
BIG-IP® Service Provider: SIP
Administration

Version 13.1

Table of Contents

Introduction to SIP Message Routing Framework...5
Introduction to SIP Message Routing Framework..5

SIP Overview... 7
SIP Overview... 7

Capabilities..7

Operation Modes.. 9
Operation Modes..9

Load Balancing..9
ALG without SNAT (No Address Translation).. 24

Disaggregation (DAG) Modes.. 31
Disaggregation (DAG) Modes.. 31

How to configure DAG Modes... 31
Default DAG.. 31
Source/Destination DAG (SP-DAG).. 32
Round Robin DAG (RR-DAG)... 32

Deployment Use Cases.. 35
Deployment Use Cases... 35

Basic Load Balancing (LB)..35
Load Balancing with Persistence.. 36
SIP ALG without Address Translation... 38

High Availability (HA) Failover...43
High Availability (HA) Failover.. 43

Overview... 43
Configuration Guideline...43

iRule Support.. 47
iRule Support... 47

Overview... 47
MRF iRule Events and Commands... 47
SIP iRule Events and Commands... 52

Troubleshooting..57
Troubleshooting..57

Log Messages...57
sipdb Tool.. 60
MRF Debugging.. 63
Debugging Request Routing... 65

FAQ...69

Table of Contents

3

FAQ.. 69
Advanced-Protocols License...69
Bi-Directional Persistence... 69
Connection Auto-Initialization..71
iRules on all transports..71
Sharing iRule variables between connections...72
The effect of message pipelining on iRule variables... 72
SNAT settings of the outgoing transport used...73
Connection Reuse...73
LB Operating Mode... 74
ALG without SNAT (No Address Translation).. 75
Routing using a virtual with SNAT none may select a source port of zero............75
SIP ENUM Resolution Capability using iRule... 76

Legal Notices.. 77
Legal notices..77

Table of Contents

4

Introduction to SIP Message Routing Framework

Introduction to SIP Message Routing Framework
A BIG-IP® system provides advanced Message Routing Framework (MRF) capabilities. The BIG-IP SIP
solution is based on MRF framework. This guide is designed to introduce the reader to BIG-IP MRF and
SIP concepts. Finally, various SIP use cases will be documented to help the reader with their deployment
needs.

Introduction to SIP Message Routing Framework

6

SIP Overview

SIP Overview
A BIG-IP® system's message routing framework (MRF) SIP solution provides high scalability,
availability, and reliability to SIP Proxies, Session Border Controllers, Media Servers and many other SIP
devices. The BIG-IP LTM can distribute and balance SIP and RTP traffic among multiple SIP devices, to
help maintain availability, under high call volumes. Additionally, the F5 solution can perform advanced
health checks on the SIP devices, routing SIP clients away from unstable or unreliable devices and
providing increased reliability to existing SIP solutions.

Capabilities

This section provides a concise summary of the BIG-IP® MRF SIP solution.

Load Balancing

• Route SIP control messages, without modifying SIP headers.
• The following headers can be configured to be automatically modified.

• VIA Header inserted
• Record Router Header inserted
• Decrementing max forwards

• Any header attribute can be modified via iRule.
• Natively route messages based on:

• From URI
• To URI
• Request URI
• Originating Virtual Server

• Route messages via iRule on any attribute of the message.
• Response routing natively using data added to the inserted VIA Header.
• Response routing available via iRule:

• Add private header to request
• Insertion of VIA Header to request via iRule
• Route to upstream device using received VIA Header
• Remember data from request processing

• Bi-directional persistence support.

• Persistence key selection via configuration or custom key via iRule
• Connection Re-Use Support
• High Availability (HA)

• Connection mirroring
• Persistence table replication

ALG without SNAT (No Address Translation)

• Snoop control messages flowing through to manage media flows.
• iRule can be used to rewrite headers.
• Create media records in session db.

• Create deny listeners to drop media packets received before the callee responds with its media details.
• Create media flows to forward packets between caller and callee.
• High Availability (HA)

• Call table replication (supports failback)
• Control connection mirroring (can be recreated on failback by endpoint)
• Media flow mirroring

SRTP Compliance (RFC 3711)

We do not support SRTP in ALG without SNAT mode.
Security Advisory

When operating in ALG mode, the system does not have access to any verifiably authoritative source of
information about which endpoints or users should be allowed access to media connections, and does not
actively control or restrict the messaging in media channels. It is therefore possible for an attacker with
access to a device inside a BIG-IP® system and a related SIP-proxy outside the BIG-IP system (e.g. on
the Internet) to use the SIP-ALG feature to create arbitrary communications channels between those two
devices via carefully crafted SIP messages, or to route non-call data via SIP-negotiated media channels.

Customers are expected to provide external control of SIP messaging that would make use of the SIP
ALG feature, mitigating this concern by transferring the risk to their SIP controller.

SIP Overview

8

Operation Modes

Operation Modes

Load Balancing

Configuration Objects

Virtual Server

A virtual server is a traffic-management object on the BIG-IP® system that is represented by an IP
address and a service. Clients on an external network can send application traffic to a virtual server,
which then directs the traffic according to your configuration instructions.

The virtual server configuration contains a destination address and mask which specifies what IP
addresses and port the virtual server will listen for incoming packets. The virtual server object also
contains a source address allowing it to limit packets to those packets that originate from a range of
devices.

The behavior of a virtual server is determined by the set of profiles attached to the virtual server. To
configure a MRF SIP virtual server, transport profile (TCP, UDP or SCTP), a sipsession profile and a
siprouter profile must be attached to the virtual server.

The behavior of a virtual can further be extended by assigning iRules to the virtual.

All virtual servers that share the same siprouter profile will share the same router instance. The routing
instance owns the route table, the persistence table and flowmap table (a table of all open connection
usable for message forwarding).

• A virtual server of type "message-routing" assigned with "session" & "router" profile is part of a SIP
router-instance.

• Persistence is configured through the SIP session profile, hence a persist profile must not be attached
to the virtual server.

• One or more iRules can be attached. The rules are validated against the configured transport and the
events/commands as supported by SIP and MRF.

• Source-address-translation can be configured in the virtual server. For server side flows the transport-
config parameters overrides the virtual server setting for source address translation. If a route does not
specify a transport-config, than the transport of the originator of the message will be as the transport
for the outgoing connection. For example if the SIP message originated on a virtual server, the
parameters of the virtual server will be used to create the outgoing connection. This includes the
source-address-translation settings of the virtual server.

• A static route object containing wildcard attributes can be used as a default route. The configured by
adding a SIP route with empty request-uri, from-uri and to-uri attributes to the siprouter profile used
by the virtual server.

• Static routes can be configured to only operate on messages originating for specific virtuals. This
allows each virtual using the same router instance to have independent default routes.

• The virtual can be configured to listen on all or selected set of VLANs.
• All virtuals that needs to work together as one router-instance must share the same "router" profile.
• All virtuals that are to acts as one router-instance, must have the all their corresponding Virtual

Addresses in the same traffic group. The traffic group of the siprouter profile must match the traffic-
group of the virtual's virtual address.

ltm virtual <virtual name> {
 cmp-enabled yes

 destination <ip address>:<port>
 enabled | disabled
 ip-protocol <tcp|udp|sctp>
 mask <netmask>
 profiles {
 siprouter
 sipsession
 <tcp|udp|sctp>
 <other profiles>
 }
 rules <list of iRules|none>
 source 0.0.0.0/0
 vlans {
 <list of vlans>
 }
 vlans-enabled | vlans-disabled
}

SIP Router Profile

Figure 1: SIP Router Profile Entity-Relationship

• A SIP router profile provides the router-instance level characteristics such as mode of operation,
routes and more. This profile defines attributes that are to be the same across the entire router-
instance. In addition, it holds the static routes to be used across the entire router-instance.

• A route is made of peers, where a peer may have a pool and a transport config
• If a peer does not contain a pool, the local address of the originating connection is used as the remote

address of the outgoing connection
• If a peer does not contain a transport-config, the settings of the originating connections transport

(virtual or transport-config) is used to create the outgoing connection.
• The router profile binds the multiple virtuals (that clients connect to) and peers (that connect to

backend servers), together with common shared states.
• For ALG, no routes are configured for the router profile. The local address of the originating flow is

used as the remote address of the outgoing connection.

ltm message-routing sip profile router siprouter {
 defaults-from none
 inherited-traffic-group <true|false>
 max-pending-bytes <integer>
 max-pending-messages <integer>
 max-retries <integer>
 mirror <enabled|disabled>
 mirrored-message-sweeper-interval <integer>
 operation-mode load-balancing
 routes {

Operation Modes

10

 <static routes>*
 }
 session {
 max-session-timeout <integer>
 transaction-timeout <integer>
 }
 traffic-group <traffic group name>
 use-local-connection <enabled|disabled>
}

Table 1: SIP router profile attributes

Attribute Description Type Acceptable
Values

Default

operation-mode Sets the operation mode of the SIP
routing instance.

Must be set to load-balancing

ENUM load-balancing

application-
level-gateway

load-
balancing

routes List of references to sip-route
object. The ordering of the route
entries does not matter.

sip-route A list of sip-
route objects

max-pending-messages The maximum number of pending
messages that are held while
waiting for a connection to a peer
to be created. Once reached any
additional messages to the peer is
flagged as undeliverable and
returned to the originator.

UINT32 1 to
4294967295
(32-bits)

23768

max-pending-bytes The maximum number of bytes
contained within pending
messages that is held while
waiting for a connection to a peer
to be created. Once reached any
additional messages to the peer is
flagged as undeliverable and
returned to the originator.

UINT32 1 to
4294967295
(32-bits)

64

use-local-connection Controls whether connections
established by the ingress TMM
are preferred over connections
established by other TMMs when
selecting egress connection to
destination peer.

BOOL Enabled/
Disabled

Enabled

traffic-group The traffic group for the router
instance. All virtual servers using
this router profile will have the
their traffic group replaced by the
traffic group of the router profile.

traffic-
group

default
(inherited
from
partition)

mirror Enables mirroring of all incoming
connections for all virtual servers
using this router instance, and all
outgoing connection created by
this router instance.

BOOL enabled/
disabled

disabled

BIG-IP Service Provider: SIP Administration

11

Attribute Description Type Acceptable
Values

Default

mirrored-message-
sweeper-interval

This attribute sets the frequency of
the mirrored message sweeper.
For virtual servers where
mirroring is enabled, the received
messages will be processed on
both the active device and the
standby device. On the standby
device, the messages are not
routed, instead they are stored in a
message store until the active
device sends a notification that the
message has been routed to the
standby device so that the standby
device can deliver the message to
the equivalent connection for
egress processing. A sweeper has
been implemented to drop
messages from the message store
if they remain in the store longer
than the time specified in this
attribute. The time shall be in
milliseconds.

UINT32 1000(ms)

media-proxy

max-media-sessions N/A in LB Mode UINT32 1 to 10 (32-
bits)

6

media-inactivity-
timeout

N/A in LB Mode UINT32 1 to 120 (32-
bits)

120

session

dialog-establishment-
timeout

N/A in LB Mode UINT32 1 to
4294967295
(32-bits)

32

max-session-timeout N/A in LB Mode UINT32 1 to
4294967295
(32-bits)

7200

transaction-timeout Specifies the maximum time in
seconds between request and its
response. A provisional response
restarts the timer. This may not
affect all transactions. The
scenarios where a BIG-IP® system
waits for response (like final
response for REGISTER request),
is impacted, by dropping any
persistent data maintained for this
request.

