attribute is tried first.

+ If a matching route does not exist using the longest match, the next longest match is attempted.

* An empty field is the same as a wildcard (all values are considered to match).

* Route selection first matches the to-uri then the from-uri, followed by the request-uri and finally the
virtual.

* Each field is matched starting at the end of the field (last character).

* There can be no characters before a wildcard (asterisk).

Specific Route Match Example

Consider a SIP route table with following routes:

13



Operation Modes

Table 4: SIP route match

To-URI From-URI Request-URI Virtual Route Value
default-route

* f5.com subdomain-route
*afS5.com fSdomain-route
help@f5.com helpdesk-route
it@f5.com internal_vs it-route
To route a message with the following attributes:
Table 5: SIP route match

To-URI From-URI Request-URI Virtual

it@f5.com top.salesman@vendor.com it@f5.com external vs

+ The SIP route table (refer table 3.3.3) would first look for a match for the to-uri.
+ It would find 3 matches: "" (wildcard), "*@f5.com", and "it@f5.com".

* The longest match would be "it@f5.com". It would then try to match from-uri, request-uri and virtual.
* The from-uri attribute would match the wildcard as would the request-uri.

e The virtual would not match.

* No match was found using "it@f5.com", so it would return to the next longest matching value,
"*@f5.com".

It would then try and match from-uri, request-uri and virtual.

Matches for all three fields would be found so it would forward the message to a host as specified in
the route value of the f5 domain route in table 3.3.3

SIP Route

ltm message-routing sip route siproute {
from-uri <string>
peer-selection-mode <sequential|ratio>

14

peers {

<one Or more peer>

}

request-uri <string>

to-uri <string>

virtual-server <string>

The SIP route has the following attributes.

Table 6: SIP Route Attributes

request-uri of a sip message. This URI is
matched as a case insignificant method. It
should be in the form of user@domain. The
sip: prefix should not be present. Any
additional modifiers (for example port or

ASCII string

format:
<user@domain>

Attribute | Description Type Acceptable Default
Values

name Specifies the name of the route object STRING | ASCII string None

request-uri | Defines the pattern to be matched against the | STRING "




BIG-IP Service Provider: SIP Administration

Attribute

Description

Type

Acceptable
Values

Default

transport) should also not be present. It may
begin with a wildcard, ‘*’. If empty, it is
treated as if the entire URI was a wildcard
(matching all Request-URIs).

to-uri

Defines the pattern to be matched against the
To field of a sip message. This URI is
matched as a case insignificant method. It
should be in the form of user@domain. The
sip: prefix should not be present. Any
additional modifiers (for example port or
transport) should also not be present. It may
begin with a wildcard, ‘*’. If empty, it is
treated as if the entire URI was a wildcard
(matching all To-URIs).

STRING

ASCII string

format:

<user@domain>

from-uri

Defines the pattern to be matched against the
From field of a sip message. This URI is
matched as a case insignificant method. It
should be in the form of user@domain. The
sip: prefix should not be present. Any
additional modifiers (for example port or
transport) should also not be present. It may
begin with a wildcard, ‘*’. If empty, it is
treated as if the entire URI was a wildcard
(matching all From-URIs).

STRING

ASCII string

format:
<user@domain>

"nn

virtual-
server

Specifies a virtual server that this route is
limited to. If no virtual is specified, messages
originating on any connection may be routed
to the route.

virtual-
server

A virtual server
instance

None

peers

Specifies the list of peers. The peers attribute
is a list of references to mr-peer objects.

mr-peer

An instance or mr-
peer

peer-
selection-
mode

Describes the method of selecting a peer
from a list of peers.

sequential: Peers are selected in the order
listed. All traffic is routed to the first peer
unless all pool members in the peer are
marked down.

ratio: Peers are selected based on their
weights in comparison with other peers.

ENUM

sequential/ratio

sequential

A SIP route specifies a set of peers to use for forwarding messages. Each route contains a route key and a
route value. The route key contains attributes that are matched against attributes in a SIP message. The
route value contains a list of peers. If the attributes in the route key match, the message is forwarded to a
host specified by route value.

Route Key

The route key contains the attributes that are matched against attributes from the SIP message header and
optionally a list of virtual servers.

* The to-uri, from-uri and request-uri attributes are matched against corresponding attributes in a SIP
message's header.

15



Operation Modes

These values are matched in a case insignificant method.

Only the user@host portion of the uri is matched. The protocol prefix and additional modifiers (like
port, transport, key, etc) are not included in the match. (see RFC 3261 section 19.1)

The uri key in the message may start with a wildcard character, "*' (for example "*@f5.com'). If a uri
key starts with a wildcard, this means that any valid pattern of characters at that position in the
message's corresponding attribute is considered as matching refer section 3.3.1.1

An empty uri key is considered as matching any valid value in the message's corresponding attribute.
If virtual server attribute in the route key is empty, the route is applied to all messages. If the virtual
server attribute is not empty, the route applies only to messages originating the virtual server
specified.

A route key with all fields empty (wildcard) is used as a default route.

Table 7: Filtered URI for Route Key

%?20x&priority=urgent

Example URI Filtered URI for matching
sip: alice@atlanta.com alice@atlanta.com
sip: alice:secretword@atlanta.com;transport=tcp alice@atlanta.com
sips:alice@atlanta.com?subject=project alice@atlanta.com

sip:+1-212-555-1212:1234@gateway.com;user=phone | +1-212-555-1212@gateway.com

sips: 1212@gateway.com 1212@gateway.com

sip:alice@192.0.2.4 alice@192.0.2.4

sip:atlanta.com;method=REGISTER ?to=alice atlanta.com

%40atlanta.com

sip:alice; day=tuesday@atlanta.com alice@atlanta.com
Route Value

The route value contains a list of peers and a peer selection mode attribute.

Peer Selection

Host Selection

16

The peer selection mode attribute specifies how a peer in the peer list is selected. Available values are
sequential and ratio.

If the contained peers contain different transport types (ipproto), TCP, UDP, SCTP, only those peers
that match the transport type of the originating connection is used for peer selection.

In sequential mode, the peers are selected in the order listed. The first peer is used unless all of its
members are down.

In ratio mode, the ratio value in each peer shall be used to determine the distribution of message to
each peer.

Once a peer has been selected, a pool member from the peer's pool is selected based on the pool's lb-
mode attribute.

The peer's transport-config name (MR transport-config object refer to
HighperformancemessageroutingframeworkforIMSprotocolsFS#Transport-config) is used to
configure the type of connection (transport, security, protocol, rules, snat).

If the selected peer does not contain a pool, the destination ip and port of the message's originating
connection is used as the destination host.

If the selected peer does not contain a transport-config name, the transport type and name of the
message's originating connection is used as the destination host.




BIG-IP Service Provider: SIP Administration

+ Ifthe selected peer contains a pool with no pool members, the message is returned to the originator

marked as unroutable.

+ Ifthe selected peer contains a pool with pool members. one active pool member is selected as per the

pool's specified load balancing mode.

SIP Session Profile

This profile is attached to every virtual & associated with each peer of a routing instance. This profile has
settings that can affect the SIP message processing. Multiple SIP session profiles can be in use in a single
routing instance. The virtual/peer processes the ingress/egress messages per its sip-session profile

settings.

ltm message-routing sip profile session sipsession {

custom-via <string>
defaults-from none
do-not-connect-back <enabled|disabled>
enable-sip-firewall <yes|no>
generate-response-on-failure <enabled|disabled>
honor-via <enabled|disabled>
insert-record-route-header <enabled|disabled>
insert-via-header <enabled|disabled>
loop-detection <enabled|disabled>
maintenance-mode <enabled|disabled>
max-forwards-check <enabled|disabled>
max-msg-header-count <integer>
max-msg-header-size <integer>
max-msg-size <integer>
persistence {

persist-key <Call-ID|Src-Addr|Custom>

persist-timeout <integer>

persist-type <session|none>

The sip protocol profile has the following attributes.

Table 8: SIP Session Profile Attributes

Attribute Description Type Acceptable Default
Values
max-msg-size Specifies the maximum acceptable SIP | UINT32 |1 to 4294967295 | 65535
message size in bytes. The message that (32-bits)
exceeds this size is silently discarded.
max-msg-header- | Specifies the maximum count of UINT32 |6 to 4096 64
count expected header fields; The message that
exceeds this limit is silently discarded.
max-msg-header- | Specifies the maximum message header | UINT32 |1 to 4294967295 | 16000
size size in bytes; The message that exceeds (32-bits)
this limit is silently discarded.
generate- Enables to send failure response BOOL Enabled/ Disabled
response-on- messages such as 4xx, 5xx and 6xx, Disabled
failure when a SIP request is being dropped;
Note: Where it is specified "silently"
discarded/dropped, no error response is
generated. In any case, a dropped
message (request/response) is tracked in
appropriate statistics counter.

17



Operation Modes

18

Attribute

Description

Type

Acceptable
Values

Default

Maintenance
Mode

When selected (enabled), sends a SIP
response of 503 Service Unavailable for
an incoming SIP request. The SIP
response to the SIP request is dropped.

BOOL

Enabled/
Disabled

Disabled

max-forwards-
check

Enables check on max-forwards; If 0, the
request is discarded. An error response is
sent, if configured.

BOOL

Enabled/
Disabled

Enabled

loop-detection

Enables loop-detection check and in case
loop detected, the request is discarded.
An error response is sent, if configured.

Note: A request is detected as seen
before (forwarded/spiraled/looped) only
if self inserted Via is found in the
message and the value of its branch
param plays a key role in detecting loop
versus spiral. Hence enabling via
insertion becomes a requirement to do
loop detection check.

In ALG mode, Via header is not inserted
by default and there is no loop detection
in this mode.

BOOL

Enabled/
Disabled

Disabled

insert-via-header

Enables insertion of top Via; When
enabled, custom params to help route the
response back are inserted, along with
sent-by field of Via. The source
address:port of the flow forwarding the
request is filled as value for sent-by field
of Via unless user provides custom via
value. The custom params inserted to
help routing, helps improve performance
as it facilitates routing without any
lookup. The via is inserted at egress side
of the flow, after SIP. REQUEST SEND
event.

BOOL

Enabled/
Disabled

LB
MODE:
Enabled

ALG
MODE:
disabled

custom-via

Specifies the custom value for the sent-
by field of Via. Only the sent-by
component value is mentioned here not
the complete header.

STRING

<IP or FQDN
name>[:<port>]

None

honor-via

Enables to honor via that is not inserted
by a BIG-IP® system for routing the
response.

BOOL

Enabled/
Disabled

LB
MODE:
Enabled

ALG
MODE:
disabled

insert-record-
route-header

Enables insertion of record-route header
in requests that establish dialog. When
enabled, along with URI, the custom

BOOL

Enabled/
Disabled

Disabled




BIG-IP Service Provider: SIP Administration

Attribute

Description

Type

Acceptable
Values

Default

params may be added to facilitate the
routing of subsequent requests within this
call to avoid route lookup. The record
route URI is the local-IP & port of flows
that are used for forwarding the message.

sip-firewall

Enables application of firewall policy

BOOL

Enabled/
Disabled

Disabled

do-not-connect-
back

Controls whether connection to a request
originator is established (if it no longer
exists) in order to deliver response. When
disabled, responses that cannot be
forward using an existing connection are
dropped.

BOOL

Enabled/
Disabled

Disabled

persistence

persist-key

Specifies the method to extract the key
value that is used to persist on.

* Call-ID - To persist based on the
"Call-ID" header field value in the
message.

*  Src-Addr - To persist based on
originating IP address in the message

* Custom - To persist based on the
custom key specified using iRule.

ENUM

Call-ID/Src-
Addr/Custom

Call-ID

persist-type

Specifies the type of the persistence to be
used for the specified "persist-key"
attribute value, the currently supported
type is session.

» Session - Uses session DB for
storage, no hash is applied. The key
used for session DB is value specified
in the "persist-key" attribute. Insert-
via-header must be enabled when
persist-type is set to "Session", if not
a validation error is thrown.

* None - Persistence is disabled

+ Persistence is not applicable for SIP
ALG modes.

ENUM

Session/None

Session

persist-timeout

Indicates the timeout value of persistence
entries in seconds.

It's recommended to have the persist-
timeout to be greater than transaction
timeout, specified in the SIP session
configuration, as the lesser of the two is
used when creating the persist record on
receiving of the initial SIP request
message. The initial SIP request can be

UINT32

1 to 4294967295
(32-bits)

180

19



Operation Modes

Attribute

Description Type Acceptable
Values

Default

INVITE/SUBSCRIBE/MESSAGE.
Upon receiving of the response for the
initial SIP Request message the
persistence record is updated with the
persist-timeout value. (For any
subsequent responses received the persist
timeout is updated for the persist record.)

Peer Object

A peer object is used to define a set of hosts and the the method to connect with them. Peers are used to
create static routes. The peer structure is protocol independent while each protocol implementation of
MREF will define its own static route structure.

ltm message-routing sip peer <named-object> ({

20

app-service <string>

auto-initialization <enabled/disabled>
auto-initialization-interval <integer>
connection-mode <per-peer/per-tmm/per-blade/per-client>

description <string>

number-connections <integer>

partition <string>
pool <pool name>
ratio <integer>

transport-config <tc name>

Peer Attributes

Table 9: Peer Attributes

Attribute

Description

Default

pool

Pool associated with the peer. If only one peer, then configure a single-
member pool. If none, the message will be forwarded to the destination
address and port of the originating connection.

none

transport-
config

Specifies the transport-config that defines the parameters of the
outgoing connection. If none, the parameters of the originating
connection will be used to create the outgoing connection.

none

connection-
mode

Specifies how the number of connections per peer are to be limited as
follows: per-peer, per-blade, per-tmm, per-client.

If a transport config is not specified, the attributes of the originating
connection of the message being routed will be used to create the
outgoing connection. In this case, the connection-mode in the peer
object will be ignored.

per-peer

number-
connections

Specifies the number of connections between the BIG-IP” system and a
peer.

If a transport config is not specified, the attributes of the originating
connection of the message being routed will be used to create the
outgoing connection. In this case, the number-connections in the peer
object will be ignored.

ratio

Used to designate the ratio of this peer when used within a route with a
peer-selection-mode of ratio.