UINT32 1 to
4294967295
(32-bits)

180

Operation Modes

12

Operation Mode

Table 2: SIP operation mode

operation-
mode

Description

load-balancing Configures the SIP routing instance to operate in load-balancing mode. See How to
configure DAG Modes for details.

application-
level-gateway

Configures the SIP routing instance to operate in application level gateway mode
(ALG). See Default DAG for details

SIP Route Table

• SIP routes are collected into a route table.
• Each SIP router instance maintains a route table.
• When the SIP router receives a message for forwarding, the route table is used to determining the best

route to use for forwarding the message.
• The message's to-uri (RFC 3261 section 8.1.1.2), from-uri (RFC 3261 section 8.1.1.3), request-uri

(RFC 3261 section 8.1.1.1) attributes and originating virtual is matched against the routes in the route
table.

Table 3: SIP Route table example

Request-URI From-URI To-URI Virtual Route Value

Default_pool

*.f5.com Subdomain pool

*@f5.com F5 domain pool

help@f5.com Helpdesk pool

*@external.com External pool

priority.user@isp.net help@f5.com Special helpdesk
pool

Attributes Matching

• The attributes is matched in the following order: to-uri, from-uri, request-uri and virtual.
• Each URI is matched starting at the end of the attribute.
• Because a URI key may contain a wildcard, a URI from a messages attribute may match multiple

attributes, the longest match for the attribute is tried first.
• If a matching route does not exist using the longest match, the next longest match is attempted.
• An empty field is the same as a wildcard (all values are considered to match).
• Route selection first matches the to-uri then the from-uri, followed by the request-uri and finally the

virtual.
• Each field is matched starting at the end of the field (last character).
• There can be no characters before a wildcard (asterisk).

Specific Route Match Example

Consider a SIP route table with following routes:

BIG-IP Service Provider: SIP Administration

13

Table 4: SIP route match

To-URI From-URI Request-URI Virtual Route Value

default-route

*.f5.com subdomain-route

*af5.com f5domain-route

help@f5.com helpdesk-route

it@f5.com internal_vs it-route

To route a message with the following attributes:

Table 5: SIP route match

To-URI From-URI Request-URI Virtual

it@f5.com top.salesman@vendor.com it@f5.com external_vs

• The SIP route table (refer table 3.3.3) would first look for a match for the to-uri.
• It would find 3 matches: "" (wildcard), "*@f5.com", and "it@f5.com".
• The longest match would be "it@f5.com". It would then try to match from-uri, request-uri and virtual.
• The from-uri attribute would match the wildcard as would the request-uri.
• The virtual would not match.
• No match was found using "it@f5.com", so it would return to the next longest matching value,

"*@f5.com".
• It would then try and match from-uri, request-uri and virtual.
• Matches for all three fields would be found so it would forward the message to a host as specified in

the route value of the f5 domain route in table 3.3.3

SIP Route

ltm message-routing sip route siproute {
 from-uri <string>
 peer-selection-mode <sequential|ratio>
 peers {
 <one or more peer>
 }
 request-uri <string>
 to-uri <string>
 virtual-server <string>
}

The SIP route has the following attributes.

Table 6: SIP Route Attributes

Attribute Description Type Acceptable
Values

Default

name Specifies the name of the route object STRING ASCII string None

request-uri Defines the pattern to be matched against the
request-uri of a sip message. This URI is
matched as a case insignificant method. It
should be in the form of user@domain. The
sip: prefix should not be present. Any
additional modifiers (for example port or

STRING ASCII string

format:
<user@domain>

""

Operation Modes

14

Attribute Description Type Acceptable
Values

Default

transport) should also not be present. It may
begin with a wildcard, ‘*’. If empty, it is
treated as if the entire URI was a wildcard
(matching all Request-URIs).

to-uri Defines the pattern to be matched against the
To field of a sip message. This URI is
matched as a case insignificant method. It
should be in the form of user@domain. The
sip: prefix should not be present. Any
additional modifiers (for example port or
transport) should also not be present. It may
begin with a wildcard, ‘*’. If empty, it is
treated as if the entire URI was a wildcard
(matching all To-URIs).

STRING ASCII string

format:
<user@domain>

""

from-uri Defines the pattern to be matched against the
From field of a sip message. This URI is
matched as a case insignificant method. It
should be in the form of user@domain. The
sip: prefix should not be present. Any
additional modifiers (for example port or
transport) should also not be present. It may
begin with a wildcard, ‘*’. If empty, it is
treated as if the entire URI was a wildcard
(matching all From-URIs).

STRING ASCII string

format:
<user@domain>

""

virtual-
server

Specifies a virtual server that this route is
limited to. If no virtual is specified, messages
originating on any connection may be routed
to the route.

virtual-
server

A virtual server
instance

None

peers Specifies the list of peers. The peers attribute
is a list of references to mr-peer objects.

mr-peer An instance or mr-
peer

peer-
selection-
mode

Describes the method of selecting a peer
from a list of peers.

sequential: Peers are selected in the order
listed. All traffic is routed to the first peer
unless all pool members in the peer are
marked down.
ratio: Peers are selected based on their
weights in comparison with other peers.

ENUM sequential/ratio sequential

A SIP route specifies a set of peers to use for forwarding messages. Each route contains a route key and a
route value. The route key contains attributes that are matched against attributes in a SIP message. The
route value contains a list of peers. If the attributes in the route key match, the message is forwarded to a
host specified by route value.

Route Key

The route key contains the attributes that are matched against attributes from the SIP message header and
optionally a list of virtual servers.

• The to-uri, from-uri and request-uri attributes are matched against corresponding attributes in a SIP
message's header.

BIG-IP Service Provider: SIP Administration

15

• These values are matched in a case insignificant method.
• Only the user@host portion of the uri is matched. The protocol prefix and additional modifiers (like

port, transport, key, etc) are not included in the match. (see RFC 3261 section 19.1)
• The uri key in the message may start with a wildcard character, '*' (for example '*@f5.com'). If a uri

key starts with a wildcard, this means that any valid pattern of characters at that position in the
message's corresponding attribute is considered as matching refer section 3.3.1.1

• An empty uri key is considered as matching any valid value in the message's corresponding attribute.
• If virtual server attribute in the route key is empty, the route is applied to all messages. If the virtual

server attribute is not empty, the route applies only to messages originating the virtual server
specified.

• A route key with all fields empty (wildcard) is used as a default route.

Table 7: Filtered URI for Route Key

Example URI Filtered URI for matching

sip: alice@atlanta.com alice@atlanta.com

sip: alice:secretword@atlanta.com;transport=tcp alice@atlanta.com

sips:alice@atlanta.com?subject=project
%20x&priority=urgent

alice@atlanta.com

sip:+1-212-555-1212:1234@gateway.com;user=phone +1-212-555-1212@gateway.com

sips: 1212@gateway.com 1212@gateway.com

sip:alice@192.0.2.4 alice@192.0.2.4

sip:atlanta.com;method=REGISTER?to=alice
%40atlanta.com

atlanta.com

sip:alice; day=tuesday@atlanta.com alice@atlanta.com

Route Value

The route value contains a list of peers and a peer selection mode attribute.
Peer Selection

• The peer selection mode attribute specifies how a peer in the peer list is selected. Available values are
sequential and ratio.

• If the contained peers contain different transport types (ipproto), TCP, UDP, SCTP, only those peers
that match the transport type of the originating connection is used for peer selection.

• In sequential mode, the peers are selected in the order listed. The first peer is used unless all of its
members are down.

• In ratio mode, the ratio value in each peer shall be used to determine the distribution of message to
each peer.

• Once a peer has been selected, a pool member from the peer's pool is selected based on the pool's lb-
mode attribute.

• The peer's transport-config name (MR transport-config object refer to
HighperformancemessageroutingframeworkforIMSprotocolsFS#Transport-config) is used to
configure the type of connection (transport, security, protocol, rules, snat).

Host Selection

• If the selected peer does not contain a pool, the destination ip and port of the message's originating
connection is used as the destination host.

• If the selected peer does not contain a transport-config name, the transport type and name of the
message's originating connection is used as the destination host.

Operation Modes

16

• If the selected peer contains a pool with no pool members, the message is returned to the originator
marked as unroutable.

• If the selected peer contains a pool with pool members. one active pool member is selected as per the
pool's specified load balancing mode.

SIP Session Profile

This profile is attached to every virtual & associated with each peer of a routing instance. This profile has
settings that can affect the SIP message processing. Multiple SIP session profiles can be in use in a single
routing instance. The virtual/peer processes the ingress/egress messages per its sip-session profile
settings.

ltm message-routing sip profile session sipsession {
 custom-via <string>
 defaults-from none
 do-not-connect-back <enabled|disabled>
 enable-sip-firewall <yes|no>
 generate-response-on-failure <enabled|disabled>
 honor-via <enabled|disabled>
 insert-record-route-header <enabled|disabled>
 insert-via-header <enabled|disabled>
 loop-detection <enabled|disabled>
 maintenance-mode <enabled|disabled>
 max-forwards-check <enabled|disabled>
 max-msg-header-count <integer>
 max-msg-header-size <integer>
 max-msg-size <integer>
 persistence {
 persist-key <Call-ID|Src-Addr|Custom>
 persist-timeout <integer>
 persist-type <session|none>
 }
}

The sip protocol profile has the following attributes.

Table 8: SIP Session Profile Attributes

Attribute Description Type Acceptable
Values

Default

max-msg-size Specifies the maximum acceptable SIP
message size in bytes. The message that
exceeds this size is silently discarded.

UINT32 1 to 4294967295
(32-bits)

65535

max-msg-header-
count

Specifies the maximum count of
expected header fields; The message that
exceeds this limit is silently discarded.

UINT32 6 to 4096 64

max-msg-header-
size

Specifies the maximum message header
size in bytes; The message that exceeds
this limit is silently discarded.

UINT32 1 to 4294967295
(32-bits)

16000

generate-
response-on-
failure

Enables to send failure response
messages such as 4xx, 5xx and 6xx,
when a SIP request is being dropped;
Note: Where it is specified "silently"
discarded/dropped, no error response is
generated. In any case, a dropped
message (request/response) is tracked in
appropriate statistics counter.

BOOL Enabled/
Disabled

Disabled

BIG-IP Service Provider: SIP Administration

17

Attribute Description Type Acceptable
Values

Default

Maintenance
Mode

When selected (enabled), sends a SIP
response of 503 Service Unavailable for
an incoming SIP request. The SIP
response to the SIP request is dropped.

BOOL Enabled/
Disabled

Disabled

max-forwards-
check

Enables check on max-forwards; If 0, the
request is discarded. An error response is
sent, if configured.

BOOL Enabled/
Disabled

Enabled

loop-detection Enables loop-detection check and in case
loop detected, the request is discarded.
An error response is sent, if configured.

Note: A request is detected as seen
before (forwarded/spiraled/looped) only
if self inserted Via is found in the
message and the value of its branch
param plays a key role in detecting loop
versus spiral. Hence enabling via
insertion becomes a requirement to do
loop detection check.

In ALG mode, Via header is not inserted
by default and there is no loop detection
in this mode.

BOOL Enabled/
Disabled

Disabled

insert-via-header Enables insertion of top Via; When
enabled, custom params to help route the
response back are inserted, along with
sent-by field of Via. The source
address:port of the flow forwarding the
request is filled as value for sent-by field
of Via unless user provides custom via
value. The custom params inserted to
help routing, helps improve performance
as it facilitates routing without any
lookup. The via is inserted at egress side
of the flow, after SIP_REQUEST_SEND
event.

BOOL Enabled/
Disabled

LB
MODE:
Enabled

ALG
MODE:
disabled

custom-via Specifies the custom value for the sent-
by field of Via. Only the sent-by
component value is mentioned here not
the complete header.

STRING <IP or FQDN
name>[:<port>]

None

honor-via Enables to honor via that is not inserted
by a BIG-IP® system for routing the
response.