—_




BIG-IP Service Provider: SIP Administration

Attribute Description Default

auto- If enabled, the BIG-IP® system will automatically create outbound disabled
initialization | connections to the active pool members in the specified pool using the
configuration of the specified transport-config. For auto-initialization to
attempt to create a connection, the peer must be included in a route that
is attached to a router instance. For each router instance that the peer is
contained in, a connection will be initiated. The auto-initialization logic
will verify at a configurable interval if the a connection exists between
the BIG-IP system and the pool members of the pool. If a connection
does not exist, it will attempt to reestablish one.

auto- Specifies the interval (in milliseconds) that attempts to initiate a 5000ms
initialization- | connection occur. Valid ranges are from 500ms to 65535ms
interval

Connection Modes
Per Peer

A BIG-IP” system will make just one connection to a peer. This means that only one TMM is connected
to each Peer. While this connection mode uses fewer connections it will introduce latency. This will
happen when messages are disaggregated to the wrong TMM and must be forwarder. The following
diagram provides additional detail.

Internet VLAN BIG-IP Devices/Peers
: : In Internal
: Network
D
Message > Server 1 —@-b ; A —@—b v =L ::l_., Server 1
G ] -
TMM-1 ————P| Server2

Figure 2: Optimum scenario

1. Message arrives on a Virtual Server (VS)
2. Message is disaggregated to TMM-0
3. TMM-O0 is connected to the correct server so the message is sent

Internet VLAN | BIG-IP . Devices/Peers
: ] In Internal
Network

(i TMM-0 —@—p Server |

TMM-1  f—————F Server2

'}
Message = Server 1 —@-) \é

0

Figure 3: Performance impacted scenario

1. Message arrives on a Virtual Server (VS)
2. Message is disaggregated to TMM-1

21



Operation Modes

3. TMM-1 is not connected to Server 1 so message must be forwarded to the correct TMM. This will
introduce latency.
4. TMM-O0 is send message to Server 1

Per TMM
A BIG-IP" system will make a connection from every TMM to the same peer. This means a machine
with 8 cores will have 8 connections per peer. While this increases the number of active connections, it
also improves performance because there is no need to forward messages between TMMs.
Internet VLAN BIG-IP Devices/Peers
: 3 In Internal
Network
W D
Message = Server1 [ 1 - é —@—b TMM-0 Server
Message = Server 1 4 @ . TMM-1
Server 2
Figure 4: Every TMM is connected to every peer which decreases latency but increases the
number of connections
1. Message arrives on a Virtual Server (VS)
2. Message is disaggregated to TMM-0
3. TMM-O0 is connected to the correct server so the message is sent
4. Second message arrives
5. Message is disaggregated to TMM-1
6. TMM-1 is connected to the requested server so the message can be sent directly
Per Blade

A BIG-IP" system creates one connection per blade to each peer. This provides a balanced performance
approach between the per peer connection mode (only one connection) and a per tmm connection mode
(a connection from each TMM). This mode only makes sense for a hardware chassis with multiple

blades.
Internet VLAN BIG-IP Devices/Peers
E F In Internal
Network
Message > Server 1 G)—b Blade-0 Server 1
Message = Server 1 @—} Blade-1
Server 2

Figure 5: Each blade will make a single connection to each peer.

Message arrives on Blade 0

Blade 0 opens a connection to Server 1 and forwards the message
Second message arrives

Blade 1 opens a connection to server 1 and forwards the message

El ol

Note: A connection will not be opened to Server 2 until a message targeted at that server arrives.

22



BIG-IP Service Provider: SIP Administration

Transport Config
A transport config defines the parameters of a new outgoing connection.

The behavior of a transport-config is determined by the set of profiles attached to it. To configure a MRF
SIP transport-config a transport profile (TCP, UDP or SCTP), and a sipsession profile must be attached.
The siprouter profile will be inherited by the router instance that creates the outgoing connection.

The behavior of a transport-config can further be extended by assigning iRules to it.

ltm message-routing sip transport-config <transport-1> ({

ip-protocol <tcp/udp/sctp/...>

profiles {
tep {}
diameter_protocol_test {}

}

source-address-translation {
type automap

}

rules {
some irule

}

source-port <integer>

Transport Config Attributes

Table 10: Transport Config Attributes

Attribute Description Default

ip-protocol Specifies the ip protocol. This will be automatically set based on the none
transport profile added. This value is read-only.

source-port Specifies the source port to be used for the connection being created. If |0
the source-port is zero, an empirical port will be used.

profiles The transport protocol and the protocol-specific profile associated with
this outgoing connection.

source-address- Specifies the source-address-translation type and the pool.
translation
rules List of iRules associated with this outgoing connection. none

Source Address Translation

Table 11: Source Address Translation

Sub- Description Default
Attribute

type Specifies the type of source address translation to perform automap
pool Specifies the name of the snap pool none

Source Address Translation Types

Table 12: Source Address Translation Types

Type Description

automap | The self-ip of the outgoing vlan will be used as the source address of the outgoing
connection.

23



Operation Modes

Type Description
snat A source address will be selected from the named snat pool
none No source address translation will be performed.

ALG without SNAT (No Address Translation)

* Snoop control messages flowing through to manage media flows.

* iRule can be used to rewrite headers.

* Create media records in session db.

* Create deny listeners to drop media packets received before the callee responds with its media details.
+ Create media flows to forward packets between caller and callee.

* High Availability (HA)

+ Call table replication (supports failback)
+ Control connection mirroring (can be recreated on failback by endpoint)
* Media flow mirroring

Configuration Objects

Virtual Server

A virtual server is a traffic-management object on the BIG-IP” system that is represented by an IP
address and a service. Clients on an external network can send application traffic to a virtual server,
which then directs the traffic according to your configuration instructions.

The virtual server configuration contains a destination address and mask which specifies what IP
addresses and port the virtual server will listen for incoming packets. The virtual server object also
contains a source address allowing it to limit packets to those packets that originate from a range of
devices.

The behavior of a virtual server is determined by the set of profiles attached to the virtual server. To
configure a MRF SIP virtual server, transport profile (TCP, UDP or SCTP), a sipsession-alg profile and a
siprouter-alg profile must be attached to the virtual server.

The behavior of a virtual can further be extended by assigning iRules to the virtual.

All virtual servers that share the same siprouter profile will share the same router instance. The routing
instance owns the route table, the persistence table and flowmap table (a table of all open connection
usable for message forwarding).

+ A virtual server of type "message-routing" assigned with "session" & "router" profile is part of a SIP
router-instance.

* MREF SIP ALG does not require persistence or message routing.

» Persistence is configured through the SIP session profile, hence a persist profile must not be attached
to the virtual server.

* One or more iRules can be attached. The rules are validated against the configured transport and the
events/commands as supported by SIP and MRF.

+ MREF SIP ALG without source-address-translation does not support source-address-translation. The
virtual's source-address-translation type must be set to none

Please note that profile call statistics in this mode will double-count hairpinned calls.

ltm virtual <virtual name> {
cmp-enabled yes
destination <ip address>:<port>

24

enabled

disabled

ip-protocol <tcpl|udp|sctp>
mask <netmask>



ltm

BIG-IP Service Provider: SIP Administration

profiles {
siprouter-alg
sipsession-alg
<tcp|udp|sctp>
<other profiles>
}
rules <list of iRules|none>
source 0.0.0.0/0
source-address-translation {
type none
}
vlans {
<list of vlans>
}

vlans—-enabled | vlans-disabled

SIP Router Profile

message-routing sip profile router siprouter-alg {
inherited-traffic-group <true|false>
max-pending-bytes <integer>
max-pending-messages <integer>
media-proxy {
max-media-sessions <integer>
media-inactivity-timeout <integer>
}
mirror <enabled|disabled>
mirrored-message-sweeper-interval 1000
operation-mode application-level-gateway
routes none
session {
max-session-timeout <integer>
transaction-timeout <integer>
}
traffic-group <traffic group name>
use-local-connection enabled

Table 13: SIP Router Profile Attributes

waiting for a connection to a peer

Attribute Description Type Acceptable | Default
Values
operation-mode Sets the operation mode of the SIP | ENUM load-balancing |10ad-
routing instance. L balancing
application-
Must be set to application-level- level-gateway
gateway.
routes N/A in ALG Mode sip-route A list of sip-
route objects
max-pending-messages | The maximum number of pending | UINT32 1 to 23768
messages that are held while 4294967295
waiting for a connection to a peer (32-bits)
to be created. Once reached any
additional messages to the peer is
flagged as undeliverable and
returned to the originator.
max-pending-bytes The maximum number of bytes UINT32 1 to 64
contained within pending 4294967295
messages that is held while (32-bits)

25



Operation Modes

26

Attribute

Description

Type

Acceptable
Values

Default

to be created. Once reached any
additional messages to the peer is
flagged as undeliverable and
returned to the originator.

use-local-connection

N/A in ALG Mode

BOOL

Enabled/
Disabled

Enabled

traffic-group

The traffic group for the router
instance. All virtual servers using
this router profile will have the
their traffic group replaced by the
traffic group of the router profile.

traffic-
group

default
(inherited
from
partition)

mirror

Enables mirroring of all incoming
connections for all virtual servers
using this router instance, and all
outgoing connection created by
this router instance.

BOOL

enabled/
disabled

disabled

mirrored-message-
sweeper-interval

This attribute sets the frequency of
the mirrored message sweeper.
For virtual servers where
mirroring is enabled, the received
messages will be processed on
both the active device and the
standby device. On the standby
device, the messages are not
routed, instead they are stored in a
message store until the active
device sends a notification that the
message has been routed to the
standby device so that the standby
device can deliver the message to
the equivalent connection for
egress processing. A sweeper has
been implemented to drop
messages from the message store
if they remain in the store longer
than the time specified in this
attribute. The time shall be in
milliseconds.

UINT32

1000(ms)

media-proxy

max-media-sessions

This attribute is valid when the
operation-mode is application-
level-gateway. Specifies the
maximum number of media
sessions that are allowed per call.

UINT32

1 to 10 (32-
bits)

media-inactivity-
timeout

This attribute is valid when the
operation-mode is application-
level-gateway. Specifies the
maximum duration (in seconds)
that a media flow is active with no

UINT32

1 to 120 (32-
bits)

120




BIG-IP Service Provider: SIP Administration

Attribute Description

Type

Acceptable
Values

Default

RTP packets. After this period the
RTP flow is removed. This
timeout is applicable only to RTP
packet where as the RTCP packet
will have the timeout set to the
max-session-timeout.

session

dialog-establishment- | This attribute is valid when the
timeout operation-mode is application-
level-gateway. Specifies the
timeout (in seconds) that
represents the Timer B as per RFC
3261, the INVITE transaction
timeout. The dialog-
establishment-timeout is used by
the Call Table. The default value
is 32 seconds.

UINT32

1to
4294967295
(32-bits)

32

max-session-timeout This attribute is valid when the
operation-mode is application-
level-gateway. Specifies the
maximum duration (in seconds)
that a call and its media remains
active. After this period the call
and its media is terminated.

UINT32

1to
4294967295
(32-bits)

7200

transaction-timeout Specifies the maximum time in
seconds between request and its
response. A provisional response
restarts the timer. This may not
affect all transactions. The
scenarios where BIG-IP waits for
response (like final response for
REGISTER request), is impacted,
by dropping any persistent data
maintained for this request.

UINT32

1to
4294967295
(32-bits)

180

Operation Mode

Table 14: SIP operation mode

operation- Description
mode

configure DAG Modes for details.

load-balancing | Configures the SIP routing instance to operate in load-balancing mode. See How to

level-gateway (ALG). See Default DAG for details

application- Configures the SIP routing instance to operate in application level gateway mode

SIP Session Profile

This profile is attached to every virtual & associated with each peer of a routing instance. This profile has

settings that can affect the SIP message processing. Multiple SIP session profiles can be in use in a single




Operation Modes

routing instance. The virtual/peer processes the ingress/egress messages per its sip-session profile
settings.

ltm message-routing sip profile session sipsession {

custom-via <string>
defaults-from none
do-not-connect-back <enabled|disabled>
enable-sip-firewall <yes|no>
generate-response-on-failure <enabled|disabled>
honor-via <enabled|disabled>
insert-record-route-header <enabled|disabled>
insert-via-header <enabled|disabled>
loop-detection <enabled|disabled>
maintenance-mode <enabled|disabled>
max—-forwards—-check <enabled|disabled>
max-msg-header-count <integer>
max-msg-header-size <integer>
max-msg-size <integer>
persistence {

persist-key <Call-ID|Src-Addr|Custom>

persist-timeout <integer>

persist-type <session|none>

The sip protocol profile has the following attributes.

Table 15: SIP Session Profile Attributes

Attribute Description Type Acceptable Default
Values
max-msg-size Specifies the maximum acceptable SIP | UINT32 |1 to 4294967295 | 65535
message size in bytes. The message that (32-bits)
exceeds this size is silently discarded.
max-msg-header- | Specifies the maximum count of UINT32 |6 to 4096 64
count expected header fields; The message that
exceeds this limit is silently discarded.
max-msg-header- | Specifies the maximum message header |UINT32 |1 to 4294967295 | 16000
size size in bytes; The message that exceeds (32-bits)
this limit is silently discarded.
generate- Enables to send failure response BOOL Enabled/ Disabled
response-on- messages such as 4xx, 5xx and 6xx, Disabled
failure when a SIP request is being dropped;
Note: Where it is specified "silently"
discarded/dropped, no error response is
generated. In any case, a dropped
message (request/response) is tracked in
appropriate statistics counter.
Maintenance When selected (enabled), sends a SIP BOOL Enabled/ Disabled
Mode response of 503 Service Unavailable for Disabled
an incoming SIP request. The SIP
response to the SIP request is dropped.
max-forwards- Enables check on max-forwards; If 0, the | BOOL Enabled/ Enabled
check request is discarded. An error response is Disabled
sent, if configured.




BIG-IP Service Provider: SIP Administration

Attribute

Description

Type

Acceptable
Values

Default

loop-detection

Enables loop-detection check and in case
loop detected, the request is discarded.
An error response is sent, if configured.

Note: A request is detected as seen
before (forwarded/spiraled/looped) only
if self inserted Via is found in the
message and the value of its branch
param plays a key role in detecting loop
versus spiral. Hence enabling via
insertion becomes a requirement to do
loop detection check.

In ALG mode, Via header is not inserted
by default and there is no loop detection
in this mode.

BOOL

Enabled/
Disabled

Disabled

insert-via-header

Enables insertion of top Via; When
enabled, custom params to help route the
response back are inserted, along with
sent-by field of Via. The source
address:port of the flow forwarding the
request is filled as value for sent-by field
of Via unless user provides custom via
value. The custom params inserted to
help routing, helps improve performance
as it facilitates routing without any
lookup. The via is inserted at egress side
of the flow, after SIP. REQUEST SEND
event.

BOOL

Enabled/
Disabled

LB
MODE:
Enabled

ALG
MODE:
disabled

custom-via

Specifies the custom value for the sent-
by field of Via. Only the sent-by
component value is mentioned here not
the complete header.

STRING

<IP or FQDN
name>[:<port>]

None

honor-via

Enables to honor via that is not inserted
by a BIG-IP® system for routing the
response.

BOOL

Enabled/
Disabled

LB
MODE:
Enabled

ALG
MODE:
disabled

insert-record-
route-header

Enables insertion of record-route header
in requests that establish dialog. When
enabled, along with URI, the custom
params may be added to facilitate the
routing of subsequent requests within this
call to avoid route lookup. The record
route URI is the local-IP & port of flows
that are used for forwarding the message.

BOOL

Enabled/
Disabled

Disabled

sip-firewall

Enables application of firewall policy

BOOL

Enabled/
Disabled

Disabled

29



Operation Modes

Indicates the timeout value of persistence
entries in seconds.

It's recommended to have the persist-
timeout to be greater than transaction
timeout, specified in the SIP session
configuration, as the lesser of the two is
used when creating the persist record on
receiving of the initial SIP request
message. The initial SIP request can be
INVITE/SUBSCRIBE/MESSAGE.
Upon receiving of the response for the
initial SIP Request message the
persistence record is updated with the
persist-timeout value. (For any
subsequent responses received the persist
timeout is updated for the persist record.)

(32-bits)

Attribute Description Type Acceptable Default
Values
do-not-connect- | Controls whether connection to a request | BOOL Enabled/ Disabled
back originator is established (if it no longer Disabled
exists) in order to deliver response. When
disabled, responses that cannot be
forward using an existing connection are
dropped.
persistence
persist-key Specifies the method to extract the key | ENUM | Call-ID/Sre- Call-ID
value that is used to persist on. Addr/Custom
* Call-ID - To persist based on the
"Call-ID" header field value in the
message.
* Src-Addr - To persist based on
originating IP address in the message
* Custom - To persist based on the
custom key specified using iRule.
persist-type Specifies the type of the persistence to be | ENUM | Session/None Session
used for the specified "persist-key"
attribute value, the currently supported
type is session.
* Session - Uses session DB for
storage, no hash is applied. The key
used for session DB is value specified
in the "persist-key" attribute. Insert-
via-header must be enabled when
persist-type is set to "Session", if not
a validation error is thrown.
* None - Persistence is disabled
» Persistence is not applicable for SIP
ALG modes.
persist-timeout UINT32 |1 to 4294967295 | 180

30




Disaggregation (DAG) Modes

Disaggregation (DAG) Modes

How to configure DAG Modes

Default DAG

Table 16: How to configure DAG Modes

DAG Configuration | TMSH Commands

Mode Object

Default- VLAN $ modify net vlan <vlan name> cmp-hash default
DAG

SP-DAG | VLAN $ modify net vlan <src vlan name> cmp-hash src-ip

$ modify net vlan <dst vlan name> cmp-hash dst-ip

RR-DAG |VLAN s

modify net vlan <vlan name> dag-round-robin enabled

$ modify sys db dag.roundrobin.udp.portlist value
"5060"

$ modify ltm profile udp <udp profile name> idle-
timeout 0

The Default DAG uses a hash of source and destination port. It is useful when ephemeral ports are used
in client side and server side connections. When source and destination ports are the same TMM-0 will
be used. This is an issue in that the traffic will not be load balanced and TMM-0 will quickly be
overloaded. This DAG requires randomness in the source or destination port. If a client doesn't specify a
source port then an ephemeral port will be used and Default DAG will work properly. Note, the
ephemeral port must increment randomly or by single digits. If it's incremented by an even number, such
as two, or by the number of TMMs then it's possible that it will hash to the same TMM or a small set of
TMM s, which will negatively impact BIG-IP" system performance.

Key Points

» Port Based.
*  Works best when clients use ephemeral ports.
* Can work with 1 to n clients.




Disaggregation (DAG) Modes

Internet VLAN BIG-IP Devices in Internal Network

T T

1
(10.10.10.10:50000] Initial connection via ephemeral port to (20.20.20.20:60000)

h I
Default DAG
based on Seurce & Destination Ports

i

I I

I Il

| Forward messages to Sefver
i

I

I

l

T
(10.10.10.10:50001) Second connection via ephemeral port to (20.20.20.20:60000) |

New source port disaggregates
to a different TMM

}

I
I
I
I
I
I
}

! I I !

| | Forward messpges to Server

-

Figure 6: Default DAG example

Source/Destination DAG (SP-DAG)

The SP-DAG uses a hash of source IP (from client) and destination IP address (server). This mode should
be used when source and destination ports are hardcoded (for example 5060). In that case, a BIG-IP”
system requires multiple client IP address or multiple server IP addresses. Keep in mind, most
connections are initiated by the client and that's the "Source DAG" option. In this case, the "Destination
DAG" could be a single IP, but the source client IP should have more that a single IP address.

Key Points

+ [P Address Based
+  Works best when number of clients is equal to or more than the number of TMMs in BIG-IP" system.

* Performance will be impacted if clients consist of only a few SIP Proxy connections. In this case the
IP Address entropy will be too low to load balance the incoming packets across available TMMs.

Internet VLAN BIG-IP Devices in Internal Network
Subscriber VLAN

WebHost1 WebHost2 ‘ VS_EXTERNAL | | TMM1 | | TMMO | | VS_LOCAL | Clientl Client2
T T T

I I
! 1 (10.110.10.10:5060) Initial connection from unigle IP

SP-DAG
based on Source IP Address

|
Initial connection to IP(20.20.20.20:5060)

J

———————

'
"

i

SP-DAG 5
based on TARGET IP Address i

|

1

v

'

0

(10.10.10.11:5060) Second connection via diffgrent IP

MNew Source IP Address disaggregates
to a different TMM

T T
€

Initial onnection to IP (20.20.20.21:5060)

SP-DAG
based on TARGET IP Address

T 0
I
' '

L L L
WebHostl WebHost2 ‘ VS_EXTERNAL | | TrMM1 | | TMMO | | VS_LOCAL | Clientl Client2

Figure 7: Source/Destination DAG (SP-DAG) example

Round Robin DAG (RR-DAG)

RR-DAG was designed to overcome the low entropy limitations of Default DAG and SP-Dag; although
for UDP only. Furthermore, RR-DAG is hardware only and can't be used in a VE. Round Robin DAG
distributes traffic by sending each consecutive packet to a different TMM. It does not rely on the IP
address, or source port, of the client. The Round Robin DAG is configured on a per-VLAN basis.

32



BIG-IP Service Provider: SIP Administration

Key Points

+ UDP Only
* Requires hardware (not an option in VE)
» Sends each consecutive packet to a different TMM.

Uy

modify net vlan <vlan_name> dag-round-robin enabled

$ modify sys db dag.roundrobin.udp.portlist value "5060"

10.10:5060) Initial SIP Proxy Connection

RR-DAG, UDP anly =

send each message to the next TMM

RR-DAG 5
pick next TMM

There are hidden details here,
Peers and pools are not shown.

RR-DAG 5

pick next ThMM

e 3
RR-DAG 5
pick next ThMM
ge to SIP Server

RR-DAG L
pick next TMM

ard message to SIP S

e 5
RR-DAG 5
pick next TMM

TMMO TMML TMM2 TMM3 SIP Server

Figure 8: Round Robin DAG (RR-DAG) example

SIP-Proxy

33



Disaggregation (DAG) Modes

34



Deployment Use Cases

Deployment Use Cases

Basic Load Balancing (LB)

The "load-balancing" mode is used for scaling of capacity and/or providing high availability for SIP
signaling servers/proxies/gateways. It allows steering of SIP signaling traffic to a pool of servers based
on static SIP routes to spread the load over members of the pool. It provides Call-ID based load balancing
persistence. It is the default mode of operation and does not automatically handle media flows. BIG-IP
Via header is inserted by default for request messages and removed from response messages. Lasthop
information added to the Via header information is used for response routing and route lookup is skipped
for response messages.

In the load balancing operation mode, related media flows are not handled. The media flows associated
with the SIP signaling message are assumed to be routed via other devices or virtual servers.

The configurations in sip session profile: Insert-via, Custom-via, Honor-via and Do-not-connect-back are
inter-related.

Basic LB Example

In this example, you can see that a BIG-IP” system is adding and removing the top most Via such that the
message will return to the BIG-IP before being forwarded out to the caller.
Server 10.10.0.10

Server 10.10.0.11

r 3

INVITE sip:server@10.20.0.60 SIP/2.0
Via: SIP/2.0 10.10.0.1 [Lasthop]

Via: SIP/2.0/UDF 10.20.06 From: sip:Bob@10.20.06

From: sip Bob@10.20.0.6 i To: sip:server@10.20.0.60

To: sip:server@10.20.0.60 i Contact <sip:Bob@10.10.0.11=

Contact <sip:Bob@10.20.0 6>

SIP/2.0 200 OK
Via: SIP/2.0 10.10.0.1 Remove
Via: SIPI2.0/UDP 102006

INVITE sip:server@10.20.0.60 SIP/2.0 i ) . SIP/2.0 200 OK
Via: SIP/2.0/UDP 10.20.0.6 i MEEIGS0060 A060 Via: SIPI2.0/UDP 10.20.06
_Frrom_: sip:Eob@@‘DD.;DD.Dﬂgn : _ll—j:rjoE;Js;pﬁols@@"-ﬂﬂ;ﬂﬂ.ﬂﬂ?ﬂ
0. sipsenver 10. A ; serve ; RIK
Contact <sip:Bob@10.20.0.6= Contact =sip:Bob@10.10.0.11=
A 4

Caller 10.20.0.6 (Bob)

Figure 9: Basic load balancing example



Deployment Use Cases

Configuration

In a route, at least wildcard entries for UDP and TCP default routes must be specified.

Route entry - ["", "", "", peer-udp] (Wildcard entry, default route for UDP)
Route entry - ["", "", "", peer-tcp] (Wildcard entry, default route for TCP)

Load Balancing Configuration

ltm pool udp-default-pool {
members {

10.10.0.10:5060 {
address 10.10.0.10

}

10.10.0.11:5060
address 10.10.0.11

}

}

1ltm message-routing sip peer peer-udp {
pool udp-default-pool
}

1ltm message-routing sip route default-route-udp {
peers { peer-udp }

}

1ltm message-routing sip profile router siprouter-1b {
routes {
default-route-udp
}

}
ltm virtual sip-lb-udp {
destination 10.20.0.60:5060
mask 255.255.255.255
ip-protocol udp
profiles {
udp
sipsession
siprouter-1b

Load Balancing with Persistence

Persistence is configured through attributes in the "session" profile. Attaching a persistence profile to
Virtual server is an invalid configuration and results in a configuration error.

There are two persistence types (persist-types) available; session (default) and none. If persist-type is set
to "none", persistence is disabled. When persist-type is set to session, the persist-key specifies if BIG-IP
persists on Call-ID (the default value), Src-Addr (source address), or custom. Persistence records are kept
in SessionDB and therefore synchronized between TMMs and blades. Custom persist-key is specifically
for iRules to create customer specific persistence keys. An iRule script may modify the message's persist-
key during the SIP. REQUEST, SIP. RESPONSE or MR INGRESS events. The value of the message's
persist key after MR_INGRESS event is used for persistence lookup, if the "persist-key" is set to
"Custom".

Session Persistence

» Session persistence avoids a route lookup based on state recorded on the BIG-IP.

+ It guarantees those messages carrying the same persistence key are going to be delivered to the same
(L4) peer.

36



BIG-IP Service Provider: SIP Administration

+ Persistence entries are keyed by a value extracted from a message initiating a new session.

» The value used for the persist entry key, depends on the “persist-key” configuration attribute.

* When an existing persistence record is matched, the current message is delivered to the same (L4)
destination avoiding a route lookup and LB pick.

+ It is recommended to have the persist-timeout set to be greater than the transaction timeout, specified
in the SIP session configuration, as the lesser of the two is used when creating the persist record on
receiving of the initial SIP request message. The initial SIP request can be INVITE/SUBSCRIBE/
MESSAGE. Upon receiving of the response for the initial SIP Request message the persistence record
is updated with the persist-timeout value. (For any subsequent responses received the persist timeout
is updated for the persist record.)

Basic LB with Session Persistence Example

This diagram shows a call from Call-ID 1-2883 @10.20.0.2 being load balanced to Server 10.10.10.2 and
a call from 1-3000@10.20.0.6 being load balanced to 10.10.10.7 and the persist records created from
these calls when persistence is enabled with a key of Call-ID.

Server 10.10.10.2 Server 10.10.10.7

INVITE sip:serveri@10.20.0.60 SIP/2.0
Via: §IP/2.0 10.10.0.1 [Lasthop]

Via: SIP/2.0/UDP 10.20.0.6

From: sip:Bob@10.20.06

To: sip:server@10.20.0.60

Contact <sip:Bob@10.20.0.6=

INVITE sip:server@10.20.0.60 SIP/2.0
Via: 51P/2.0 10.10.0.1 [Lasthop]

Via: SIP/2.0/UDP 10.20.06

Call-ID: 1-3000@10.20.0.6

Itm virtual SIP_MR {
destination 10.20.0.60:sip
ip-protoc ol udp

Persistence Record

Key

Value

Router instance + 1-
2883@10.20.0.8

length, '
transport_type.
transport_name,

Router instance + 1-
3000@10.20.0.6

length,
transport_type,
transport_name,

INVITE sip:server@10.20.0.60 SIP/2.0
Via: SIP/2.0/UDP 10.20.0.6
Call-iD: 1-2883@10.20.06

VIP 10.20.0.60 : 5060

Caller 10.20.0.6 (Bob)

SELF-IP 10.10.0.1 : 5060

mask 255.255.255.255

pool sip-profile

profies {
siprouter-persist { }
sipsession { }
tep{}

¥
tm message-routing sip profie
router siprouter-persist {
persistence {
persist-key ${Call-1D}
persist-timeout 180
persist-type session

INVITE sip:server@10.20.0.60 SIP/2.0
Via: SIP/2.0/UDP 10.20.0.6
Call-ID: 1-3000@10.20.0.6

Figure 10: Basic load balancing with session persistence example

Configuration

Load Balancing Configuration

ltm pool session-pool {
members {
10.10.10.2:5060 {
address 10.10.10.2

}

37



Deployment Use Cases

}

10.10.10.7:5060 {

}

address 10.10.10.7

ltm message-routing sip peer sip-session-peer {
pool session-pool

}

ltm message-routing sip route sip-session-route {
peers {

}

sip-session-peer }

ltm message-routing sip profile session sip-profile-1 ({
defaults-from-sipsession

persistence {

persist-type session

persist-key Call-ID

persist-timeout 30

}

ltm message-routing sip profile router siprouter-persist ({

operation-mode load-balancer

routes {
sip-session-route

}

}

session {

}

transaction-timeout 10

ltm virtual sipmr-persist-session {
destination 10.20.0.60:5060
message-routing

profiles {

udp

sip-profile-1
sip-router-persist

SIP ALG without Address Translation

38

In Application Level Gateway (ALG) operation mode, the system will create media flows based on SDP
offer/answer SIP message. The callee may begin sending media when they receive an INVITE/SDP
message and before responding with SIP provisional or final response. A deny listener will be created to
discard early media packets received before provisional SIP response with SDP. Media flows will be
created on provisional or final SIP response with SDP and the corresponding deny listeners will be
deleted. A call table is used to track calls and their associated media flows.