BOOL Enabled/
Disabled

LB
MODE:
Enabled

ALG
MODE:
disabled

insert-record-
route-header

Enables insertion of record-route header
in requests that establish dialog. When
enabled, along with URI, the custom

BOOL Enabled/
Disabled

Disabled

Operation Modes

18

Attribute Description Type Acceptable
Values

Default

params may be added to facilitate the
routing of subsequent requests within this
call to avoid route lookup. The record
route URI is the local-IP & port of flows
that are used for forwarding the message.

sip-firewall Enables application of firewall policy BOOL Enabled/
Disabled

Disabled

do-not-connect-
back

Controls whether connection to a request
originator is established (if it no longer
exists) in order to deliver response. When
disabled, responses that cannot be
forward using an existing connection are
dropped.

BOOL Enabled/
Disabled

Disabled

persistence

persist-key Specifies the method to extract the key
value that is used to persist on.

• Call-ID - To persist based on the
"Call-ID" header field value in the
message.

• Src-Addr - To persist based on
originating IP address in the message

• Custom - To persist based on the
custom key specified using iRule.

ENUM Call-ID/Src-
Addr/Custom

Call-ID

persist-type Specifies the type of the persistence to be
used for the specified "persist-key"
attribute value, the currently supported
type is session.

• Session - Uses session DB for
storage, no hash is applied. The key
used for session DB is value specified
in the "persist-key" attribute. Insert-
via-header must be enabled when
persist-type is set to "Session", if not
a validation error is thrown.

• None - Persistence is disabled
• Persistence is not applicable for SIP

ALG modes.

ENUM Session/None Session

persist-timeout Indicates the timeout value of persistence
entries in seconds.

It's recommended to have the persist-
timeout to be greater than transaction
timeout, specified in the SIP session
configuration, as the lesser of the two is
used when creating the persist record on
receiving of the initial SIP request
message. The initial SIP request can be

UINT32 1 to 4294967295
(32-bits)

180

BIG-IP Service Provider: SIP Administration

19

Attribute Description Type Acceptable
Values

Default

INVITE/SUBSCRIBE/MESSAGE.
Upon receiving of the response for the
initial SIP Request message the
persistence record is updated with the
persist-timeout value. (For any
subsequent responses received the persist
timeout is updated for the persist record.)

Peer Object

A peer object is used to define a set of hosts and the the method to connect with them. Peers are used to
create static routes. The peer structure is protocol independent while each protocol implementation of
MRF will define its own static route structure.

ltm message-routing sip peer <named-object> {
 app-service <string>
 auto-initialization <enabled/disabled>
 auto-initialization-interval <integer>
 connection-mode <per-peer/per-tmm/per-blade/per-client>
 description <string>
 number-connections <integer>
 partition <string>
 pool <pool_name>
 ratio <integer>
 transport-config <tc_name>
}

Peer Attributes

Table 9: Peer Attributes

Attribute Description Default

pool Pool associated with the peer. If only one peer, then configure a single-
member pool. If none, the message will be forwarded to the destination
address and port of the originating connection.

none

transport-
config

Specifies the transport-config that defines the parameters of the
outgoing connection. If none, the parameters of the originating
connection will be used to create the outgoing connection.

none

connection-
mode

Specifies how the number of connections per peer are to be limited as
follows: per-peer, per-blade, per-tmm, per-client.

If a transport config is not specified, the attributes of the originating
connection of the message being routed will be used to create the
outgoing connection. In this case, the connection-mode in the peer
object will be ignored.

per-peer

number-
connections

Specifies the number of connections between the BIG-IP® system and a
peer.

If a transport config is not specified, the attributes of the originating
connection of the message being routed will be used to create the
outgoing connection. In this case, the number-connections in the peer
object will be ignored.

1

ratio Used to designate the ratio of this peer when used within a route with a
peer-selection-mode of ratio.

1

Operation Modes

20

Attribute Description Default

auto-
initialization

If enabled, the BIG-IP® system will automatically create outbound
connections to the active pool members in the specified pool using the
configuration of the specified transport-config. For auto-initialization to
attempt to create a connection, the peer must be included in a route that
is attached to a router instance. For each router instance that the peer is
contained in, a connection will be initiated. The auto-initialization logic
will verify at a configurable interval if the a connection exists between
the BIG-IP system and the pool members of the pool. If a connection
does not exist, it will attempt to reestablish one.

disabled

auto-
initialization-
interval

Specifies the interval (in milliseconds) that attempts to initiate a
connection occur. Valid ranges are from 500ms to 65535ms

5000ms

Connection Modes
Per Peer

A BIG-IP® system will make just one connection to a peer. This means that only one TMM is connected
to each Peer. While this connection mode uses fewer connections it will introduce latency. This will
happen when messages are disaggregated to the wrong TMM and must be forwarder. The following
diagram provides additional detail.

Figure 2: Optimum scenario

1. Message arrives on a Virtual Server (VS)
2. Message is disaggregated to TMM-0
3. TMM-0 is connected to the correct server so the message is sent

Figure 3: Performance impacted scenario

1. Message arrives on a Virtual Server (VS)
2. Message is disaggregated to TMM-1

BIG-IP Service Provider: SIP Administration

21

3. TMM-1 is not connected to Server 1 so message must be forwarded to the correct TMM. This will
introduce latency.

4. TMM-0 is send message to Server 1

Per TMM

A BIG-IP® system will make a connection from every TMM to the same peer. This means a machine
with 8 cores will have 8 connections per peer. While this increases the number of active connections, it
also improves performance because there is no need to forward messages between TMMs.

Figure 4: Every TMM is connected to every peer which decreases latency but increases the
number of connections

1. Message arrives on a Virtual Server (VS)
2. Message is disaggregated to TMM-0
3. TMM-0 is connected to the correct server so the message is sent
4. Second message arrives
5. Message is disaggregated to TMM-1
6. TMM-1 is connected to the requested server so the message can be sent directly

Per Blade

A BIG-IP® system creates one connection per blade to each peer. This provides a balanced performance
approach between the per peer connection mode (only one connection) and a per tmm connection mode
(a connection from each TMM). This mode only makes sense for a hardware chassis with multiple
blades.

Figure 5: Each blade will make a single connection to each peer.

1. Message arrives on Blade 0
2. Blade 0 opens a connection to Server 1 and forwards the message
3. Second message arrives
4. Blade 1 opens a connection to server 1 and forwards the message

Note: A connection will not be opened to Server 2 until a message targeted at that server arrives.

Operation Modes

22

Transport Config

A transport config defines the parameters of a new outgoing connection.

The behavior of a transport-config is determined by the set of profiles attached to it. To configure a MRF
SIP transport-config a transport profile (TCP, UDP or SCTP), and a sipsession profile must be attached.
The siprouter profile will be inherited by the router instance that creates the outgoing connection.

The behavior of a transport-config can further be extended by assigning iRules to it.

ltm message-routing sip transport-config <transport-1> {
 ip-protocol <tcp/udp/sctp/...>
 profiles {
 tcp {}
 diameter_protocol_test {}
 }
 source-address-translation {
 type automap
 }
 rules {
 some_irule
 }
 source-port <integer>
}

Transport Config Attributes

Table 10: Transport Config Attributes

Attribute Description Default

ip-protocol Specifies the ip protocol. This will be automatically set based on the
transport profile added. This value is read-only.

none

source-port Specifies the source port to be used for the connection being created. If
the source-port is zero, an empirical port will be used.

0

profiles The transport protocol and the protocol-specific profile associated with
this outgoing connection.

source-address-
translation

Specifies the source-address-translation type and the pool.

rules List of iRules associated with this outgoing connection. none

Source Address Translation

Table 11: Source Address Translation

Sub-
Attribute

Description Default

type Specifies the type of source address translation to perform automap

pool Specifies the name of the snap pool none

Source Address Translation Types

Table 12: Source Address Translation Types

Type Description

automap The self-ip of the outgoing vlan will be used as the source address of the outgoing
connection.

BIG-IP Service Provider: SIP Administration

23

Type Description

snat A source address will be selected from the named snat pool

none No source address translation will be performed.

ALG without SNAT (No Address Translation)

• Snoop control messages flowing through to manage media flows.
• iRule can be used to rewrite headers.
• Create media records in session db.
• Create deny listeners to drop media packets received before the callee responds with its media details.
• Create media flows to forward packets between caller and callee.
• High Availability (HA)

• Call table replication (supports failback)
• Control connection mirroring (can be recreated on failback by endpoint)
• Media flow mirroring

Configuration Objects

Virtual Server

A virtual server is a traffic-management object on the BIG-IP® system that is represented by an IP
address and a service. Clients on an external network can send application traffic to a virtual server,
which then directs the traffic according to your configuration instructions.

The virtual server configuration contains a destination address and mask which specifies what IP
addresses and port the virtual server will listen for incoming packets. The virtual server object also
contains a source address allowing it to limit packets to those packets that originate from a range of
devices.

The behavior of a virtual server is determined by the set of profiles attached to the virtual server. To
configure a MRF SIP virtual server, transport profile (TCP, UDP or SCTP), a sipsession-alg profile and a
siprouter-alg profile must be attached to the virtual server.

The behavior of a virtual can further be extended by assigning iRules to the virtual.

All virtual servers that share the same siprouter profile will share the same router instance. The routing
instance owns the route table, the persistence table and flowmap table (a table of all open connection
usable for message forwarding).

• A virtual server of type "message-routing" assigned with "session" & "router" profile is part of a SIP
router-instance.

• MRF SIP ALG does not require persistence or message routing.
• Persistence is configured through the SIP session profile, hence a persist profile must not be attached

to the virtual server.
• One or more iRules can be attached. The rules are validated against the configured transport and the

events/commands as supported by SIP and MRF.
• MRF SIP ALG without source-address-translation does not support source-address-translation. The

virtual's source-address-translation type must be set to none

Please note that profile call statistics in this mode will double-count hairpinned calls.

ltm virtual <virtual name> {
 cmp-enabled yes
 destination <ip address>:<port>
 enabled | disabled
 ip-protocol <tcp|udp|sctp>
 mask <netmask>

Operation Modes

24

 profiles {
 siprouter-alg
 sipsession-alg
 <tcp|udp|sctp>
 <other profiles>
 }
 rules <list of iRules|none>
 source 0.0.0.0/0
 source-address-translation {
 type none
 }
 vlans {
 <list of vlans>
 }
 vlans-enabled | vlans-disabled
}

SIP Router Profile

ltm message-routing sip profile router siprouter-alg {
 inherited-traffic-group <true|false>
 max-pending-bytes <integer>
 max-pending-messages <integer>
 media-proxy {
 max-media-sessions <integer>
 media-inactivity-timeout <integer>
 }
 mirror <enabled|disabled>
 mirrored-message-sweeper-interval 1000
 operation-mode application-level-gateway
 routes none
 session {
 max-session-timeout <integer>
 transaction-timeout <integer>
 }
 traffic-group <traffic group name>
 use-local-connection enabled
}

Table 13: SIP Router Profile Attributes

Attribute Description Type Acceptable
Values

Default

operation-mode Sets the operation mode of the SIP
routing instance.

Must be set to application-level-
gateway.

ENUM load-balancing

application-
level-gateway

load-
balancing

routes N/A in ALG Mode sip-route A list of sip-
route objects

max-pending-messages The maximum number of pending
messages that are held while
waiting for a connection to a peer
to be created. Once reached any
additional messages to the peer is
flagged as undeliverable and
returned to the originator.

UINT32 1 to
4294967295
(32-bits)

23768

max-pending-bytes The maximum number of bytes
contained within pending
messages that is held while
waiting for a connection to a peer

UINT32 1 to
4294967295
(32-bits)

64

BIG-IP Service Provider: SIP Administration

25

Attribute Description Type Acceptable
Values

Default

to be created. Once reached any
additional messages to the peer is
flagged as undeliverable and
returned to the originator.

use-local-connection N/A in ALG Mode BOOL Enabled/
Disabled

Enabled

traffic-group The traffic group for the router
instance. All virtual servers using
this router profile will have the
their traffic group replaced by the
traffic group of the router profile.

traffic-
group

default
(inherited
from
partition)

mirror Enables mirroring of all incoming
connections for all virtual servers
using this router instance, and all
outgoing connection created by
this router instance.