Other SIP request/response messages, like REGISTER, OPTIONS, SUBSCRIBE, NOTIFY, etc are
simply passed through the system.

In ALG mode, "per-client" mode is the only natively supported connection-mode for the peer. All other
modes must be handled via iRules. By default, there are no routes attached to the siprouter profile and
persistence is disabled. BIG-IP does not insert Via header by default for request messages. The response
messages are sent based on the associated "per-client" connection.

The ALG operation mode has two operating contexts, firewall (FW) and source address translation
(SNAT). The operation-mode attribute of a SIPRouter profile is used to set a SIP routing instance into
ALG mode. The operating context is automatically detected by the source address translation mode of the
outgoing connection.



BIG-IP Service Provider: SIP Administration

FW ALG mode

* No address translation
* No subscriber registration tracking

* No separate I[P Address support for RTCP flows. Both RTP and RTCP use the same connection IP
Address.

e Both TCP and UDP control connections wont terminate when 2000K for BYE or ERROR for
INVITE is handled. This option is configurable.

+ Calls wont be dropped in case of media flow collision. BIG-IP will attempt to create media channel
(RTP/RTCP).

* There could be overlapped calls if the multiple caller/callee has same set of media connection
attributes. Thus resulting in partial media for a call, for example only audio or video when one of the
connection attribute overlaps with another call.

* Media channels once created will updated solely by the media activity, re-invites won't update the idle
timeouts of the existing channels. If the re-invites recreate the new media channels, its idle timeout
will be set to its default value as configured.

+ For 183 Early Media: The media channels gets established upon receiving 183 for Invite; 2000K
following 183 response will not affect the existing call. This statement relies on the assumption that
both 183 and 2000K have same set of SDP parameters.

FW ALG Mode Requirements

* Must allow external access to any address for TCP/UDP port 5060

* There should be a virtual server to receive SIP messages on all vlans that expect SIP requests or
responses

Request Routing

The request messages are forwarded to the destination IP and port. No message headers are modified. For
each client, a new connection is established to the destination IP and port.

Response Routing

For response messages, the MR maintains the association of the per-client connection and the response
messages are sent on the associated client-side connection. No headers are modified on the response.

ALG without Source-address-translation Example

In this example, the default router profile "siprouter-alg" for ALG has no routes attached to it and the
operation-mode is "application-level-gateway".

39



Deployment Use Cases

FProxy Server
101005

&
E
&
E
&
E
&
E
&
E
&
E
&
E
&

Extarnal Metwo

VIP 0.0.0.0 (wildcard)

Internal Netwar

s B

Client-1 Client-2
10.2006 102007

Figure 11: ALG without source address translation example

Configuration

Load Balancing Configuration

ltm message-routing sip profile router siprouter-alg {
app-service none
media-proxy {
media-inactivity-timeout 120
max-media-sessions 10
}
session {
max-session-timeout 7200
transaction-timeout 180

40



BIG-IP Service Provider: SIP Administration

operation-mode application-level-gateway
}
ltm virtual /Common/vs_sip alg udp {
destination /Common/0.0.0.0:5060
ip-protocol udp
mask any
profiles {
/Common/sipsession _alg { }
/Common/siprouter alg { }
/Common/udp { }
}
source 0.0.0.0/0
translate-address disabled
translate-port disabled

ALG without Source-address-translation Sequence Diagram

g % 4

CALLER BIGIP-FW-ALG SIP PROXY CALLEE

INVITE

Create Deny Listener
for Media Traffic

INVITE
100 Trying ———————
180 Ringing ——————— #— 160 Ringing
183 Session Progress +4— 183 Session Progress —
200 OK g 200 0K
= Delete Deny Listener '

INVITE >

¢—— 100 Trying
44— 180 Ringing
44— 183 Session Progress

= Establish RTP & RTCF Channels
< RTCP ( Media Control Channel )

RTP ( Media Channel)

200 0K
ACK

ACK

L J

N

ACK >

BYE »
200 0K .

BYE > BYE >

L]
L]
= Delete Media flows E
L]

&

] 200 OK 200 OK

Figure 12: ALG without source address translation sequence diagram

41



Deployment Use Cases

42



High Availability (HA) Failover

High Availability (HA) Failover

Overview

A BIG-IP" system provides high availability via packet mirroring across two chassis. When discussing
redundancy, one should consider more than the initial failover. If the backup chassis also fails a fail-back
will be required. The following tables provides a quick summary of the initial failover and the fail-back
scenarios. Note, a BIG-IP system does not support Geo-Redundant failover. In other words, a BIG-IP
system supports the concept of a local HA Pair. However, a BIG-IP system does not support a second HA
Pair which will take over if the first HA Pair fails. This type of scenario is required where multiple
redundant data centers are available to handle geographic failure scenarios.

SIP HA Support

Table 17: SIP HA Support

Control Media
Messages
Failover (active failed) Supported Supported
Failback (new active failed after old | Supported Partial Support
active came back online)

The above table shows that after the initial failover, if a second failover happens, the media streams,
created after the failover, will be maintained. However, media streams created prior to the initial failover
will be dropped.

Configuration Guideline

For each BIG-IP in Traffic Group

1. Check the tmm count to be same on each blade as well as each device.

a. tmsh list sys db provision.tmmcountactual.
2. Load the stable build from your branch. (Make sure it’s the same build on each device)
Load the default config. (Start Fresh)

w

a. tmsh load sys config default.

Configure hostname/users on each device

Provision the device with Management — “Small”, LTM — “Nominal”

Exit wizard by clicking ‘Finished’ on each device

Create vlans (internal/external/HA — advised to create 3 vlans to keep traffic discrete)

a. GUIL

N, e

a. Network >> vlans >> new
b. TMSH:



High Availability (HA) Failover

Primary BIG-IP

44

a. tmsh create net vlan <VLAN NAME> interfaces add {1.1 {tagged}} tag
<TAG_ID>

. Create self-ip for each vlan and floating self-ip for both internal and external vlan ( internal,external

and HA- with traffic-group-local-only and internal float, external float with traffic-group-1)
a. GUIL:

a. Network >> self-ips >> new
b. TMSH:

a. tmsh create net self <SELF IP NAME> address <IP_ADDRESS/PREFIX> allow-
service default traffic-group <TRAFFIC-GROUP-NAME> vlan <VLAN NAME>.
Set Config sync address:

a. GUL:

a. Device Management >> Devices >> (self device) >> Device Connectivity >> ConfigSync
b. Specify HA self ip
b. TMSH:

a. tmsh modify cm device <DEVICE NAME> configsync-ip <SYNC SELF IP>

10. Set Mirror address (if mirroring is desired): (For clusters make sure network mirroring is “Between

Clusters”.)
a. GUIL:

a. Device Management >> Devices >> (self device) >> Device Connectivity >> Mirroring
b. Specify HA self ip
b. TMSH:

a. tmsh modify cm device <DEVICE NAME> mirror-ip <MIRROR SELF IP>

11. Set Failover unicast address(es): (GUI preferred)

a. GUIL

a. Device Management >> Devices >> (self device) >> Device Connectivity >> Failover
b. Add
c. Specify HA self ip (as well as mgmt. Ip for backup)

b. TMSH:

a. tmsh modify cm device <DEVICE NAME> unicast-address { { effective-ip
<HA TP ADDRESS>} { effective-ip <MGMT_IP_ADDRESS>}}

. Discover device(s) for trust: (GUI Preferred)

a. GUIL:

a. Device Management >> Device Trust >> Peer List
b. Add...
c. Enter IP and credentials for peer device

b. TMSH:

a. tmsh modify cm trust-domain /Common/Root ca-devices add
{ <IP_OF REMOTE DEVICE>} name <NAME OF REMOTE DEVICE> username admin
password <ADMIN PASSWORD>

. Each device should now have a trust-sync created device group (not visible) and should show as ‘In

Sync’ and ACTIVE

. Create a device-group of type sync-failover



BIG-IP Service Provider: SIP Administration

a. GUIL

g.

e an T

Device Management >> Device Groups
new

Enter name

Specify type of sync-failover

Specify network failover

Add both devices

Save

b. TMSH:

a.

tmsh create cm device-group <DGFO NAME> devices add {<DEVICE 1 NAME>..
<DEVICE 2 NAME>} type sync-failover network-failover enabled

4. Perform initial sync of device-group failover.

a. GUI:

a.
b.

Device Management >> Overview >> Select device-group failover >> Select a device
Click ‘Sync’

b. TMSH:

a.

tmsh run cm config-sync to-group <DGFO NAME>

5. Devices should now show as ‘In sync’, but one should be ACTIVE the other STANDBY.

45



High Availability (HA) Failover

46



IRule Support

IRule Support

Overview

An iRule is a powerful and flexible feature within the BIG-IP” local traffic management system that you
can use to manage your network traffic. It allows operators to implement custom behavior beyond the
native capabilities of the BIG IP system.

MREF SIP provides a set of iRule events which are raised during message processing and routing which
allow operators to inspect and edit the SIP messages. They allow operators to forward, route, reject or
drop messages.

Events order for SIP REQUEST message:

CLIENT DATA (or SERVER_DATA) -> SIP. REQUEST -> MR_INGRESS -> MR_EGRESS ->
SIP. REQUST_SEND

Events order for SIP RESPONSE message:

SERVER_DATA (or CLIENT DATA) -> SIP_ RESPONSE -> MR_INGRESS -> MR_EGRESS ->
SIP_ RESPONSE_SEND

MRF iRule Events and Commands

MRF Events

Table 18: MRF Events

Event Description

MR _INGRES | This event is raised when a message is received by the message proxy and before a
S route lookup occurs. Setting the route for a message will bypass route lookup.

MR _EGRES | This event is raised after the route has been selected and processed and the message is
S delivered to the mr_proxy for forwarding on the new connflow.

MR _FAILED | This event is raised when a message has been returned to the originating flow due to a
routing failure.

MRF Commands

Table 19: MRF Events

Command Description

MR ::instance Returns the name of the current mr_router instance. The instance name will be
the same name as the router profile.

MR::protocol Returns ‘generic, ‘sip’ or ‘diameter’

MR::store <name> ... | Stores a tcl variable with the mr_message object. This variable will be delivered
with the message to the egress connflow. Adding variables does not effect the
content of the message




iRule Support

48

Command

Description

MR::restore [<name>

2

Returns adds the stored variables to the current context tcl variable store. If no
name is provided, it will add all stored variables.

MR::peer <name>

Returns the content of the named peer. If a local peer has been created with the
provided name (using MR::peer <name> ...), the local peer's contents will be
returned. If a local peer has not been created with the provided name, the static
peer from configuration will be returned. The returned value will be formatted
as:

(versions 11.5 - 12.1)

<destination> using <transport>

where:

destination = <destination_type> "<destination_value>"
destination_type = pool | virtual

transport = <transport_type> "<transport name>"
transport_type = virtual | config

for example:

pool "/Common/default pool" using config "/Common/
sip udp_ tc"

(version 13.0 +)

<transport> <destination>

where:

destination = <destination_type> <destination_value>
destination_type = pool | virtual

transport = <transport type> <transport name>
transport_type = virtual | config

for example:

virtual /Common/sip tcp vs host [10.2.3.4]1%0:5060

MR::peer <name>
[[virtual

<virtual name>] OR
[config
<transport_config na
me>]] [[host <host
tuple>] OR [pool
<pool name>]]

Defines a peer to use for routing a message to. The peer may either refer to a
named pool or a tuple (IP address, port and route domain iD). When creating a
connection to a peer, the parameters of either a virtual server or a transport
config object will be used. The peer object will only exist in the current
connections connflow. When adding a route (via MR::route add), it will first
look for a locally created peer object then for a peer object from the
configuration. Once the current connection closes, the local peer object will go
away.

MR::peer <name>
[[virtual

<virtual name>] OR
[config
<transport_config na
me>]] [[host <host
tuple>] OR [pool
<pool name>]] ratio
<ratio_value>

Defines a peer to use for routing a message to. The peer may either refer to a
named pool or a tuple (IP address, port and route domain iD). When creating a
connection to a peer, the parameters of either a virtual server or a transport
config object will be used. The peer object will only exist in the current
connections connflow. When adding a route (via MR::route add), it will first
look for a locally created peer object then for a peer object from the
configuration. Once the current connection closes, the local peer object will go
away. Adding the ratio keyword allows setting the ratio of the peer.




BIG-IP Service Provider: SIP Administration

Command

Description

MR::message lasthop

Returns the message's lasthop (details of the connection that originated the
message). The lasthop is presented as <TMM number>:<FlowID>

for example

0:800000000005

MR::message Returns the message's nexthop (details of the connection the message is to be
nexthop forwarded to). If the new_nexthop parameter is present, a nexthop may be set
for the message. The nexthop is formated as <ITMM number>:<FlowID>
for example
0:800000000029
MR::message Sets the message's nexthop (details of the connection the message is to be
nexthop forwarded to). The new_nexthop parameter is present, a nexthop may be set for

<new_nexthop>

the message. The nexthop is formated as <TMM number>:<FlowID>

MR::message route

Returns a rendering of the mr_route value selected for this message. The
returned value will be formatted as:

(versions 11.5 - 12.1)

{ <destination> using <transport> [<destination> using <transport>] }
where:

destination = <destination_type> "<destination value>"
destination_type = pool | virtual

transport = <transport type> "<transport name>"

transport_type = virtual | config

for example:

{ pool "/Common/default pool" using config "/Common/
sip udp_ tc" host "[10.2.3.4]%0:5060" using virtual "/
Common/sip tcp vs" }

(version 13.0 +)

<transport> <destination> [<transport> <destination>]
where:

destination = <destination_type> <destination_value>
destination_type = pool | host

transport = <transport_type> <transport name>
transport_type = virtual | config

for example:

virtual /Common/sip tcp vs host [10.2.3.4]1%0:5060 config /
Common/sip udp tc pool /Common/default pool

MR::message route
peer <peer_name>
[peer <peer name>]

Instructs the route table to route the message to the provided peer list. This form
of the MR::message route command takes the names of configured peers or
dynamic peers created via the MR::peer command.

49



iRule Support

50

Command

Description

MR::message route
mode <sequential |
ratio> peer
<peer_name> [peer
<peer_name>|

Instructs the route table to route the message to the provided peer list. The peer
list will have the peer-selection-mode set the the provided mode. This form of
the MR::message route command takes the names of configured peers or
dynamic peers created via the MR::peer command.

MR::message route
[[virtual

<virtual name>] OR
[config
<config_name>]]
[[host <host tuple>]
OR [pool

<pool name>]]

Instructs the route table to route the message to the provided host or pool.

MR::message
attempted

Returns a list of hosts that the message has been routed towards. The returned
value will be formatted as:

<transport> <destination> [<transport> <destination>]
where:

destination = <destination_type> host <host value>
transport = <transport_type> <transport name>
transport_type = virtual | config

for example:

virtual /Common/sip tcp vs host [10.2.3.4]1%0:5060 config /

Common/sip udp tc host [20.3.4.5]%0:5060

MR::message
attempted none

Clear list of attempted hosts from the message.

MR::message
attempted [[virtual
<virtual name>] OR

Sets the list of attempted hosts in the message. If set before routing (during
MR_INGRESS or MR FAILED), the hosts in the attempted hosts list will be
avoided when performing a 1b_pick.

[config

<config_name>]]

[host <host tuple>]

M.R:.:message Returns the transport type, transport name and ip address/port/route domain ID
originator of the originator of the message.

The returned value will be formatted as:
<transport> <destination>

where:

destination = host <host_value>

transport = <transport type> <transport name>
transport_type = virtual | config

for example:

virtual /Common/sip tcp vs host [10.2.3.4]1%0:5060

MR::message drop
<reason>

Drops the current message




BIG-IP Service Provider: SIP Administration

Command Description
MR::message Returns the number of attempts to route this message that have occurred.
retry_count

MR::message status

Returns the status of the routing operation (valid only at MR_EGRESS).
Possible values are: "unprocessed", "route found", "no route found", "dropped",
"queue_full", "no connection", "connection closing", " persist

key in use", and "standby dropped"

m"non

internal error",

MR::flow_id

Returns the flow_id of the current connection (in hex).

MR::transport

Returns the transport type and name of the current connection.
for example

config /Common/sip udp_ tc

MR::prime [config
<config_name>] OR
[virtual

<virtual name>]
[host <host tuple>]
OR [pool <pool
name>]

Initialize a connection to the specified peer (or active poolmembers of the
specified pool) using the specified transport.

MR::retry

This command is only available during MR_FAILED event. It re-submits the
current message for routing to an alternate pool member. If the previous routing
attempt set the message's nexthop or route, these fields should be cleared before
retrying routing (use "MR::message nexthop none" and "MR::message route
none"). The message's route_status will automatically be reset by this
command. If the the retry also fails and the retry count has reached the
max_retries setting in the router profile, the message will be given a "Max
retries exceeded" route status.

MR::max_retries

Returns the configured max_retries of the router instance.

MR::connection_insta
nce

Returns the instance number and number of connections of the current
connection within a peer. It will be formatted as "<instance number> of
<max_connections>". For incoming connections, this will return "0 of 1".

for example

0 of 5

MR::connection_mod
e

Returns the connection_mode of the current connection as configured in the
peer object. Valid connection_modes are "per-peer, per-blade, per-tmm and per-
client". For incoming connections, this will be "per-peer".

Route Status

Table 20: Route Status

Status

Description

unprocessed

Message has not been submitted for routing yet

route found

Route has been found

no route found

A route has not been found

dropped

The message has been dropped by a MR::message drop command

51



iRule Support

Status

Description

queue full

The message was returned back to the originator because one of the MRF
processing queues had reached its configured limit.

no connection

The message was routed to a connection which was no longer present.

connection
closing

The message was queued to be send on a connection which was closed.

internal error

The message was unable to be delivered due to an internal error. For example, out of
memory.

persist key in use

Two messages routed using the same persistence key simultanously tried to create
the same persistence record.

standby dropped | The message is a mirrored message running on a standby device and was dropped as
part of routing to avoid creating an outgoing connection on the standby device.

Max retries The message was returned to the originator because the latest attempt to retry

exceeded routing exceeded the configured max retry count.

SIP iRule Events and Commands

52

All the SIP/SDP iRule commands specified in the following links are supported.

https.//devcentral.f5.com/wiki/iRules.SIP.ashx

https.//devcentral.f5.com/wiki/iRules.SDP.ashx

Table 21: SIP iRule events and commands

Command Description Valid SIP Events Valid MR Events
SIP::persist reset Deletes any persistence | gTp REQUEST MR INGRESS
entry with the current B B
persist key of this SIP_ RESPONSE MR_EGRESS
message. SIP REQUEST SEND |MR FAILED
SIP RESPONSE SEN
D
SIP::message Returns the full content | g1p REQUEST MR INGRESS
of the request or B B
response message. SIP_ RESPONSE MR_EGRESS
SIP. REQUEST SEND |MR FAILED

SIP_ RESPONSE SEN
D

SIP::persist [new-
persist-key]

Returns the persistence
key being used for the
current message. If new-
persist-key is provided,
the existing persistence
key is replaced. The
value of the new-persist-
key MUST be one of
valid header value in the
message. A header name
should not be given as

SIP_REQUEST MR_INGRESS [For
response messages returns

EMPTY string]



https://devcentral.f5.com/wiki/iRules.SIP.ashx
https://devcentral.f5.com/wiki/iRules.SDP.ashx

BIG-IP Service Provider: SIP Administration

Command

Description

Valid SIP Events

Valid MR Events

the new-persist-key
value.

SIP::route_status

Returns the routing
status of the current
message. Valid status are
{ "unprocessed", "route
found", no route found",
"dropped", "queue full",
"no connection",
"connection closing",
"internal error" }. "route
found" is based on the
SIP RouteTable finding
a route. It is not effected
by the proxy’s ability to
create a connection, so
even if the server is not
listening on the
specified address or
marked down, it might
still return status as
"route found" if the
RouteTable is able to
find the route.

SIP. REQUEST SEND
SIP_RESPONSE_SEN

MR_INGRESS
MR_EGRESS
MR_FAILED

SIP::persist replace

Route the message using
the route table (or iRule
command). On
completion of routing,
add a new persistence

SIP. REQUEST
also operates in

SIP. RESPONSE

MR_INGRESS
MR_FAILED

also operates in

record if one does not SIP_ REQUEST _SEND | MR _EGRESS
exist. I an existing SIP RESPONSE SEN
persistence record D B
exists, replace the
persistence record with
the route selected.
SIP::persist bypass Route the message using | SJp REQUEST MR INGRESS
the route table (or iRule - B
also operates in MR _FAILED

command). On
completion of routing,
add a new persistence

SIP. RESPONSE

also operates in

record if one does not | SIP_REQUEST_SEND |MR_EGRESS
exist. If an existing SIP RESPONSE SEN
persistence record D B
exists, the existing
record will not be
replaced and the
selected route will not
be modified.
SIP::persist ignore Route the message using | SJp REQUEST MR INGRESS
the route table (or iRule - B
also operates in MR _FAILED

command). The results
of the routing will not be

SIP_RESPONSE

also operates in

53



iRule Support

Command Description Valid SIP Events Valid MR Events
stored in the persistence SIP REQUEST SEND |MR_EGRESS
table. B B B
SIP_RESPONSE SEN
D
SIP::persist [persist- | Update the persistence | SJp REQUEST MR INGRESS
key] [new-timeout- kay and timeout to the h . B
value] new persist-key and also operates in MR_FAILED
new-timeout-value. The | g1p RESPONSE also operates in
persistence key will be
used for persistence SIP REQUEST SEND |MR EGRESS

lookup, add and update. | g[p RESPONSE SEN
If a persistence valueis |p B

added or updated, the
provided timeout will be

used.

SIP::persist use Use the current SIP REQUEST MR INGRESS
persistence record for - -
routing the message if also operates in MR FAILED
present. If not present, | gJp RESPONSE also operates in
route the message using
the route table. On SIP REQUEST SEND |MR EGRESS

cornpletion ofrouting, SIP RESPONSE SEN
add a new persistence | B

record if one does not
exist. If an existing
persistence record
exists, repleace the
message's selected route
with the destination
stored in the persistence
entry.

Persist iRule Example
Get Persist Key
when SIP REQUEST {

log localO. "Persist-key = [SIP::persist]"
}

Set Persist Key

when SIP REQUEST {

SIP::persist [SIP::header value From]

log localO. "New Persist-key = [SIP::persist]"
}

SIP::header subcommands

Following subcommands are added to SIP::header commands. The values in [square braces] are optional-
fields.

54




BIG-IP Service Provider: SIP Administration

Table 22: SIP::header subcommands

Command Name

Description

SIP::header count [header-name]

Returns the count of the SIP headers. If "header-name" is
specified count the specific headers.

SIP::header exists "header-name"

Returns whether SIP header specified by name exists at least
once.

SIP::header values [header-name]

Returns list of the values of all the instances of SIP header
values. If optional argument [header-name] is specified retrieve
all values of the specified header-name.

SIP::header at "index"

Returns SIP header at "index", index is the Nth line from the SIP
header. Returns only the name of the header.

SIP::header replace "header-name"
"header-value" [index]

Replaces first instance of the header specified by "header-name".

New entry is added if not present already. If [index] optional
argument is present, replace the header name at [index]th
position.

SIP::header names

Returns list of all the SIP header names.

55



iRule Support

56



Troubleshooting

Troubleshooting

Log Messages

Configuration Validation Errors

Table 23: Configuration Validation Errors

Configuration Failure Condition Error Message

Virtual server config does not have SIP router | SIP session profile requires SIP router profile also to
profile but has SIP session profile be assigned to the virtual server <name>

Virtual server config does not have SIP session | SIP router profile requires the SIP session profile to
profile but has SIP router profile also be assigned to the virtual server <name>

Deleting a route which is in use by a SIP router | The route <name> is referenced by one or more router

profile profiles

Deleting a peer which is in use by a SIP route. | The peer <name> is referenced by one or more SIP
routes.

Duplicate route attached to router. Same [request-uri, from-uri, to-uri, virtual-server-

name] combination in route <name> exists in the
profile <name>

Peer refers to non-existent route. Peer <name> refers to non-existing Static-Route
<name>

Route refers to non-existent peer. Static Route <name> refers to non-existing Peer
<name>

Connection Termination Reasons

If logging of reset cause is enabled via the tm.rstcause.log db variable, the reason for connection
termination is logged to /var/log/Itm.

Reset reason examples:

Table 24: Connection Termination Reasons

Reason Why Text Description

SIP Error Unexpected internal signaling

SIP parser error Unable to parse SIP message on a stream transport
(like TCP)

MRF SIP Troubleshooting Logs

If MRF SIP diagnostic log events are enabled via the log.mrsip.level db variable, the following events
will be logged to /var/log/tmm?.



Troubleshooting

58

Table 25: MRF SIP Troubleshooting Logs

Event Text Log Description
Level

MR SIP: Invalid config attribute | Error An unexpected configuration attribute was found. For

<name> in profile <name> example, an unsupported persist-key was used.

MR SIP: Missing header <name> | Error One of the mandatory SIP header attributes (To, From,

in the message Call-ID, Route, Via) was missing. Since the message
will not be accepted without the required attributes, this
error occurs when an iRule script removes all instances
of one of the required scripts after parsing.

MR SIP: Decrypt branch Error Unable to decrypt our generated Via header.

parameter failed with error :

<error_text>

MR SIP: Encrypt branch Error Unable to encrypt our generated Via header.

parameter failed with error :

<error_text>

MR SIP: Generation of AES Error Unable to generate AES encryption key for Via header

encryption key failed encryption.

MR SIP: Parse error reading Notice Unable to parse a number for the specified value near

number for <value> value near the specified offset of an input SIP message. If error

<offset> Status code <status response is configured, the specified status code

code> response will be returned and the corresponding stats
counter will be incremented.

MR SIP: Parse error bad sip Notice Invalid sip protocol version near the specified offset of

protocol version in headline near an input SIP message. If error response is configured,

<offset>. Status Code <status the specified status code response will be returned and

code> the corresponding stats counter will be incremented.

MR SIP: Parse error invalid or Notice The SIP URI in the headline of an input SIP message is

malformed uri in headline near invalid or malformed. If error response is configured,

<offset>. Status Code <status the specified status code response will be returned and

code> the corresponding stats counter will be incremented.

MR SIP: Parser error invalid Notice The headline of the incoming sip message is invalid

headline near <offset>. Status near the specified offset. If error response is configured,

Code <status code> the specified status code response will be returned and
the corresponding stats counter will be incremented.

MR SIP: Parser error to many Notice The incoming SIP message contains to many headers to

headers near <offset>. Status be processed. The header near the specified offset

Code %d. should be the first header that exceeded the limit. If
error response is configured, the specified status code
response will be returned and the corresponding stats
counter will be incremented.

MR _SIP: Parser error extraneous | Notice The incoming SIP message contains a extra field in a

header field near <offset> Status
code <status code>

header near the specified offset. If error response is
configured, the specified status code response will be
returned and the corresponding stats counter will be
incremented.




BIG-IP Service Provider: SIP Administration

sessions <count>/ <count limit>.
Error Code <code>

Event Text Log Description
Level

MR_SIP: Parser error header to | Notice The incoming SIP message has a header line that is too

large near <offset>. Status Code long near the specified offset. If error response is

<status code>. configured, the specified status code response will be
returned and the corresponding stats counter will be
incremented.