BOOL enabled/
disabled

disabled

mirrored-message-
sweeper-interval

This attribute sets the frequency of
the mirrored message sweeper.
For virtual servers where
mirroring is enabled, the received
messages will be processed on
both the active device and the
standby device. On the standby
device, the messages are not
routed, instead they are stored in a
message store until the active
device sends a notification that the
message has been routed to the
standby device so that the standby
device can deliver the message to
the equivalent connection for
egress processing. A sweeper has
been implemented to drop
messages from the message store
if they remain in the store longer
than the time specified in this
attribute. The time shall be in
milliseconds.

UINT32 1000(ms)

media-proxy

max-media-sessions This attribute is valid when the
operation-mode is application-
level-gateway. Specifies the
maximum number of media
sessions that are allowed per call.

UINT32 1 to 10 (32-
bits)

6

media-inactivity-
timeout

This attribute is valid when the
operation-mode is application-
level-gateway. Specifies the
maximum duration (in seconds)
that a media flow is active with no

UINT32 1 to 120 (32-
bits)

120

Operation Modes

26

Attribute Description Type Acceptable
Values

Default

RTP packets. After this period the
RTP flow is removed. This
timeout is applicable only to RTP
packet where as the RTCP packet
will have the timeout set to the
max-session-timeout.

session

dialog-establishment-
timeout

This attribute is valid when the
operation-mode is application-
level-gateway. Specifies the
timeout (in seconds) that
represents the Timer B as per RFC
3261, the INVITE transaction
timeout. The dialog-
establishment-timeout is used by
the Call Table. The default value
is 32 seconds.

UINT32 1 to
4294967295
(32-bits)

32

max-session-timeout This attribute is valid when the
operation-mode is application-
level-gateway. Specifies the
maximum duration (in seconds)
that a call and its media remains
active. After this period the call
and its media is terminated.

UINT32 1 to
4294967295
(32-bits)

7200

transaction-timeout Specifies the maximum time in
seconds between request and its
response. A provisional response
restarts the timer. This may not
affect all transactions. The
scenarios where BIG-IP waits for
response (like final response for
REGISTER request), is impacted,
by dropping any persistent data
maintained for this request.

UINT32 1 to
4294967295
(32-bits)

180

Operation Mode

Table 14: SIP operation mode

operation-
mode

Description

load-balancing Configures the SIP routing instance to operate in load-balancing mode. See How to
configure DAG Modes for details.

application-
level-gateway

Configures the SIP routing instance to operate in application level gateway mode
(ALG). See Default DAG for details

SIP Session Profile

This profile is attached to every virtual & associated with each peer of a routing instance. This profile has
settings that can affect the SIP message processing. Multiple SIP session profiles can be in use in a single

BIG-IP Service Provider: SIP Administration

27

routing instance. The virtual/peer processes the ingress/egress messages per its sip-session profile
settings.

ltm message-routing sip profile session sipsession {
 custom-via <string>
 defaults-from none
 do-not-connect-back <enabled|disabled>
 enable-sip-firewall <yes|no>
 generate-response-on-failure <enabled|disabled>
 honor-via <enabled|disabled>
 insert-record-route-header <enabled|disabled>
 insert-via-header <enabled|disabled>
 loop-detection <enabled|disabled>
 maintenance-mode <enabled|disabled>
 max-forwards-check <enabled|disabled>
 max-msg-header-count <integer>
 max-msg-header-size <integer>
 max-msg-size <integer>
 persistence {
 persist-key <Call-ID|Src-Addr|Custom>
 persist-timeout <integer>
 persist-type <session|none>
 }
}

The sip protocol profile has the following attributes.

Table 15: SIP Session Profile Attributes

Attribute Description Type Acceptable
Values

Default

max-msg-size Specifies the maximum acceptable SIP
message size in bytes. The message that
exceeds this size is silently discarded.

UINT32 1 to 4294967295
(32-bits)

65535

max-msg-header-
count

Specifies the maximum count of
expected header fields; The message that
exceeds this limit is silently discarded.

UINT32 6 to 4096 64

max-msg-header-
size

Specifies the maximum message header
size in bytes; The message that exceeds
this limit is silently discarded.

UINT32 1 to 4294967295
(32-bits)

16000

generate-
response-on-
failure

Enables to send failure response
messages such as 4xx, 5xx and 6xx,
when a SIP request is being dropped;
Note: Where it is specified "silently"
discarded/dropped, no error response is
generated. In any case, a dropped
message (request/response) is tracked in
appropriate statistics counter.

BOOL Enabled/
Disabled

Disabled

Maintenance
Mode

When selected (enabled), sends a SIP
response of 503 Service Unavailable for
an incoming SIP request. The SIP
response to the SIP request is dropped.

BOOL Enabled/
Disabled

Disabled

max-forwards-
check

Enables check on max-forwards; If 0, the
request is discarded. An error response is
sent, if configured.

BOOL Enabled/
Disabled

Enabled

Operation Modes

28

Attribute Description Type Acceptable
Values

Default

loop-detection Enables loop-detection check and in case
loop detected, the request is discarded.
An error response is sent, if configured.

Note: A request is detected as seen
before (forwarded/spiraled/looped) only
if self inserted Via is found in the
message and the value of its branch
param plays a key role in detecting loop
versus spiral. Hence enabling via
insertion becomes a requirement to do
loop detection check.

In ALG mode, Via header is not inserted
by default and there is no loop detection
in this mode.

BOOL Enabled/
Disabled

Disabled

insert-via-header Enables insertion of top Via; When
enabled, custom params to help route the
response back are inserted, along with
sent-by field of Via. The source
address:port of the flow forwarding the
request is filled as value for sent-by field
of Via unless user provides custom via
value. The custom params inserted to
help routing, helps improve performance
as it facilitates routing without any
lookup. The via is inserted at egress side
of the flow, after SIP_REQUEST_SEND
event.

BOOL Enabled/
Disabled

LB
MODE:
Enabled

ALG
MODE:
disabled

custom-via Specifies the custom value for the sent-
by field of Via. Only the sent-by
component value is mentioned here not
the complete header.

STRING <IP or FQDN
name>[:<port>]

None

honor-via Enables to honor via that is not inserted
by a BIG-IP® system for routing the
response.

BOOL Enabled/
Disabled

LB
MODE:
Enabled

ALG
MODE:
disabled

insert-record-
route-header

Enables insertion of record-route header
in requests that establish dialog. When
enabled, along with URI, the custom
params may be added to facilitate the
routing of subsequent requests within this
call to avoid route lookup. The record
route URI is the local-IP & port of flows
that are used for forwarding the message.

BOOL Enabled/
Disabled

Disabled

sip-firewall Enables application of firewall policy BOOL Enabled/
Disabled

Disabled

BIG-IP Service Provider: SIP Administration

29

Attribute Description Type Acceptable
Values

Default

do-not-connect-
back

Controls whether connection to a request
originator is established (if it no longer
exists) in order to deliver response. When
disabled, responses that cannot be
forward using an existing connection are
dropped.

BOOL Enabled/
Disabled

Disabled

persistence

persist-key Specifies the method to extract the key
value that is used to persist on.

• Call-ID - To persist based on the
"Call-ID" header field value in the
message.

• Src-Addr - To persist based on
originating IP address in the message

• Custom - To persist based on the
custom key specified using iRule.

ENUM Call-ID/Src-
Addr/Custom

Call-ID

persist-type Specifies the type of the persistence to be
used for the specified "persist-key"
attribute value, the currently supported
type is session.

• Session - Uses session DB for
storage, no hash is applied. The key
used for session DB is value specified
in the "persist-key" attribute. Insert-
via-header must be enabled when
persist-type is set to "Session", if not
a validation error is thrown.

• None - Persistence is disabled
• Persistence is not applicable for SIP

ALG modes.

ENUM Session/None Session

persist-timeout Indicates the timeout value of persistence
entries in seconds.

It's recommended to have the persist-
timeout to be greater than transaction
timeout, specified in the SIP session
configuration, as the lesser of the two is
used when creating the persist record on
receiving of the initial SIP request
message. The initial SIP request can be
INVITE/SUBSCRIBE/MESSAGE.
Upon receiving of the response for the
initial SIP Request message the
persistence record is updated with the
persist-timeout value. (For any
subsequent responses received the persist
timeout is updated for the persist record.)

UINT32 1 to 4294967295
(32-bits)

180

Operation Modes

30

Disaggregation (DAG) Modes

Disaggregation (DAG) Modes

How to configure DAG Modes

Table 16: How to configure DAG Modes

DAG
Mode

Configuration
Object

TMSH Commands

Default-
DAG

VLAN $ modify net vlan <vlan_name> cmp-hash default

SP-DAG VLAN $ modify net vlan <src_vlan_name> cmp-hash src-ip
$ modify net vlan <dst_vlan_name> cmp-hash dst-ip

RR-DAG VLAN $ modify net vlan <vlan_name> dag-round-robin enabled
$ modify sys db dag.roundrobin.udp.portlist value
"5060"
$ modify ltm profile udp <udp_profile_name> idle-
timeout 0

Default DAG

The Default DAG uses a hash of source and destination port. It is useful when ephemeral ports are used
in client side and server side connections. When source and destination ports are the same TMM-0 will
be used. This is an issue in that the traffic will not be load balanced and TMM-0 will quickly be
overloaded. This DAG requires randomness in the source or destination port. If a client doesn't specify a
source port then an ephemeral port will be used and Default DAG will work properly. Note, the
ephemeral port must increment randomly or by single digits. If it's incremented by an even number, such
as two, or by the number of TMMs then it's possible that it will hash to the same TMM or a small set of
TMMs, which will negatively impact BIG-IP® system performance.

Key Points

• Port Based.
• Works best when clients use ephemeral ports.
• Can work with 1 to n clients.

Figure 6: Default DAG example

Source/Destination DAG (SP-DAG)

The SP-DAG uses a hash of source IP (from client) and destination IP address (server). This mode should
be used when source and destination ports are hardcoded (for example 5060). In that case, a BIG-IP®

system requires multiple client IP address or multiple server IP addresses. Keep in mind, most
connections are initiated by the client and that's the "Source DAG" option. In this case, the "Destination
DAG" could be a single IP, but the source client IP should have more that a single IP address.

Key Points

• IP Address Based
• Works best when number of clients is equal to or more than the number of TMMs in BIG-IP® system.
• Performance will be impacted if clients consist of only a few SIP Proxy connections. In this case the

IP Address entropy will be too low to load balance the incoming packets across available TMMs.

Figure 7: Source/Destination DAG (SP-DAG) example

Round Robin DAG (RR-DAG)

RR-DAG was designed to overcome the low entropy limitations of Default DAG and SP-Dag; although
for UDP only. Furthermore, RR-DAG is hardware only and can't be used in a VE. Round Robin DAG
distributes traffic by sending each consecutive packet to a different TMM. It does not rely on the IP
address, or source port, of the client. The Round Robin DAG is configured on a per-VLAN basis.

Disaggregation (DAG) Modes

32

Key Points

• UDP Only
• Requires hardware (not an option in VE)
• Sends each consecutive packet to a different TMM.