MR_SIP: Parser error missing Notice The incoming SIP message is missing a required header.

header code <code>. Status Code The displayed code is a bit-field that can be decoded

<status code>. with access to the internals of the sip parser. If error
response is configured, the specified status code
response will be returned and the corresponding stats
counter will be incremented.

MR_SIP: Parser error CSEQ Notice The incoming SIP message has a mis-match between

method does not match headline the headline tag. If error response is configured, the

tag <tag> : <tag>. Status Code specified status code response will be returned and the

<status code> corresponding stats counter will be incremented.

MR _SIP: Parser max-forwards | Notice The incoming sip message has been forwarded too

value has reached zero. Status many times while being routed, causing the max-

Code <status code> forwards value to be decremented to zero. The BIG-IP®
system will not process this message. If error response
is configured, the specified status code response will be
returned and the corresponding stats counter will be
incremented.

MR _SIP: Server in maintenance | Notice The server has been placed in maintenance mode and

mode. Status Code 503 will not process traffic. If error response is configured,
status code 503 response will be returned and the
corresponding stats counter will be incremented.

MR _SIP: Loop detected. Status | Notice The incoming SIP message contains a SIP round loop.

code 482. If error response is configured, status code 482 response
will be returned and the corresponding stats counter will
be incremented.

MR _SIP: Missing Media Notice The incoming SIP message is missing required Media

Connection attributes. Status Connection Attributes. If error response is configured,

Code 488. status code 488 response will be returned and the
corresponding stats counter will be incremented.

MR _SIP: Too many media Notice The number of media sessions in <count> has exceeded

the configured <limit count>. If error response is
configured, the specified code response will be returned
and the corresponding stats counter will be incremented.

SIP Troubleshooting Logs

If MRF SIP diagnostic log events are enabled via the log.mrsip.level db variable, the following events

will be logged to /var/log/tmm?.

59




Troubleshooting

Table 26: SIP Troubleshooting Logs

Event Text Log Description

Level
Max Global Registration | Error MR SIP: Subscriber registration failed %s, configured max
limit reached global registration value :%u reached
Concurrent Session Per Error MR SIP: concurrent session per subscriber limit %u reached,
Subscriber limit reached subscriber cannot make calls: %s

Non registered subscriber | Error MR SIP: non registered subscriber %s, call dropped. Change

call out SIP session configuration to allow non registered subscriber call
out

Subscriber registration Error MR SIP: subscriber %s, unable to register, received non-2xx

failed SIP response"

HUDEVT SA COOKIE | Error MR SIP: HUDEVT SA COOKIE PICKED event error

PICK event failed

Listener creation failed Error MR SIP: Failed to create Listener %K for the subscriber %s

Listener deleted Error MR SIP: Listener deleted due translation lookup failure %K

sipdb Tool
The sipdb tool will be used to display or delete the persistence or media records from session database.
The persistence records are created in LB mode when persistence is configured.
The media records are created in ALG mode.

Usage

sipdb [options]

sipdb --persist [--delete] [--router=name] [--key=value] [--type=persistence type] [--
ipproto=protocol] [-verbose]

sipdb --media [--delete] [--router=name] [-key=call-id]

sipdb --register [-delete] [--router=name] [-key=subscriber uri]

sipdb --help

Options

Table 27: Options

Option Description

--persist Indicates persistence mode. This option should be used to display or delete

- persistence records. This is the default mode.

Each record displays the persistence type, persistence key, originating ip:port,
destination ip:port, protocol and the time remaining.
The records are grouped by the SIP router profile.

To delete the persistence record the record key has to be specified. Details are
given below in the example section

--media Indicates media mode. This option should be used to perform operations on media

records.
-m

60



BIG-IP Service Provider: SIP Administration

Option Description
The media mode displays the Callid, Origination IP:RTP Port, RTCP Port,
Interface name Destination IP: RTP Port, RTCP Port, Interface name.
In ALG-Translation mode, the output displays the translated address for the
subscriber.
--register Indicates register mode. This option should be used to perform operations on
i register records.
The register mode displays the subscriber private address and translated address
and the lifetime of the registration.
--help Displays the help text.
-h

--router = name

The sip router profile name. This option is used to filter the output matching
records for the specified SIP router profile.

-r name
The default partition '/Common' should be specified. For example '/Common/
siprouter’

The option can be used for both modes i.e. persist and media modes.

--key=value Specifies the key for the session record. The option is used to filter the display with

K value the specific key or delete a specific key.

For persistence mode the key is either a SIP Call-ID, Source Address or Custom
value.

For Media mode the key is SIP Call-ID.

For register mode the key is the subscriber uri.

--delete To delete a particular record.

-d This option along with the mode and the key details specifies the record to be
deleted.

For persistence mode to delete a record the router name, key, persistence type and
ip proto values have to be specified.
To delete a media entry the router name and SIP Call-ID needs to be specified.
--type = value Type of persistence entry.
-t value The option is applicable when deleting a persistence record.

Following are the applicable values.

[Clc] For Call-ID id persistence

[S]s] For Source Address persistence

[Olo] For Custom type persistence
--ipproto = value | Either TCP or UDP.

-p value The option is applicable when deleting a persistence record.
--verbose This option is applicable in persistence mode.
-v Displays the destination transport and pool name in addition to the default display.

61



Troubleshooting

Examples
Default Display of Persistence Entries
#sipdb
Router: /Common/siprouter Number of entries: 1
Key Originator Destination Proto Timeout
C 1-88340@10.10.20.7 10.10.20.2:35462 10.10.10.2:5060 TCP 175
Router: /Common/siprouter alg Number of entries: 1
Key Originator Destination Proto Timeout
C 1-88350@10.10.20.7 10.10.20.2:35462 10.10.10.2:5060 TCP 175
Verbose Display of Persistence Entries
# sipdb -v
Router: /Common/siprouter Number of entries: 1
Key Originator Destination Proto Timeout
Transport Pool Name
C 1-88720@10.10.20.7 10.10.20.2:56913 10.10.10.2:5060 TCP 175
vs:vs_sip sip pool
Router: /Common/siprouter alg Number of entries: 1
Key Originator Destination Proto Timeout
Transport Pool Name
C 1-88740@10.10.20.7 10.10.20.2:56913 10.10.10.2:5060 TCP 175
vs:vs_sip sip pool

To filter the above record for a particular SIP router profile name

#sipdb --persist -router /Common/siprouter --verbose
#sipdb --persist —-router=/Common/siprouter --verbose
#sipdb --persist -r /Common/siprouter

Router: /Common/siprouter Number of entries: 1
Key Originator Destination Proto Timeout
Transport Pool Name

C 1-8872@10.10.20.7 10.10.20.2356913 10.10.10.2:5060 TCP 175
vs:vs sip sip pool

To filter the record for a persistence key

#sipdb --persist -key 1-88720@10.10.20.7 --verbose

Router: /Common/siprouter Number of entries: 1
Key Originator Destination Proto Timeout
Transport Pool Name

C 1-8872@10.10.20.7 10.10.20.2:56913 10.10.10.2:5060 TCP 175
vs:vs sip sip pool

To delete the above record

sipdb persist --delete --key 1-88720@10.10.20.7 --router /Common/siprouter --type C --
ipproto TCP

62



BIG-IP Service Provider: SIP Administration

Record Successfully deleted

Moving router and/or virtual to different traffic group

The BIG-IP” system does not support changing the traffic group or a router and/or virtual server. MRF
stores state that has a different lifetime than a connection in an internal in-memory database (known as
session db). This includes persistence tables (SIP LB), call tables (SIP ALG), and registrations tables
(SIP ALG), etc. Records stored in session db are auto replicated between the active and standby device.
Part of the key for each entry in the session db is the identifier for a traffic-group. If the traffic-group of a
virtual and/or router instance is changed all data stored in session db will be orphaned.

Config changes not loading, or stats don't show up on new router instance

Most changes to config are applied to existing connections. Changes to the set of profiles used by a
connection only apply to new connections. Since many message routing protocols use long lived
connections, some config changes will not effect existing connections. For example replacing the router
profile used by a virtual server will not apply to existing connections. Thus all traffic on existing
connections will still be routed through the previous router instance and the stats for that traffic will be
included with the previous router instance. To apply the traffic to the new router instance, the existing
connections will need to be closed forcing the clients to create new connections.

iRule changes not loading

Changes to iRule scripts attached to a virtual or transport-config do not change the scripts executing on
existing connections. New connections will use the updated scripts. To cause the new script code to be
applied, all existing connections (both client side and server side) will need to be closed and new
connections created. This may be avoided by moving the business logic of the script to a procedure as
follows:

ltm rule mylib {
proc sip ingress {} {

if {

[SIP::is request] and [clientside] } {
# do something
# change here

} else {

}
}

# do something else
# change here

ltm rule routing ({
when SIP INGRESS {
call mylib::sip ingress

}

Dropped UDP datagrams

Dropped UDP datagrams have been observed at very low traffic rates (100 calls per second). One cause
has been MPI latency. Try making sure the 'scheduler.hsbpollpode.ltm' db var is set to "always". This has
been show to reduce the MPI call latency.

MRF Debugging

Did the message reach the message router?

There are multiple places where processing can stop or a failure can occur. The stats of the profiles added
to the virtual server (or transport-config) should be used to determine if the message reached the message
router. From the transport profile's stats (TCP/UDP/SCTP), it can be determined if packets were received

63



Troubleshooting

64

by the transport filter. From the protocol profile's stats (sipsession), it can be determined if the received
packets were correctly parsed into messages. If an error was found in the message parsing this should be
detectable using the protocol's stats.

The message router profile (siprouter) stats should increment with each message received. The result of
each messages routing operation should also be represented in the stats.

Why did the message fail routing

The MR_INGRESS event is raised for each message before it enters routing . Once routing is complete
either MR_EGRESS or MR_FAILED event is raised. The message metadata can be logged during these
events to help debug the results of routing. Some fields and their usage follows:

Metadata |Populated Purpose

Field

lasthop before MR _INGRESS Contains the TMM and flow_id of the originating

connection of the message

nexthop before MR _INGRESS (or Selects the destination connection for the message
during MR _INGRESS)

route after routing (or during The value of the selected route (peer list). If set during
MR _INGRESS) MR _INGRESS, this route will be used instead of

performing route lookup

originator | before MR _INGRESS The IP, port and rtdom_id of the originator of the
connection. Also contains the transport type and name of
the originating connection.

status after routing The results of the route lookup
attempted | after routing (or during The list of destination hosts attempted. This list of hosts
MR _INGRESS) will be treated as marked down when performing peer

selection and load balanced pick.

retry _count | after routing The number of times this message has been submitted

for routing

Why did the message fail routing

The MR_INGRESS event is raised for each message before it enters routing . Once routing is complete
either MR_EGRESS or MR_FAILED event is raised. The message metadata can be logged during these
events to help debug the results of routing. Some fields and their usage follows:

Metadata |Populated Purpose

Field

lasthop before MR _INGRESS Contains the TMM and flow_id of the originating

connection of the message

nexthop before MR_INGRESS (or Selects the destination connection for the message
during MR_INGRESS)

route after routing (or during The value of the selected route (peer list). If set during
MR _INGRESS) MR _INGRESS, this route will be used instead of

performing route lookup

originator | before MR INGRESS The IP, port and rtdom_id of the originator of the
connection. Also contains the transport type and name of
the originating connection.

status after routing The results of the route lookup




BIG-IP Service Provider: SIP Administration

Metadata |Populated Purpose
Field
attempted | after routing (or during The list of destination hosts attempted. This list of hosts
MR _INGRESS) will be treated as marked down when performing peer
selection and load balanced pick.
retry_count | after routing The number of times this message has been submitted for
routing

MR:route_status: "queue full"

One reason for MR_FAILED would be when MR:route_status is set to "queue full". This result can
happen when the following conditions are met:

1. MRF-SIP profile with TCP for transport.

2. SIP Peer has very few pool members.

3. One of the pool member is down.

4. Burst of SIP Traffic with message size > 2K Bytes.

There are 2 configurable items (Max-Pending-Messages and Max-Pending-Bytes) in the router config to
define the queue capacity. If the incoming traffic is high with large messages then the possibility of filling
up the queue increases significantly before the connection request timeout occurs on the pool member
which is down.

If the message size is larger than 2k then try increasing the Max-Pending-Bytes first. Otherwise, increase
Max-Pending-Messages. If neither increase works, then increase both values.

Messages received on per-client created connections

All messages received on an outgoing connection created using the per-client connection mode, will
automatically be forwarded to the connection that received the request which caused the outgoing
connection to be created. This includes request messages received on this connection. This is because the
connection acts as a direct connection for communication between the original client and the other
device. This routing is done be setting the nexthop of all messages received to the last hop of the original
request message.

For example:

A SIP INVITE request is received on a connection from 10.10.10.21 to 10.10.20.50. This message gets
routed to proxy server 10.20.30.85 using a transport-config that does not configure SNAT and has a
connection-mode of per-client. An outgoing connection will be created from 10.10.10.21 to 10.20.30.85.
All messages (whether responses of requests) received on the outgoing connection will be automatically
routed to the SIP endpoint at 10.10.10.21 using the original incoming connection.

To route a message received on a per-client created connection to another device, the nexthop field will

have to be cleared using the MR::message nexthop none command as follows:

when MR INGRESS {
MR: :message nexthop none
MR::message route config /Common/other tc host 10.20.30.40:1234

}

Debugging Request Routing

Overview

SIP Request routing: Request messages are routed via iRule, Persistence or Route Table.

65



Troubleshooting

1. An iRule may direct MRF how to route a message during MR_INGRESS. To set the route, use the
‘MR::message route ...” command.

2. A persistence entry using the same persistence key (often call-id) if present will route a message. In
MREF persistence entries are bi-directional and remember both SIP devices communicating in the
dialog. The persistence table can be accessed via the sipdb tool. The two endpoints in the persistence
table are identified as the originator and the destination. The destination of originator versus
destination has to do with which direction the original request message that created the persistence
entry. If a message arrives that generates the same persistence key, the address of the source of the
message will be matched against the destination in the persistence record to determine which
direction the message is flowing.

3. Ifno persistence record is found, the best route table entry for the router is used to select the
destination for the route. Attributes of the message are matched against the message to determine
which route applies for the current message. MRF SIP route table implementation can match against
the message’s request-URI, from-URI, to-URI and originating virtual server. If the message was
received on a connection that was initiated by the BIG-IP, the parameters of that connection were
likely defined by a transport-config. Messages arriving on a transport-config connection will not
match any routes which are filtered by a virtual server.