$ modify net vlan <vlan_name> dag-round-robin enabled
$ modify sys db dag.roundrobin.udp.portlist value "5060"

Figure 8: Round Robin DAG (RR-DAG) example

BIG-IP Service Provider: SIP Administration

33

Disaggregation (DAG) Modes

34

Deployment Use Cases

Deployment Use Cases

Basic Load Balancing (LB)

The "load-balancing" mode is used for scaling of capacity and/or providing high availability for SIP
signaling servers/proxies/gateways. It allows steering of SIP signaling traffic to a pool of servers based
on static SIP routes to spread the load over members of the pool. It provides Call-ID based load balancing
persistence. It is the default mode of operation and does not automatically handle media flows. BIG-IP
Via header is inserted by default for request messages and removed from response messages. Lasthop
information added to the Via header information is used for response routing and route lookup is skipped
for response messages.

In the load balancing operation mode, related media flows are not handled. The media flows associated
with the SIP signaling message are assumed to be routed via other devices or virtual servers.

The configurations in sip session profile: Insert-via, Custom-via, Honor-via and Do-not-connect-back are
inter-related.

Basic LB Example

In this example, you can see that a BIG-IP® system is adding and removing the top most Via such that the
message will return to the BIG-IP before being forwarded out to the caller.

Figure 9: Basic load balancing example

Configuration

In a route, at least wildcard entries for UDP and TCP default routes must be specified.

Route entry - ["", "", "", peer-udp] (Wildcard entry, default route for UDP)
Route entry - ["", "", "", peer-tcp] (Wildcard entry, default route for TCP)

Load Balancing Configuration

ltm pool udp-default-pool {
 members {
 10.10.0.10:5060 {
 address 10.10.0.10
 }
 10.10.0.11:5060
 address 10.10.0.11
 }
 }
}

ltm message-routing sip peer peer-udp {
 pool udp-default-pool
}

ltm message-routing sip route default-route-udp {
 peers { peer-udp }
}

ltm message-routing sip profile router siprouter-lb {
 routes {
 default-route-udp
 }
}
 ltm virtual sip-lb-udp {
 destination 10.20.0.60:5060
 mask 255.255.255.255
 ip-protocol udp
 profiles {
 udp
 sipsession
 siprouter-lb
 }
}

Load Balancing with Persistence

Persistence is configured through attributes in the "session" profile. Attaching a persistence profile to
Virtual server is an invalid configuration and results in a configuration error.

There are two persistence types (persist-types) available; session (default) and none. If persist-type is set
to "none", persistence is disabled. When persist-type is set to session, the persist-key specifies if BIG-IP
persists on Call-ID (the default value), Src-Addr (source address), or custom. Persistence records are kept
in SessionDB and therefore synchronized between TMMs and blades. Custom persist-key is specifically
for iRules to create customer specific persistence keys. An iRule script may modify the message's persist-
key during the SIP_REQUEST, SIP_RESPONSE or MR_INGRESS events. The value of the message's
persist key after MR_INGRESS event is used for persistence lookup, if the "persist-key" is set to
"Custom".

Session Persistence

• Session persistence avoids a route lookup based on state recorded on the BIG-IP.
• It guarantees those messages carrying the same persistence key are going to be delivered to the same

(L4) peer.

Deployment Use Cases

36

• Persistence entries are keyed by a value extracted from a message initiating a new session.
• The value used for the persist entry key, depends on the “persist-key” configuration attribute.
• When an existing persistence record is matched, the current message is delivered to the same (L4)

destination avoiding a route lookup and LB pick.
• It is recommended to have the persist-timeout set to be greater than the transaction timeout, specified

in the SIP session configuration, as the lesser of the two is used when creating the persist record on
receiving of the initial SIP request message. The initial SIP request can be INVITE/SUBSCRIBE/
MESSAGE. Upon receiving of the response for the initial SIP Request message the persistence record
is updated with the persist-timeout value. (For any subsequent responses received the persist timeout
is updated for the persist record.)

Basic LB with Session Persistence Example

This diagram shows a call from Call-ID 1-2883 @10.20.0.2 being load balanced to Server 10.10.10.2 and
a call from 1-3000@10.20.0.6 being load balanced to 10.10.10.7 and the persist records created from
these calls when persistence is enabled with a key of Call-ID.

Figure 10: Basic load balancing with session persistence example

Configuration

Load Balancing Configuration

ltm pool session-pool {
 members {
 10.10.10.2:5060 {
 address 10.10.10.2
 }

BIG-IP Service Provider: SIP Administration

37

 10.10.10.7:5060 {
 address 10.10.10.7
 }
 }
}

ltm message-routing sip peer sip-session-peer {
 pool session-pool
}

ltm message-routing sip route sip-session-route {
 peers { sip-session-peer }
}

ltm message-routing sip profile session sip-profile-1 {
 defaults-from-sipsession
 persistence {
 persist-type session
 persist-key Call-ID
 persist-timeout 30
 }
}

ltm message-routing sip profile router siprouter-persist {
 operation-mode load-balancer
 routes {
 sip-session-route
 }
 session {
 transaction-timeout 10
 }
}

ltm virtual sipmr-persist-session {
 destination 10.20.0.60:5060
 message-routing
 profiles {
 udp
 sip-profile-1
 sip-router-persist
 }
}

SIP ALG without Address Translation

In Application Level Gateway (ALG) operation mode, the system will create media flows based on SDP
offer/answer SIP message. The callee may begin sending media when they receive an INVITE/SDP
message and before responding with SIP provisional or final response. A deny listener will be created to
discard early media packets received before provisional SIP response with SDP. Media flows will be
created on provisional or final SIP response with SDP and the corresponding deny listeners will be
deleted. A call table is used to track calls and their associated media flows.

Other SIP request/response messages, like REGISTER, OPTIONS, SUBSCRIBE, NOTIFY, etc are
simply passed through the system.

In ALG mode, "per-client" mode is the only natively supported connection-mode for the peer. All other
modes must be handled via iRules. By default, there are no routes attached to the siprouter profile and
persistence is disabled. BIG-IP does not insert Via header by default for request messages. The response
messages are sent based on the associated "per-client" connection.

The ALG operation mode has two operating contexts, firewall (FW) and source address translation
(SNAT). The operation-mode attribute of a SIPRouter profile is used to set a SIP routing instance into
ALG mode. The operating context is automatically detected by the source address translation mode of the
outgoing connection.

Deployment Use Cases

38

FW ALG mode

• No address translation
• No subscriber registration tracking
• No separate IP Address support for RTCP flows. Both RTP and RTCP use the same connection IP

Address.
• Both TCP and UDP control connections wont terminate when 200OK for BYE or ERROR for

INVITE is handled. This option is configurable.
• Calls wont be dropped in case of media flow collision. BIG-IP will attempt to create media channel

(RTP/RTCP).
• There could be overlapped calls if the multiple caller/callee has same set of media connection

attributes. Thus resulting in partial media for a call, for example only audio or video when one of the
connection attribute overlaps with another call.

• Media channels once created will updated solely by the media activity, re-invites won't update the idle
timeouts of the existing channels. If the re-invites recreate the new media channels, its idle timeout
will be set to its default value as configured.

• For 183 Early Media: The media channels gets established upon receiving 183 for Invite; 200OK
following 183 response will not affect the existing call. This statement relies on the assumption that
both 183 and 200OK have same set of SDP parameters.

FW ALG Mode Requirements

• Must allow external access to any address for TCP/UDP port 5060
• There should be a virtual server to receive SIP messages on all vlans that expect SIP requests or

responses

Request Routing

The request messages are forwarded to the destination IP and port. No message headers are modified. For
each client, a new connection is established to the destination IP and port.

Response Routing

For response messages, the MR maintains the association of the per-client connection and the response
messages are sent on the associated client-side connection. No headers are modified on the response.

ALG without Source-address-translation Example

In this example, the default router profile "siprouter-alg" for ALG has no routes attached to it and the
operation-mode is "application-level-gateway".

BIG-IP Service Provider: SIP Administration

39

Figure 11: ALG without source address translation example

Configuration

Load Balancing Configuration

ltm message-routing sip profile router siprouter-alg {
 app-service none
 media-proxy {
 media-inactivity-timeout 120
 max-media-sessions 10
 }
 session {
 max-session-timeout 7200
 transaction-timeout 180
 }

Deployment Use Cases

40

 operation-mode application-level-gateway
}
ltm virtual /Common/vs_sip_alg_udp {
 destination /Common/0.0.0.0:5060
 ip-protocol udp
 mask any
 profiles {
 /Common/sipsession_alg { }
 /Common/siprouter_alg { }
 /Common/udp { }
 }
 source 0.0.0.0/0
 translate-address disabled
 translate-port disabled
}

ALG without Source-address-translation Sequence Diagram

Figure 12: ALG without source address translation sequence diagram

BIG-IP Service Provider: SIP Administration

41

Deployment Use Cases

42

High Availability (HA) Failover

High Availability (HA) Failover

Overview

A BIG-IP® system provides high availability via packet mirroring across two chassis. When discussing
redundancy, one should consider more than the initial failover. If the backup chassis also fails a fail-back
will be required. The following tables provides a quick summary of the initial failover and the fail-back
scenarios. Note, a BIG-IP system does not support Geo-Redundant failover. In other words, a BIG-IP
system supports the concept of a local HA Pair. However, a BIG-IP system does not support a second HA
Pair which will take over if the first HA Pair fails. This type of scenario is required where multiple
redundant data centers are available to handle geographic failure scenarios.

SIP HA Support

Table 17: SIP HA Support

Control
Messages

Media

Failover (active failed) Supported Supported

Failback (new active failed after old
active came back online)

Supported Partial Support

The above table shows that after the initial failover, if a second failover happens, the media streams,
created after the failover, will be maintained. However, media streams created prior to the initial failover
will be dropped.

Configuration Guideline

For each BIG-IP in Traffic Group

1. Check the tmm count to be same on each blade as well as each device.

a. tmsh list sys db provision.tmmcountactual.
2. Load the stable build from your branch. (Make sure it’s the same build on each device)
3. Load the default config. (Start Fresh)

a. tmsh load sys config default.
4. Configure hostname/users on each device
5. Provision the device with Management – “Small”, LTM – “Nominal”
6. Exit wizard by clicking ‘Finished’ on each device
7. Create vlans (internal/external/HA – advised to create 3 vlans to keep traffic discrete)

a. GUI:

a. Network >> vlans >> new
b. TMSH:

a. tmsh create net vlan <VLAN_NAME> interfaces add {1.1 {tagged}} tag
<TAG_ID>

8. Create self-ip for each vlan and floating self-ip for both internal and external vlan (internal,external
and HA- with traffic-group-local-only and internal_float, external_float with traffic-group-1)

a. GUI:

a. Network >> self-ips >> new
b. TMSH:

a. tmsh create net self <SELF_IP_NAME> address <IP_ADDRESS/PREFIX> allow-
service default traffic-group <TRAFFIC-GROUP-NAME> vlan <VLAN_NAME>.

9. Set Config sync address:

a. GUI:

a. Device Management >> Devices >> (self device) >> Device Connectivity >> ConfigSync
b. Specify HA self ip

b. TMSH:

a. tmsh modify cm device <DEVICE_NAME> configsync-ip <SYNC_SELF_IP>
10. Set Mirror address (if mirroring is desired): (For clusters make sure network mirroring is “Between

Clusters”.)

a. GUI:

a. Device Management >> Devices >> (self device) >> Device Connectivity >> Mirroring
b. Specify HA self ip

b. TMSH:

a. tmsh modify cm device <DEVICE_NAME> mirror-ip <MIRROR_SELF_IP>
11. Set Failover unicast address(es): (GUI preferred)

a. GUI:

a. Device Management >> Devices >> (self device) >> Device Connectivity >> Failover
b. Add
c. Specify HA self ip (as well as mgmt. Ip for backup)

b. TMSH:

a. tmsh modify cm device <DEVICE_NAME> unicast-address { { effective-ip
<HA_IP_ADDRESS>} { effective-ip <MGMT_IP_ADDRESS>}}

Primary BIG-IP

1. Discover device(s) for trust: (GUI Preferred)

a. GUI:

a. Device Management >> Device Trust >> Peer List
b. Add…
c. Enter IP and credentials for peer device

b. TMSH:

a. tmsh modify cm trust-domain /Common/Root ca-devices add
{ <IP_OF_REMOTE_DEVICE>} name <NAME_OF_REMOTE_DEVICE> username admin
password <ADMIN_PASSWORD>

2. Each device should now have a trust-sync created device group (not visible) and should show as ‘In
Sync’ and ACTIVE

3. Create a device-group of type sync-failover

High Availability (HA) Failover

44

a. GUI:

a. Device Management >> Device Groups
b. new
c. Enter name
d. Specify type of sync-failover
e. Specify network failover
f. Add both devices
g. Save

b. TMSH:

a. tmsh create cm device-group <DGFO_NAME> devices add {<DEVICE_1_NAME>…
<DEVICE_2_NAME>} type sync-failover network-failover enabled

4. Perform initial sync of device-group failover.

a. GUI:

a. Device Management >> Overview >> Select device-group failover >> Select a device
b. Click ‘Sync’

b. TMSH:

a. tmsh run cm config-sync to-group <DGFO_NAME>
5. Devices should now show as ‘In sync’, but one should be ACTIVE the other STANDBY.

BIG-IP Service Provider: SIP Administration

45

High Availability (HA) Failover

46

iRule Support

iRule Support

Overview

An iRule is a powerful and flexible feature within the BIG-IP® local traffic management system that you
can use to manage your network traffic. It allows operators to implement custom behavior beyond the
native capabilities of the BIG IP system.

MRF SIP provides a set of iRule events which are raised during message processing and routing which
allow operators to inspect and edit the SIP messages. They allow operators to forward, route, reject or
drop messages.

Events order for SIP REQUEST message:

CLIENT_DATA (or SERVER_DATA) -> SIP_REQUEST -> MR_INGRESS -> MR_EGRESS ->
SIP_REQUST_SEND

Events order for SIP RESPONSE message:

SERVER_DATA (or CLIENT_DATA) -> SIP_RESPONSE -> MR_INGRESS -> MR_EGRESS ->
SIP_RESPONSE_SEND

MRF iRule Events and Commands

MRF Events

Table 18: MRF Events

Event Description

MR_INGRES
S

This event is raised when a message is received by the message proxy and before a
route lookup occurs. Setting the route for a message will bypass route lookup.

MR_EGRES
S

This event is raised after the route has been selected and processed and the message is
delivered to the mr_proxy for forwarding on the new connflow.

MR_FAILED This event is raised when a message has been returned to the originating flow due to a
routing failure.

MRF Commands

Table 19: MRF Events

Command Description

MR::instance Returns the name of the current mr_router instance. The instance name will be
the same name as the router profile.

MR::protocol Returns ‘generic, ‘sip’ or ‘diameter’

MR::store <name> … Stores a tcl variable with the mr_message object. This variable will be delivered
with the message to the egress connflow. Adding variables does not effect the
content of the message

Command Description

MR::restore [<name>
…]

Returns adds the stored variables to the current context tcl variable store. If no
name is provided, it will add all stored variables.

MR::peer <name> Returns the content of the named peer. If a local peer has been created with the
provided name (using MR::peer <name> ...), the local peer's contents will be
returned. If a local peer has not been created with the provided name, the static
peer from configuration will be returned. The returned value will be formatted
as:

(versions 11.5 - 12.1)

<destination> using <transport>

where:

destination = <destination_type> "<destination_value>"

destination_type = pool | virtual

transport = <transport_type> "<transport_name>"

transport_type = virtual | config

for example:

pool "/Common/default_pool" using config "/Common/
sip_udp_tc"
(version 13.0 +)

<transport> <destination>

where:

destination = <destination_type> <destination_value>

destination_type = pool | virtual

transport = <transport_type> <transport_name>

transport_type = virtual | config

for example:

virtual /Common/sip_tcp_vs host [10.2.3.4]%0:5060

MR::peer <name>
[[virtual
<virtual_name>] OR
[config
<transport_config_na
me>]] [[host <host
tuple>] OR [pool
<pool name>]]

Defines a peer to use for routing a message to. The peer may either refer to a
named pool or a tuple (IP address, port and route domain iD). When creating a
connection to a peer, the parameters of either a virtual server or a transport
config object will be used. The peer object will only exist in the current
connections connflow. When adding a route (via MR::route add), it will first
look for a locally created peer object then for a peer object from the
configuration. Once the current connection closes, the local peer object will go
away.

MR::peer <name>
[[virtual
<virtual_name>] OR
[config
<transport_config_na
me>]] [[host <host
tuple>] OR [pool
<pool name>]] ratio
<ratio_value>

Defines a peer to use for routing a message to. The peer may either refer to a
named pool or a tuple (IP address, port and route domain iD). When creating a
connection to a peer, the parameters of either a virtual server or a transport
config object will be used. The peer object will only exist in the current
connections connflow. When adding a route (via MR::route add), it will first
look for a locally created peer object then for a peer object from the
configuration. Once the current connection closes, the local peer object will go
away. Adding the ratio keyword allows setting the ratio of the peer.

iRule Support

48

Command Description

MR::message lasthop Returns the message's lasthop (details of the connection that originated the
message). The lasthop is presented as <TMM number>:<FlowID>

for example

0:800000000005

MR::message
nexthop

Returns the message's nexthop (details of the connection the message is to be
forwarded to). If the new_nexthop parameter is present, a nexthop may be set
for the message. The nexthop is formated as <TMM number>:<FlowID>

for example

0:800000000029

MR::message
nexthop
<new_nexthop>

Sets the message's nexthop (details of the connection the message is to be
forwarded to). The new_nexthop parameter is present, a nexthop may be set for
the message. The nexthop is formated as <TMM number>:<FlowID>

MR::message route Returns a rendering of the mr_route_value selected for this message. The
returned value will be formatted as:

(versions 11.5 - 12.1)

{ <destination> using <transport> [<destination> using <transport>] }

where:

destination = <destination_type> "<destination_value>"

destination_type = pool | virtual

transport = <transport_type> "<transport_name>"

transport_type = virtual | config

for example:

{ pool "/Common/default_pool" using config "/Common/
sip_udp_tc" host "[10.2.3.4]%0:5060" using virtual "/
Common/sip_tcp_vs" }
(version 13.0 +)

<transport> <destination> [<transport> <destination>]

where:

destination = <destination_type> <destination_value>

destination_type = pool | host

transport = <transport_type> <transport_name>

transport_type = virtual | config

for example:

virtual /Common/sip_tcp_vs host [10.2.3.4]%0:5060 config /
Common/sip_udp_tc pool /Common/default_pool

MR::message route
peer <peer_name>
[peer <peer_name>]

Instructs the route table to route the message to the provided peer list. This form
of the MR::message route command takes the names of configured peers or
dynamic peers created via the MR::peer command.

BIG-IP Service Provider: SIP Administration

49

Command Description

MR::message route
mode <sequential |
ratio> peer
<peer_name> [peer
<peer_name>]

Instructs the route table to route the message to the provided peer list. The peer
list will have the peer-selection-mode set the the provided mode. This form of
the MR::message route command takes the names of configured peers or
dynamic peers created via the MR::peer command.

MR::message route
[[virtual
<virtual_name>] OR
[config
<config_name>]]
[[host <host tuple>]
OR [pool
<pool_name>]]

Instructs the route table to route the message to the provided host or pool.

MR::message
attempted

Returns a list of hosts that the message has been routed towards. The returned
value will be formatted as:

<transport> <destination> [<transport> <destination>]

where:

destination = <destination_type> host <host_value>

transport = <transport_type> <transport_name>

transport_type = virtual | config

for example:

virtual /Common/sip_tcp_vs host [10.2.3.4]%0:5060 config /
Common/sip_udp_tc host [20.3.4.5]%0:5060

MR::message
attempted none

Clear list of attempted hosts from the message.

MR::message
attempted [[virtual
<virtual_name>] OR
[config
<config_name>]]
[host <host tuple>]

Sets the list of attempted hosts in the message. If set before routing (during
MR_INGRESS or MR_FAILED), the hosts in the attempted hosts list will be
avoided when performing a lb_pick.

MR::message
originator

Returns the transport type, transport name and ip address/port/route domain ID
of the originator of the message.

The returned value will be formatted as:

<transport> <destination>

where:

destination = host <host_value>

transport = <transport_type> <transport_name>

transport_type = virtual | config

for example:

virtual /Common/sip_tcp_vs host [10.2.3.4]%0:5060

MR::message drop
<reason>

Drops the current message

iRule Support

50

Command Description

MR::message
retry_count

Returns the number of attempts to route this message that have occurred.

MR::message status Returns the status of the routing operation (valid only at MR_EGRESS).
Possible values are: "unprocessed", "route found", "no route found", "dropped",
"queue_full", "no connection", "connection closing", "internal error", "persist
key in use", and "standby dropped"

MR::flow_id Returns the flow_id of the current connection (in hex).

MR::transport Returns the transport type and name of the current connection.

for example

config /Common/sip_udp_tc

MR::prime [config
<config_name>] OR
[virtual
<virtual_name>]
[host <host tuple>]
OR [pool <pool
name>]

Initialize a connection to the specified peer (or active poolmembers of the
specified pool) using the specified transport.

MR::retry This command is only available during MR_FAILED event. It re-submits the
current message for routing to an alternate pool member. If the previous routing
attempt set the message's nexthop or route, these fields should be cleared before
retrying routing (use "MR::message nexthop none" and "MR::message route
none"). The message's route_status will automatically be reset by this
command. If the the retry also fails and the retry_count has reached the
max_retries setting in the router profile, the message will be given a "Max
retries exceeded" route status.

MR::max_retries Returns the configured max_retries of the router instance.

MR::connection_insta
nce

Returns the instance number and number of connections of the current
connection within a peer. It will be formatted as "<instance_number> of
<max_connections>". For incoming connections, this will return "0 of 1".

for example

0 of 5

MR::connection_mod
e

Returns the connection_mode of the current connection as configured in the
peer object. Valid connection_modes are "per-peer, per-blade, per-tmm and per-
client". For incoming connections, this will be "per-peer".

Route Status

Table 20: Route Status

Status Description

unprocessed Message has not been submitted for routing yet

route found Route has been found

no route found A route has not been found

dropped The message has been dropped by a MR::message drop command

BIG-IP Service Provider: SIP Administration

51

Status Description

queue full The message was returned back to the originator because one of the MRF
processing queues had reached its configured limit.

no connection The message was routed to a connection which was no longer present.

connection
closing

The message was queued to be send on a connection which was closed.

internal error The message was unable to be delivered due to an internal error. For example, out of
memory.

persist key in use Two messages routed using the same persistence key simultanously tried to create
the same persistence record.

standby dropped The message is a mirrored message running on a standby device and was dropped as
part of routing to avoid creating an outgoing connection on the standby device.

Max retries
exceeded

The message was returned to the originator because the latest attempt to retry
routing exceeded the configured max retry count.

SIP iRule Events and Commands

All the SIP/SDP iRule commands specified in the following links are supported.

https://devcentral.f5.com/wiki/iRules.SIP.ashx

https://devcentral.f5.com/wiki/iRules.SDP.ashx

Table 21: SIP iRule events and commands

Command Description Valid SIP Events Valid MR Events

SIP::persist reset Deletes any persistence
entry with the current
persist key of this
message.

SIP_REQUEST

SIP_RESPONSE

SIP_REQUEST_SEND

SIP_RESPONSE_SEN
D

MR_INGRESS

MR_EGRESS

MR_FAILED

SIP::message Returns the full content
of the request or
response message.