Request Routing Debugging

iRules can be used for route debugging. Remember that the iRule needs to be on each transport in the
system (virtual servers and transport-configs). MR _INGRESS event runs on the connection that received
the request message. MR_EGRESS event runs on the connection that the message is being sent out.

MR _FAILED event runs on the connection that received the request message when a message failed to
be routed.

SIP iRule commands can be run in the MR iRule events. MRF communicates with the SIP parser to
instruct it as to which message is currently used during the MR event.

To know if a message is a request or a response, the following conditional can be used:

If {[SIP::response code] eq “”} { # this is a request message

During MR_INGRESS, the message’s route can be examined as follows:

Log localO. “route [MR::message route]”

The transport type and name can be inspected (in v12.0 and later) via an iRule command as follows:

Log localO. “transport [MR::transport]”

An example script for MR _INGRESS is as follows:

when MR INGRESS {
log localO. “transport: [MR::transport] flow id: [MR::flow_ id]”
if {[SIP::reponse code] eq “"} {
log localO. “request [SIP::method] persist key [SIP::persist] route [MR::message route]”
} else {
log localO. “response [SIP::response code] nexthop [MR::message nexthop] route
[MR: :message route]"
}
}

After routing has occurred, the messages route field will be populated with the value of the selected route
and either MR_EGRESS will be executed or MR_FAILED. If routing succeeded, the route status will be
set to “route found” and MR _EGRESS event will be raised on the outgoing connection. If routing failed,
the route status will be set and MR_FAILED event will be raised on the incoming connection.

when MR EGRESS {
log localO. “transport: [MR::transport] flow id: [MR::flow id]”

66



if {[SIP::reponse code]

log localO.

} else {

log localO.

“request

“response

[MR: :message route]"

}

when MR FAILED ({
log localO.

}

status]”
if {[SIP::reponse code]

}

log localO.
else {
log localO.

“transport:

“request

“response

[MR: :message route]"

}

}

eq “n} {

BIG-IP Service Provider: SIP Administration

[SIP::method] persist key [SIP::persist] route [MR::message route]”

[SIP::response code]

nexthop [MR::message nexthop] route

[MR::transport] flow id: [MR::flow id] route status [MR::message

eq \\/I} {

[SIP: :method] persist key [SIP::persist] route [MR::message route]”

[SIP::response code]

nexthop [MR::message nexthop] route

67



Troubleshooting

68



FAQ

FAQ

Advanced-Protocols License

In versions 11.6 and 12.0, MRF SIP virtual servers will not start without an Advanced Protocols license
in addition to the LTM license. The license check happens when configuration is loaded, /var/log/ltm file
will contain a “MESSAGE ROUTING SIP feature not licensed” line. Since the check only happens when
config is loaded, no additional message will be displayed when trying to connect to the virtual server.

Starting with version 12.1, the Advanced Protocol License requirement is no longer required. Only an
LTM license is necessary to use SIP.

Bi-Directional Persistence

Some persistence types, like Call-ID, write bidirectional persistence records. The entry records both SIP
devices involved in the call and the transport used to connect to that device. Messages received using the
call-id will be matched against the persistence entry to determine which SIP device the message should
be forwarded to.

Transport Translation

Transport translation is not supported. In other words, a UDP client connection cannot be sent to a TCP
peer and vice versa.

Connection Recreation

One interesting thing to consider is the snat setting for the virtual server. Lets say that you have two
virtual servers inbound_vs and outbound vs. Each virtual server has a route which uses a corresponding
transport config, inbound _tc and outbound_tc. Calls received by the inbound vs would be routed to
connection created using the settings of inbound_tc. The persistence entry for these calls would contain
the inbound_vs as the source transport and the inbound _tc as the destination transport.

Likewise calls received by the outbound vs would be routed to connections created using the setting of
outgound_tc. The persistence entry for these calls would contain the outbound_vs as the source transport
and outboind_tc as the destination transport. If a call arrives on a connection created via outbound_tc and
a valid persistence entry still exists, it would route to a connection using the outbound_vs transport. If no
connection is found, it would create a new outbound connection using the outbound vs’s parameters.

Therefore, the virtual server SNAT setting should be that of the VLAN it is on. This is opposite from
traditional BIG-IP virtual servers.

Lets say that the inbound_vs listens on the external VLAN and the outbound_tc is for creating
connections on the external vlan. The inbound_vs’s SNAT settings are what would be used for creating
outgoing connections also on the external VLAN. Inbound_vs’s snat setting would never be used for
creating connection on the internal VLAN.

In this case, the SNAT settings of the inbound_vs should match the SNAT settings of the outbound _tc.
Likewise the SNAT settings of the outbound_vs should match the SNAT settings of the inbound_tc.



FAQ

Message Retry

When a message fails to route, it will be returned to the originating connflow and MR_FAILED event
will be raised. A iRule script will be able to examine the message and resubmit it for routing via the
MR::retry command.

There are multiple steps to routing, to understand how MR::retry will work, you will need to understand
the steps. To avoid some of these steps or force a different path you may need to modify some of the
metadata contained with the message.

Steps of routing:

1.

If the message’s nexthop attribute is set, the message will be forwarded to the TMM and flowid
specified in the nexthop. To avoid this, the message’s nexthop should be cleared via ‘MR::message
nexthop none’.

If the message’s route attribute is set, the message will skip persistence lookup and route selection and
proceed to peer selection (step 5) and 1b_pick. Every time route lookup occurs, the message’s route
attribute is set. To ensure persistence lookup occurs the route attribute should be cleared via
‘MR::message route none’.

If persistence is enabled on the originating transport, the generated persistence key (via config or
iRule) will be used to look for a persistence record. If a persistence record is found, the message will
be forwarded to the host specified in the persistence record (step 7). To remove any previous
persistence record stored under the message’s key use ‘SIP::persist reset’ or ‘DIAMETER::persist
reset’ iRule command. NOTE: The DIAMETER command is not yet implemented.

The protocol specific route table implementation will lookup the best route for the message based on
a protocol specific attributes contained in the message. For SIP, it uses the request-uri, to-uri and
from-uri of the message. It is also able to match against the virtual server of the originator of the
connection. Once a route is found, the message’s route attribute is populated with the route.

The route found contains a peer list. A peer is selected from the peer list using the peer selection
mode.

The selected peer may contain a pool and a transport. If a pool exists, it will select the first active pool
member that has not already be attempted for this message. If no pool exists, it will forward the
message to the local IP and port of the incoming connection.

Once a host has been selected, MRF will look to see if an available connection already exists to the
host. If an available connection exists, the message will be egressed to the host via that connection. If
an available connection does not exist, a new connection will be created and the message will be
forwarded through the new connection

Examples

Retry the message to a known existing connection:

when MR FAILED ({

MR: :message nexthop 0:010000010111

MR::retry
}

Retry the message to a pool of alternate servers

When MR FAILED ({

MR: :message nexthop none
SIP::persist reset
MR: :message route config /Common/BackupTc pool /Common/BackupPool

MR::retry

Retry the message via the same persistence key

When MR FAILED ({

MR: :message nexthop none

70



BIG-IP Service Provider: SIP Administration

MR: :message route none
MR: :retry
}

To reroute

When MR FATILED ({
MR: :message nexthop none
MR: :message route none
SIP::persist reset
MR: :retry
}

To forward to a host

When MR FATILED ({
MR: :message nexthop none
SIP::persist reset
MR: :message route config /Common/BackupTc host 10.10.10.10:5060
MR: :retry
}

Connection Auto-Initialization

If a peer object has auto-initialization enabled, the BIG-IP” system will automatically create outbound
connections to the active pool members in the specified pool using the configuration of the specified
transport-config. For auto-initialization to attempt to create a connection, the peer must be included in a
route that is attached to a router instance. For each router instance that the peer is contained in, a
connection will be initiated. The auto-initialization logic will verify at a configurable interval if the a
connection exists between the BIG-IP and the pool members of the pool. If a connection does not exist, it
will attempt to reestablish one.

The first auto-intialization attempt will occur at least one auto-initialization-interval delay from when the
object is loaded or changed in the TMM.

If the router instance is not included in any virtual servers, connection auto-initialization will not start.
Once the router instance has been included in an enabled virtual server, auto-initialization will begin and
will remain running for those peers used by routes attached to the router instance even if the router
instance is removed from the virtual server.

If a peer with auto-initialization enabled, is used in multiple router instances, a separate connection will
be established for each router instance.

The auto-initialization logic will only attempt to create connections to enabled pool members. If the pool
member is marked down by an external monitor it will be ignored unless an inband monitor is also
attached.

If mirroring is enabled on the router instance, the active device will initialize outgoing connections. The
new outgoing connections will be mirrored to the standby device.

iRules on all transports

With MRF the outgoing connection may not use the same transport as the incoming connection.
Incoming connections are defined via virtual servers. Outgoing connections are often defined with
transport-configs. If the same iRule script is desired to run on all connections, the script should be
defined for all transports.

For example tests assume a simple load balancing configuration with a virtual server (VS_IN) that is part
of a router instance with a single default route. This default route contains a single peer that uses a
transport-config (TC_OUT) to define the parameters of the outgoing connection. In this setup, a request
message would be received on VS_IN. The request message would ingress on a hudchain configured via
the settings of the virtual server. As the message was processed, the SIP. REQUEST and MR _INGRESS

71



FAQ

events would be raised on the iRule scripts attached to the virtual server. The request message would be
forwarded to an outgoing connection configured via the setting of the transport-config. As the message
egressed through the outgoing connection, the MR _EGRESS and SIP. REQUEST SEND events would
be raised on the iRule scripts attached to the transport-config. When the response message is received by
the outgoing connection, the SIP. RESPONSE and MR _INGRESS events would be raised on the iRule
script attached to the transport-config. The response will be forwarded to the connection that originated
the request and the MR_EGRESS and SIP. RESPONSE SEND events would be raised on the iRule

script attached to the virtual server.

——

VS_IN

TC_OUT

—

uppP

SIP

MR

MR

SIP

ubp

Figure 13: iRules on all transports

Sharing iRule variables between connections

L

MREF does not join the client side connection with the server side connection (except for SIP ALG). The
traditional method of using the CLIENTSIDE or SERVERSIDE keywords to access variables will not

work. Instead MRF provides a command to deliver tcl variables along side of the message to the

outgoing connection. The MR::store command allows the script author to specify which tcl variables

should be delivered to the outgoing connection. The MR::restore command unpacks the delivered
variables on the outgoing connection and adds them to the connections context.

For example on the incoming connection:

when MR INGRESS {
set originator ip [IP::remote add]

}

set ingress message count [expr S$message count + 1]

MR::store originator ip ingress message count

On the outgoing connection:

when MR EGRESS {

}

The effect of message pipelining on iRule variables

MR::restore

log localO. "originator ip Soriginator ip ingress message count $ingress message count"

SIP can pipeline messages by allowing messages that require less processing to be forwarded without
waiting for earlier messages that require more processing. For this reason, it is not recommended to store
state in tcl variables to be used by subsequent iRule events. There is no guarantee that the next event
raised after the protocol's message event will be the MR _INGRESS for the same message. For example,
saving the SIP uri in a tcl variable during a SIP. REQUEST event to use for making a routing decision
during MR _INGRESS is not recommended. The next MR _INGRESS event may not be for the same

message as the last SIP. REQUEST event.

MREF SIP implementation allows accessing the SIP iRule commands during the MR events. This is the

recommended method to make routing and delivery decisions based on attributes of a message.

For example:

when MR INGRESS {
if {[URI::host [SIP::uri]] equal "othersp.com"}

72

MR::message route config "/Common/othersp tc" pool "/Common/othersp pool"

{




BIG-IP Service Provider: SIP Administration

SNAT settings of the outgoing transport used

MREF uses the SNAT setting of the outgoing connection to determine how the source address is translated.
Most outgoing connections are configured via a transport-config and the SNAT setting of the transport
config will be used to select the source address. The only time the SNAT settings defined in the virtual
server are used is if the setting of the virtual is used to create the outgoing connection (this occurs if no
transport-config is set in the peer object).

Connection Reuse

Transport

MRF maintains a table of all existing connections on each TMM of a router instance. When a message is
routed to a host, MRF will scan this table for an existing connection to the host that is available for use. If
an available existing connection is not found, a new connection will be created.

There are many reasons that an existing connection may not be available for delivery of the current
message (see the sub-sections below for details).

Each connection is created using the parameters of a transport object (either a virtual server or a
transport-config). The transport specifies the profiles, SNAT and iRule scripts of the connection. When a
message is routed, MRF will scan the list of connections for a connection created with the same transport
specified. Even if the two transports contain the same parameters, a connection created with a different
transport will not be used.

A pool object only allows specification of a transport-config as the outgoing connection transport. If the
peer object does not specify the transport config, the transport of the message's originating connection
will be used. If the system wishes to potentially deliver a message through an existing connection created
with by different virtual server on the same router, the MR::message route iRule command must be used.
For example:

MR: :message route virtual "/Common/internal_vs" host [IP::local addr]:5060

Remote Port and ignore-clientside-port (or ignore-peer-port)

Many clients when creating connections use an ephemeral port for the local port. If a message is routed to
that host, the port specified in the host's address will be different than the remote port of any existing
connection with the host. Many MRF protocol implementation have an 'ignore_clientside port' attribute
in their router profile. Setting attribute to 'true' instructs MRF that any connection created by the host
(client side) that matches the transport, remote IP and rtdom_id may be used.

Number-connections and instance number

The number-connections attribute of the peer object specifies which connection of a set of connections to
a host will be used for delivering a message. It is used alongside the connection-mode instance to set the
maximum number of connections between a router instance not the BIG-IP® and a host.

Connection-mode

Each peer object specifies a connection mode which is used to determine if a connection can be reused or
if a new connection should be created. Possible connection modes are:

» per-peer: When a message is routed to a peer with per-peer connection mode, any connection on any
TMM with the correct instance number may be used for delivering the message.

73



FAQ

+ per-blade: When a message is routed to a peer with per-blade connection mode, only connections on
the current blade with the correct instance number may be used for delivering the message.

+ per-tmm: When a message is routed to a peer with per-tmm connection mode, only connections on the
current tmm with the correct instance number may be used for delivering the message.