SIP_REQUEST

SIP_RESPONSE

SIP_REQUEST_SEND

SIP_RESPONSE_SEN
D

MR_INGRESS

MR_EGRESS

MR_FAILED

SIP::persist [new-
persist-key]

Returns the persistence
key being used for the
current message. If new-
persist-key is provided,
the existing persistence
key is replaced. The
value of the new-persist-
key MUST be one of
valid header value in the
message. A header name
should not be given as

SIP_REQUEST MR_INGRESS [For
response messages returns
EMPTY string]

iRule Support

52

https://devcentral.f5.com/wiki/iRules.SIP.ashx
https://devcentral.f5.com/wiki/iRules.SDP.ashx

Command Description Valid SIP Events Valid MR Events

the new-persist-key
value.

SIP::route_status Returns the routing
status of the current
message. Valid status are
{ "unprocessed", "route
found", no route found",
"dropped", "queue full",
"no connection",
"connection closing",
"internal error" }. "route
found" is based on the
SIP RouteTable finding
a route. It is not effected
by the proxy’s ability to
create a connection, so
even if the server is not
listening on the
specified address or
marked down, it might
still return status as
"route found" if the
RouteTable is able to
find the route.

SIP_REQUEST_SEND

SIP_RESPONSE_SEN
D

MR_INGRESS

MR_EGRESS

MR_FAILED

SIP::persist replace Route the message using
the route table (or iRule
command). On
completion of routing,
add a new persistence
record if one does not
exist. I an existing
persistence record
exists, replace the
persistence record with
the route selected.

SIP_REQUEST

also operates in

SIP_RESPONSE

SIP_REQUEST_SEND

SIP_RESPONSE_SEN
D

MR_INGRESS

MR_FAILED

also operates in

MR_EGRESS

SIP::persist bypass Route the message using
the route table (or iRule
command). On
completion of routing,
add a new persistence
record if one does not
exist. If an existing
persistence record
exists, the existing
record will not be
replaced and the
selected route will not
be modified.

SIP_REQUEST

also operates in

SIP_RESPONSE

SIP_REQUEST_SEND

SIP_RESPONSE_SEN
D

MR_INGRESS

MR_FAILED

also operates in

MR_EGRESS

SIP::persist ignore Route the message using
the route table (or iRule
command). The results
of the routing will not be

SIP_REQUEST

also operates in

SIP_RESPONSE

MR_INGRESS

MR_FAILED

also operates in

BIG-IP Service Provider: SIP Administration

53

Command Description Valid SIP Events Valid MR Events

stored in the persistence
table.

SIP_REQUEST_SEND

SIP_RESPONSE_SEN
D

MR_EGRESS

SIP::persist [persist-
key] [new-timeout-
value]

Update the persistence
kay and timeout to the
new persist-key and
new-timeout-value. The
persistence key will be
used for persistence
lookup, add and update.
If a persistence value is
added or updated, the
provided timeout will be
used.

SIP_REQUEST

also operates in

SIP_RESPONSE

SIP_REQUEST_SEND

SIP_RESPONSE_SEN
D

MR_INGRESS

MR_FAILED

also operates in

MR_EGRESS

SIP::persist use Use the current
persistence record for
routing the message if
present. If not present,
route the message using
the route table. On
completion of routing,
add a new persistence
record if one does not
exist. If an existing
persistence record
exists, repleace the
message's selected route
with the destination
stored in the persistence
entry.

SIP_REQUEST

also operates in

SIP_RESPONSE

SIP_REQUEST_SEND

SIP_RESPONSE_SEN
D

MR_INGRESS

MR_FAILED

also operates in

MR_EGRESS

Persist iRule Example

Get Persist Key

when SIP_REQUEST {
 log local0. "Persist-key = [SIP::persist]"
}

Set Persist Key

when SIP_REQUEST {
 SIP::persist [SIP::header value From]
 log local0. "New Persist-key = [SIP::persist]"
}

SIP::header subcommands

Following subcommands are added to SIP::header commands. The values in [square braces] are optional-
fields.

iRule Support

54

Table 22: SIP::header subcommands

Command Name Description

SIP::header count [header-name] Returns the count of the SIP headers. If "header-name" is
specified count the specific headers.

SIP::header exists "header-name" Returns whether SIP header specified by name exists at least
once.

SIP::header values [header-name] Returns list of the values of all the instances of SIP header
values. If optional argument [header-name] is specified retrieve
all values of the specified header-name.

SIP::header at "index" Returns SIP header at "index", index is the Nth line from the SIP
header. Returns only the name of the header.

SIP::header replace "header-name"
"header-value" [index]

Replaces first instance of the header specified by "header-name".
New entry is added if not present already. If [index] optional
argument is present, replace the header name at [index]th
position.

SIP::header names Returns list of all the SIP header names.

BIG-IP Service Provider: SIP Administration

55

iRule Support

56

Troubleshooting

Troubleshooting

Log Messages

Configuration Validation Errors

Table 23: Configuration Validation Errors

Configuration Failure Condition Error Message

Virtual server config does not have SIP router
profile but has SIP session profile

SIP session profile requires SIP router profile also to
be assigned to the virtual server <name>

Virtual server config does not have SIP session
profile but has SIP router profile

SIP router profile requires the SIP session profile to
also be assigned to the virtual server <name>

Deleting a route which is in use by a SIP router
profile

The route <name> is referenced by one or more router
profiles

Deleting a peer which is in use by a SIP route. The peer <name> is referenced by one or more SIP
routes.

Duplicate route attached to router. Same [request-uri, from-uri, to-uri, virtual-server-
name] combination in route <name> exists in the
profile <name>

Peer refers to non-existent route. Peer <name> refers to non-existing Static-Route
<name>

Route refers to non-existent peer. Static Route <name> refers to non-existing Peer
<name>

Connection Termination Reasons

If logging of reset cause is enabled via the tm.rstcause.log db variable, the reason for connection
termination is logged to /var/log/ltm.

Reset reason examples:

Table 24: Connection Termination Reasons

Reason Why Text Description

SIP Error Unexpected internal signaling

SIP parser error Unable to parse SIP message on a stream transport
(like TCP)

MRF SIP Troubleshooting Logs

If MRF SIP diagnostic log events are enabled via the log.mrsip.level db variable, the following events
will be logged to /var/log/tmm?.

Table 25: MRF SIP Troubleshooting Logs

Event Text Log
Level

Description

MR SIP: Invalid config attribute
<name> in profile <name>

Error An unexpected configuration attribute was found. For
example, an unsupported persist-key was used.

MR SIP: Missing header <name>
in the message

Error One of the mandatory SIP header attributes (To, From,
Call-ID, Route, Via) was missing. Since the message
will not be accepted without the required attributes, this
error occurs when an iRule script removes all instances
of one of the required scripts after parsing.

MR SIP: Decrypt branch
parameter failed with error :
<error_text>

Error Unable to decrypt our generated Via header.

MR SIP: Encrypt branch
parameter failed with error :
<error_text>

Error Unable to encrypt our generated Via header.

MR SIP: Generation of AES
encryption key failed

Error Unable to generate AES encryption key for Via header
encryption.

MR SIP: Parse error reading
number for <value> value near
<offset> Status code <status
code>

Notice Unable to parse a number for the specified value near
the specified offset of an input SIP message. If error
response is configured, the specified status code
response will be returned and the corresponding stats
counter will be incremented.

MR SIP: Parse error bad sip
protocol version in headline near
<offset>. Status Code <status
code>

Notice Invalid sip protocol version near the specified offset of
an input SIP message. If error response is configured,
the specified status code response will be returned and
the corresponding stats counter will be incremented.

MR SIP: Parse error invalid or
malformed uri in headline near
<offset>. Status Code <status
code>

Notice The SIP URI in the headline of an input SIP message is
invalid or malformed. If error response is configured,
the specified status code response will be returned and
the corresponding stats counter will be incremented.

MR SIP: Parser error invalid
headline near <offset>. Status
Code <status code>

Notice The headline of the incoming sip message is invalid
near the specified offset. If error response is configured,
the specified status code response will be returned and
the corresponding stats counter will be incremented.

MR SIP: Parser error to many
headers near <offset>. Status
Code %d.

Notice The incoming SIP message contains to many headers to
be processed. The header near the specified offset
should be the first header that exceeded the limit. If
error response is configured, the specified status code
response will be returned and the corresponding stats
counter will be incremented.

MR_SIP: Parser error extraneous
header field near <offset> Status
code <status code>

Notice The incoming SIP message contains a extra field in a
header near the specified offset. If error response is
configured, the specified status code response will be
returned and the corresponding stats counter will be
incremented.

Troubleshooting

58

Event Text Log
Level

Description

MR_SIP: Parser error header to
large near <offset>. Status Code
<status code>.

Notice The incoming SIP message has a header line that is too
long near the specified offset. If error response is
configured, the specified status code response will be
returned and the corresponding stats counter will be
incremented.

MR_SIP: Parser error missing
header code <code>. Status Code
<status code>.

Notice The incoming SIP message is missing a required header.
The displayed code is a bit-field that can be decoded
with access to the internals of the sip parser. If error
response is configured, the specified status code
response will be returned and the corresponding stats
counter will be incremented.

MR_SIP: Parser error CSEQ
method does not match headline
tag <tag> : <tag>. Status Code
<status code>

Notice The incoming SIP message has a mis-match between
the headline tag. If error response is configured, the
specified status code response will be returned and the
corresponding stats counter will be incremented.

MR_SIP: Parser max-forwards
value has reached zero. Status
Code <status code>

Notice The incoming sip message has been forwarded too
many times while being routed, causing the max-
forwards value to be decremented to zero. The BIG-IP®

system will not process this message. If error response
is configured, the specified status code response will be
returned and the corresponding stats counter will be
incremented.

MR_SIP: Server in maintenance
mode. Status Code 503

Notice The server has been placed in maintenance mode and
will not process traffic. If error response is configured,
status code 503 response will be returned and the
corresponding stats counter will be incremented.

MR_SIP: Loop detected. Status
code 482.

Notice The incoming SIP message contains a SIP round loop.
If error response is configured, status code 482 response
will be returned and the corresponding stats counter will
be incremented.

MR_SIP: Missing Media
Connection attributes. Status
Code 488.

Notice The incoming SIP message is missing required Media
Connection Attributes. If error response is configured,
status code 488 response will be returned and the
corresponding stats counter will be incremented.

MR_SIP: Too many media
sessions <count> / <count limit>.
Error Code <code>

Notice The number of media sessions in <count> has exceeded
the configured <limit count>. If error response is
configured, the specified code response will be returned
and the corresponding stats counter will be incremented.

SIP Troubleshooting Logs

If MRF SIP diagnostic log events are enabled via the log.mrsip.level db variable, the following events
will be logged to /var/log/tmm?.

BIG-IP Service Provider: SIP Administration

59

Table 26: SIP Troubleshooting Logs

Event Text Log
Level

Description

Max Global Registration
limit reached

Error MR SIP: Subscriber registration failed %s, configured max
global registration value :%u reached

Concurrent Session Per
Subscriber limit reached

Error MR SIP: concurrent session per subscriber limit %u reached,
subscriber cannot make calls: %s

Non registered subscriber
call out

Error MR SIP: non registered subscriber %s, call dropped. Change
SIP session configuration to allow non registered subscriber call
out

Subscriber registration
failed

Error MR SIP: subscriber %s, unable to register, received non-2xx
SIP response"

HUDEVT_SA_COOKIE_
PICK event failed

Error MR SIP: HUDEVT_SA_COOKIE PICKED event error

Listener creation failed Error MR SIP: Failed to create Listener %K for the subscriber %s

Listener deleted Error MR SIP: Listener deleted due translation lookup failure %K

sipdb Tool

The sipdb tool will be used to display or delete the persistence or media records from session database.
The persistence records are created in LB mode when persistence is configured.

The media records are created in ALG mode.