+ per-client: When a message is route to a peer with per-client connection mode, an outgoing
connection will be created for exclusive use by the originating connection. The outgoing connection
will not be usable for delivering messages from other connections. Any message received (request or
response) on the created outgoing connection will be automatically delivered to the originating
connection that owns the outgoing connection.

use-local-connection

Source port

Many MREF protocol router profiles contain a 'use-local-connection' attribute. If this attribute is set, if a
outgoing connection exists on the current TMM, it will be used even if the instance number does not
match. Using this optimization will effectively limit the number of outgoing connections to one per
TMM.

MREF allows setting the source port used on outgoing connections through the source-port attribute of a
transport-config object. Setting this attribute to a non-zero value causes the source port of the outgoing
connection to be set to the provided value. If set to zero an ephemeral port value will be used.

Pinning the source port to a fixed value will limit the number of connections available to the host. There
can only be one connection using the local and remote tuples (IP/port/rtdom_id) and IP protocol
(TCP/UDP/SCTP). Attempts to create another connection using the same addresses and IP protocol will
fail.

For this reason it is not recommended to use set the source port for outgoing connections except when
using a connection-mode of 'per-peer' and a number-connections of '1'.

Likewise trying to use the same host from peers with different transport settings (transport-config and/or
virtual) and setting the source port will produce failures (unless different SNAT pools are used).

LB Operating Mode

Response messages being processed by different router instance

74

SIP routes response messages by inserting a VIA header into the request message. This VIA header
contains a branch parameter that is used to contain the internal identifier of the connection that originated
the request. The contents of the branch header are encrypted.

When the response message is received, it will contain the inserted VIA header. This inserted header is
removed from the message and the branch parameter is decrypted to get the connection identifier of the
request's originator. The message will be forwarded to the originating connection. If the originating
connection has since been closed, the address in the next top-most header will be used for routing the
response message.

This method frees MRF SIP from having to store any data internally while waiting for a response
message. All information needed to route the response is added to the message and will be returned with
the response. This method works whether the message is returned to the same connection that it was sent
from or a new connection.

But if the response message is returned to a different router instance, the branch parameter of the VIA
header cannot be decrypted. "MR SIP: Decrypt branch parameter failed with error : Buffer error" will be
recorded in /var/log/tmm.



BIG-IP Service Provider: SIP Administration

Response message routing (insert-via and honor-via settings)

Via:

SIP can be configured to route responses twice using two different methods.

The first method attempts to route the message to the connection that originated the request message.
This is enabled via the 'insert-via' attribute of the sipsession profile. If set, the request message will have
a new via header inserted into the message. This via header will identify the IP and port that the next SIP
device should route the response to. The response message should contain all the via headers included in
the request message. Each SIP device will remove the via header it inserted as the response passes
through. An example inserted via is as follows:

SIP/2.0/UDP 10.10.10.5:5060; rport;branch=z9hG4bKPjlL6pbh49PL1iE2ZNBsASKyO7EBckaoQt

When a response is received and insert-via is enabled, the top most via will be removed, and the message
will be forwarded to the connection identified by setting the nexthop meta-data field of the message. This
can be observed by logging the message's nexthop field during MR _INGRESS event as follows:

when MR INGRESS {

}

if {[SIP::response code] ne ""} {
log localO. "Response: nexthop [MR::message nexthop]"

If the request's originating connection no longer exists, the MRF proxy will return the message to the
connection that received the response. The MR FAILED event will be raised. Upon completion of the
MR_FAILED logic, the message will be returned the the SIP filter. The SIP filter will use the fallback
response routing mechanism if the 'honor-via' attribute is enabled. The fallback response routing used the
IP and port of the second topmost VIA header of the received response (now the topmost after deleting
the inserted one). This is the via header that was topmost when the request message was received. This
header should contain the IP and port that the device which sent the request to the BIG-IP.

The MRF SIP filter will clear the message's nexthop field and instead set the message's route meta-data
field to route the message to the IP and port of the device which sent the request to the BIG-IP. Once the
route field has been set, the message will again be forwarded to the MRF proxy for routing and
MR_INGRESS event will be raised.

Note: The route command will specify the transport of the connection that received the response as the
transport to use when creating the connection to the source of the request. If this is not desired, the route
field can be modified during the subsequent MR _INGRESS event.

ALG without SNAT (No Address Translation)

The Secure Real-time Transport Protocol (SRTP)- RFC3711 is not supported in this mode.

Routing using a virtual with SNAT none may select a source port of zero

MREF allows routing to a peer without a transport-config selected. If a peer does not have a transport-
config, the transport of the message originating connection will be used to create the outgoing
connection. If originating connection used a virtual server as its transport, the serverside of the virtual
server will be used to create the outgoing connection.

If the virtual server had a SNAT setting of none and the 'source-port' attribute set to 'preserve' or
'preserve-strict', the outgoing connection will be created with a source port of zero instead of the remote
port of the originating connection.

75



FAQ

SIP ENUM Resolution Capability using iRule

76

DNS team has developed an iRule called RESOLV::lookup to perform a DNS query . From release
11.5.0, its capability was improved to support resolving NAPTR and SRV addresses as well. SIP ENUM
resolution mainly involves resolving Telephone number to an IP address. This process normally involves
4 steps namely

* Normalizing the telephone number to an ENUM address format.
*  Perform NAPTR resolution on ENUM to retrieve SRV records.
* Perform SRV resolution to retrieve Domain Name records.

* Perform DNS query to retrieve the IP Address.

RESOLV::lookup with its new capabilities could potentially be used to resolve ENUM to IP Address.
Eg: NAPTR resolution to retrieve SRV records.
RESOLV::lookup @$static::dns_vs inet -naptr "4.4.2.2.3.3.5.6.8.1.4.4.e164.arpa"



egal Notices

Legal notices

Publication Date

This document was published on June 15, 2018.

Publication Number
MAN-0670-00

Copyright
Copyright © 2018, F5 Networks, Inc. All rights reserved.

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5
assumes no responsibility for the use of this information, nor any infringement of patents or other rights
of third parties which may result from its use. No license is granted by implication or otherwise under
any patent, copyright, or other intellectual property right of F5 except as specifically described by
applicable user licenses. F5 reserves the right to change specifications at any time without notice.

Trademarks

For a current list of F5 trademarks and service marks, see Attp://www.f5.com/about/guidelines-policies/
trademarks.

All other product and company names herein may be trademarks of their respective owners.

Patents

This product may be protected by one or more patents indicated at: https://f5.com/about-us/policies/
patents.

Link Controller Availability

This product is not currently available in the U.S.

Export Regulation Notice

This product may include cryptographic software. Under the Export Administration Act, the United
States government may consider it a criminal offense to export this product from the United States.

RF Interference Warning

This is a Class A product. In a domestic environment this product may cause radio interference, in which
case the user may be required to take adequate measures.

FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device pursuant
to Part 15 of FCC rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This unit generates, uses, and
can radiate radio frequency energy and, if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. Operation of this equipment in a


http://www.f5.com/about/guidelines-policies/trademarks/
http://www.f5.com/about/guidelines-policies/trademarks/
https://f5.com/about-us/policies/patents
https://f5.com/about-us/policies/patents

Legal Notices

78

residential area is likely to cause harmful interference, in which case the user, at his own expense, will be
required to take whatever measures may be required to correct the interference.

Any modifications to this device, unless expressly approved by the manufacturer, can void the user's
authority to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance

This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance

This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to
Information Technology products at the time of manufacture.



Index

A

advanced protocols license 69
ALG without SNAT 75

B

basic load balancing
configuration 36
example 35
bi-directional persistence
connection recreation 69
examples 70
forward to a host 71
message retry 70
reroute 71
retry the message to a known existing connection 70
retry the message to a pool of alternate servers 70
retry the message via the same persistence key 70
transport translation 69

C

capabilities
load balancing 7
SRTP Compliance (RFC 3711) 8
configuration object
peer object 20
route 14
router profile 10
session profile 17, 27
transport config 23
virtual server 9
connection auto-initialization 71
connection modes
per blade 22
per peer 21
per TMM 22
connection reuse
connection-mode 73
number-connections and instance number 73
remote port and ignore-clientside-port (or ignore-peer-
port) 73
source port 74
transport 73

D

debugging request routing

overview 65
deployment use cases

basic load balancing 35

load balancing with persistence 36

SIP ALG without address translation 38
disaggregation modes

configuring DAG modes 31

default DAG 31

Index

disaggregation modes (continued)
round robin DAG 32
source and destination DAG 32

E

effect of message pipelining on iRule variables 72

H

high availability failover
configuration guidelines 43
overview 43
primary BIG-IP device 44
support 43
traffic group guidelines 43

iRule support
overview 47
iRules on all transports 71

L

load balancing operating mode
response message routing 75
response messages being processed by different router
instance 74

load balancing with persistence
session persistence 36
session persistence example 37

load balancingALG without SNAT
configuration objects 9, 24

log messages
configuration termination 57
configuration validation errors 57
troubleshooting logs 57, 59

M

MRF commands
route status 51
MRF debugging
message routing failure 64
messages received on per-client connections 65
MR: route_status: queue full 65
verifying message reaches message router 63
MRF events 47

O

operation mode

load balancing 9
operation modes

ALG without SNAT 7, 24

79



Index

P

peer object
connection modes 21
peer attributes 20
persist iRule example
get persist key 54
set persist key 54

S

sharing iRule variables between connections 72
SIP ALG without address translation

ALG without source-address-translation example 39

firewall ALG mode 39
firewall ALG mode requirements 39
load balancing configuration 40
request routing 39
response routing 39
sequence diagram 41
SIP ENUM resolution capability using iRule 76
SIP iRule events and commands
persist iRule example 54
SIP::header subcommands 54
SIP message routing framework
attributes matching 13
capabilities 7
deployment use cases 35
disaggregation modes 31
FAQ 69
high availability failover 43
introduction 5
iRule support 47
load balancing configuration 37
MRF iRule events and commands 47
operaiton modes 9
overview 7
peer selection 16
SIP iRule events and commands 52
SIP router profile 25
specific route matching example 13
troubleshooting 57
virtual server 24
SIP route
route key 15
route value 16
SIP router profile
operation mode 13, 27
route table 13
sipdb tool
config changes not loading 63
default display of persistence entries 62
delete record 62
dropped UDP datagrams 63
examples 62
filter record 62
iRule changes do not load 63
moving router to different traffic group 63

moving virtual server to different traffic group 63

options 60
stats do not appear on router instance 63
to filter the record for a persistence key 62

80

sipdb tool (continued)

usage 60

verbose display of persistence entries 62
SNAT settings of the outgoing transport used 73

T

tramsport config
source address translation 23
source address translation types 23
transport config attributes 23
troubleshooting
log messages 57
MRF debugging 63
request routing 65
siddb tool 60

U

using a virtual with SNAT none 75



	Table of Contents
	Introduction to SIP Message Routing Framework
	Introduction to SIP Message Routing Framework

	SIP Overview
	SIP Overview
	Capabilities
	Load Balancing
	ALG without SNAT (No Address Translation)
	SRTP Compliance (RFC 3711)




	Operation Modes
	Operation Modes
	Load Balancing
	Configuration Objects
	Virtual Server
	SIP Router Profile
	Operation Mode
	SIP Route Table
	Attributes Matching
	Specific Route Match Example


	SIP Route
	Route Key
	Route Value
	Peer Selection
	Host Selection


	SIP Session Profile
	Peer Object
	Peer Attributes
	Connection Modes
	Per Peer
	Per TMM
	Per Blade


	Transport Config
	Transport Config Attributes
	Source Address Translation
	Source Address Translation Types



	ALG without SNAT (No Address Translation)
	Configuration Objects
	Virtual Server
	SIP Router Profile
	Operation Mode
	SIP Session Profile





	Disaggregation (DAG) Modes
	Disaggregation (DAG) Modes
	How to configure DAG Modes
	Default DAG
	Source/Destination DAG (SP-DAG)
	Round Robin DAG (RR-DAG)


	Deployment Use Cases
	Deployment Use Cases
	Basic Load Balancing (LB)
	Basic LB Example
	Configuration


	Load Balancing with Persistence
	Session Persistence
	Basic LB with Session Persistence Example
	Configuration


	SIP ALG without Address Translation
	FW ALG mode
	FW ALG Mode Requirements
	Request Routing
	Response Routing
	ALG without Source-address-translation Example
	Configuration
	ALG without Source-address-translation Sequence Diagram




	High Availability (HA) Failover
	High Availability (HA) Failover
	Overview
	SIP HA Support

	Configuration Guideline
	For each BIG-IP in Traffic Group
	Primary BIG-IP



	iRule Support
	iRule Support
	Overview
	MRF iRule Events and Commands
	MRF Events
	MRF Commands
	Route Status


	SIP iRule Events and Commands
	Persist iRule Example
	Get Persist Key
	Set Persist Key

	SIP::header subcommands



	Troubleshooting
	Troubleshooting
	Log Messages
	Configuration Validation Errors
	Connection Termination Reasons
	MRF SIP Troubleshooting Logs
	SIP Troubleshooting Logs

	sipdb Tool
	Usage
	Options
	Examples
	Default Display of Persistence Entries
	Verbose Display of Persistence Entries
	To filter the above record for a particular SIP router profile name
	To filter the record for a persistence key
	To delete the above record

	Moving router and/or virtual to different traffic group
	Config changes not loading, or stats don't show up on new router instance
	iRule changes not loading
	Dropped UDP datagrams

	MRF Debugging
	Did the message reach the message router?
	Why did the message fail routing
	MR:route_status: "queue full"


	Messages received on per-client created connections

	Debugging Request Routing
	Overview
	Request Routing Debugging



	FAQ
	FAQ
	Advanced-Protocols License
	Bi-Directional Persistence
	Transport Translation
	Connection Recreation
	Message Retry
	Examples
	Retry the message to a known existing connection:
	Retry the message to a pool of alternate servers
	Retry the message via the same persistence key
	To reroute
	To forward to a host



	Connection Auto-Initialization
	iRules on all transports
	Sharing iRule variables between connections
	The effect of message pipelining on iRule variables
	SNAT settings of the outgoing transport used
	Connection Reuse
	Transport
	Remote Port and ignore-clientside-port (or ignore-peer-port)
	Number-connections and instance number
	Connection-mode
	use-local-connection
	Source port

	LB Operating Mode
	Response messages being processed by different router instance
	Response message routing (insert-via and honor-via settings)

	ALG without SNAT (No Address Translation)
	Routing using a virtual with SNAT none may select a source port of zero
	SIP ENUM Resolution Capability using iRule


	Legal Notices
	Legal notices

	Index