Usage

sipdb [options]
sipdb --persist [--delete] [--router=name] [--key=value] [--type=persistence_type] [--
ipproto=protocol] [–verbose]
sipdb --media [--delete] [--router=name] [-key=call-id]
sipdb --register [–delete] [--router=name] [-key=subscriber uri]
sipdb --help

Options

Table 27: Options

Option Description

--persist

-s

Indicates persistence mode. This option should be used to display or delete
persistence records. This is the default mode.

Each record displays the persistence type, persistence key, originating ip:port,
destination ip:port, protocol and the time remaining.

The records are grouped by the SIP router profile.

To delete the persistence record the record key has to be specified. Details are
given below in the example section

--media

-m

Indicates media mode. This option should be used to perform operations on media
records.

Troubleshooting

60

Option Description

The media mode displays the Callid, Origination IP:RTP Port, RTCP Port,
Interface name Destination IP: RTP Port, RTCP Port, Interface name.

In ALG-Translation mode, the output displays the translated address for the
subscriber.

--register

-g

Indicates register mode. This option should be used to perform operations on
register records.

The register mode displays the subscriber private address and translated address
and the lifetime of the registration.

--help

-h

Displays the help text.

--router = name

-r name

The sip router profile name. This option is used to filter the output matching
records for the specified SIP router profile.

The default partition '/Common' should be specified. For example '/Common/
siprouter'

The option can be used for both modes i.e. persist and media modes.

--key=value

-k value

Specifies the key for the session record. The option is used to filter the display with
the specific key or delete a specific key.

For persistence mode the key is either a SIP Call-ID, Source Address or Custom
value.

For Media mode the key is SIP Call-ID.

For register mode the key is the subscriber uri.

--delete

-d

To delete a particular record.

This option along with the mode and the key details specifies the record to be
deleted.

For persistence mode to delete a record the router name, key, persistence type and
ip proto values have to be specified.

To delete a media entry the router name and SIP Call-ID needs to be specified.

--type = value

-t value

Type of persistence entry.

The option is applicable when deleting a persistence record.

Following are the applicable values.

[C|c] For Call-ID id persistence

[S|s] For Source Address persistence

[O|o] For Custom type persistence

--ipproto = value

-p value

Either TCP or UDP.

The option is applicable when deleting a persistence record.

--verbose

-v

This option is applicable in persistence mode.

Displays the destination transport and pool name in addition to the default display.

BIG-IP Service Provider: SIP Administration

61

Examples

Default Display of Persistence Entries

#sipdb
Router: /Common/siprouter Number of entries: 1
Key Originator Destination Proto Timeout
--

C 1-8834@10.10.20.7 10.10.20.2:35462 10.10.10.2:5060 TCP 175

Router: /Common/siprouter_alg Number of entries: 1
Key Originator Destination Proto Timeout
--

C 1-8835@10.10.20.7 10.10.20.2:35462 10.10.10.2:5060 TCP 175

Verbose Display of Persistence Entries

sipdb -v
Router: /Common/siprouter Number of entries: 1
Key Originator Destination Proto Timeout
Transport Pool Name
--

C 1-8872@10.10.20.7 10.10.20.2:56913 10.10.10.2:5060 TCP 175
vs:vs_sip sip_pool

Router: /Common/siprouter_alg Number of entries: 1
Key Originator Destination Proto Timeout
Transport Pool Name
--

C 1-8874@10.10.20.7 10.10.20.2:56913 10.10.10.2:5060 TCP 175
vs:vs_sip sip_pool

To filter the above record for a particular SIP router profile name

#sipdb --persist –router /Common/siprouter --verbose
#sipdb --persist –router=/Common/siprouter --verbose
#sipdb --persist -r /Common/siprouter

Router: /Common/siprouter Number of entries: 1
Key Originator Destination Proto Timeout
Transport Pool Name
--

C 1-8872@10.10.20.7 10.10.20.2:56913 10.10.10.2:5060 TCP 175
vs:vs_sip sip_pool

To filter the record for a persistence key

#sipdb --persist –key 1-8872@10.10.20.7 --verbose

Router: /Common/siprouter Number of entries: 1
Key Originator Destination Proto Timeout
Transport Pool Name
--

C 1-8872@10.10.20.7 10.10.20.2:56913 10.10.10.2:5060 TCP 175
vs:vs_sip sip_pool

To delete the above record

sipdb persist --delete --key 1-8872@10.10.20.7 --router /Common/siprouter --type C --
ipproto TCP

Troubleshooting

62

Record Successfully deleted

Moving router and/or virtual to different traffic group

The BIG-IP® system does not support changing the traffic group or a router and/or virtual server. MRF
stores state that has a different lifetime than a connection in an internal in-memory database (known as
session db). This includes persistence tables (SIP LB), call tables (SIP ALG), and registrations tables
(SIP ALG), etc. Records stored in session db are auto replicated between the active and standby device.
Part of the key for each entry in the session db is the identifier for a traffic-group. If the traffic-group of a
virtual and/or router instance is changed all data stored in session db will be orphaned.

Config changes not loading, or stats don't show up on new router instance

Most changes to config are applied to existing connections. Changes to the set of profiles used by a
connection only apply to new connections. Since many message routing protocols use long lived
connections, some config changes will not effect existing connections. For example replacing the router
profile used by a virtual server will not apply to existing connections. Thus all traffic on existing
connections will still be routed through the previous router instance and the stats for that traffic will be
included with the previous router instance. To apply the traffic to the new router instance, the existing
connections will need to be closed forcing the clients to create new connections.

iRule changes not loading

Changes to iRule scripts attached to a virtual or transport-config do not change the scripts executing on
existing connections. New connections will use the updated scripts. To cause the new script code to be
applied, all existing connections (both client side and server side) will need to be closed and new
connections created. This may be avoided by moving the business logic of the script to a procedure as
follows:

ltm rule mylib {
 proc sip_ingress {} {
 if { [SIP::is_request] and [clientside] } {
 # do something
 # change here
 } else {
 # do something else
 # change here
 }
 }
}
ltm rule routing {
 when SIP_INGRESS {
 call mylib::sip_ingress
 }
}

Dropped UDP datagrams

Dropped UDP datagrams have been observed at very low traffic rates (100 calls per second). One cause
has been MPI latency. Try making sure the 'scheduler.hsbpollpode.ltm' db var is set to "always". This has
been show to reduce the MPI call latency.

MRF Debugging

Did the message reach the message router?

There are multiple places where processing can stop or a failure can occur. The stats of the profiles added
to the virtual server (or transport-config) should be used to determine if the message reached the message
router. From the transport profile's stats (TCP/UDP/SCTP), it can be determined if packets were received

BIG-IP Service Provider: SIP Administration

63

by the transport filter. From the protocol profile's stats (sipsession), it can be determined if the received
packets were correctly parsed into messages. If an error was found in the message parsing this should be
detectable using the protocol's stats.

The message router profile (siprouter) stats should increment with each message received. The result of
each messages routing operation should also be represented in the stats.

Why did the message fail routing

The MR_INGRESS event is raised for each message before it enters routing . Once routing is complete
either MR_EGRESS or MR_FAILED event is raised. The message metadata can be logged during these
events to help debug the results of routing. Some fields and their usage follows:

Metadata
Field

Populated Purpose

lasthop before MR_INGRESS Contains the TMM and flow_id of the originating
connection of the message

nexthop before MR_INGRESS (or
during MR_INGRESS)

Selects the destination connection for the message

route after routing (or during
MR_INGRESS)

The value of the selected route (peer list). If set during
MR_INGRESS, this route will be used instead of
performing route lookup

originator before MR_INGRESS The IP, port and rtdom_id of the originator of the
connection. Also contains the transport type and name of
the originating connection.

status after routing The results of the route lookup

attempted after routing (or during
MR_INGRESS)

The list of destination hosts attempted. This list of hosts
will be treated as marked down when performing peer
selection and load balanced pick.

retry_count after routing The number of times this message has been submitted
for routing

Why did the message fail routing

The MR_INGRESS event is raised for each message before it enters routing . Once routing is complete
either MR_EGRESS or MR_FAILED event is raised. The message metadata can be logged during these
events to help debug the results of routing. Some fields and their usage follows:

Metadata
Field

Populated Purpose

lasthop before MR_INGRESS Contains the TMM and flow_id of the originating
connection of the message

nexthop before MR_INGRESS (or
during MR_INGRESS)

Selects the destination connection for the message

route after routing (or during
MR_INGRESS)

The value of the selected route (peer list). If set during
MR_INGRESS, this route will be used instead of
performing route lookup

originator before MR_INGRESS The IP, port and rtdom_id of the originator of the
connection. Also contains the transport type and name of
the originating connection.

status after routing The results of the route lookup

Troubleshooting

64

Metadata
Field

Populated Purpose

attempted after routing (or during
MR_INGRESS)

The list of destination hosts attempted. This list of hosts
will be treated as marked down when performing peer
selection and load balanced pick.

retry_count after routing The number of times this message has been submitted for
routing

MR:route_status: "queue full"

One reason for MR_FAILED would be when MR:route_status is set to "queue full". This result can
happen when the following conditions are met:

1. MRF-SIP profile with TCP for transport.
2. SIP Peer has very few pool members.
3. One of the pool member is down.
4. Burst of SIP Traffic with message size > 2K Bytes.

There are 2 configurable items (Max-Pending-Messages and Max-Pending-Bytes) in the router config to
define the queue capacity. If the incoming traffic is high with large messages then the possibility of filling
up the queue increases significantly before the connection request timeout occurs on the pool member
which is down.

If the message size is larger than 2k then try increasing the Max-Pending-Bytes first. Otherwise, increase
Max-Pending-Messages. If neither increase works, then increase both values.

Messages received on per-client created connections

All messages received on an outgoing connection created using the per-client connection mode, will
automatically be forwarded to the connection that received the request which caused the outgoing
connection to be created. This includes request messages received on this connection. This is because the
connection acts as a direct connection for communication between the original client and the other
device. This routing is done be setting the nexthop of all messages received to the last hop of the original
request message.

For example:

A SIP INVITE request is received on a connection from 10.10.10.21 to 10.10.20.50. This message gets
routed to proxy server 10.20.30.85 using a transport-config that does not configure SNAT and has a
connection-mode of per-client. An outgoing connection will be created from 10.10.10.21 to 10.20.30.85.
All messages (whether responses of requests) received on the outgoing connection will be automatically
routed to the SIP endpoint at 10.10.10.21 using the original incoming connection.

To route a message received on a per-client created connection to another device, the nexthop field will
have to be cleared using the MR::message nexthop none command as follows:

when MR_INGRESS {
 MR::message nexthop none
 MR::message route config /Common/other_tc host 10.20.30.40:1234
}

Debugging Request Routing

Overview

SIP Request routing: Request messages are routed via iRule, Persistence or Route Table.

BIG-IP Service Provider: SIP Administration

65

1. An iRule may direct MRF how to route a message during MR_INGRESS. To set the route, use the
‘MR::message route …’ command.

2. A persistence entry using the same persistence key (often call-id) if present will route a message. In
MRF persistence entries are bi-directional and remember both SIP devices communicating in the
dialog. The persistence table can be accessed via the sipdb tool. The two endpoints in the persistence
table are identified as the originator and the destination. The destination of originator versus
destination has to do with which direction the original request message that created the persistence
entry. If a message arrives that generates the same persistence key, the address of the source of the
message will be matched against the destination in the persistence record to determine which
direction the message is flowing.

3. If no persistence record is found, the best route table entry for the router is used to select the
destination for the route. Attributes of the message are matched against the message to determine
which route applies for the current message. MRF SIP route table implementation can match against
the message’s request-URI, from-URI, to-URI and originating virtual server. If the message was
received on a connection that was initiated by the BIG-IP, the parameters of that connection were
likely defined by a transport-config. Messages arriving on a transport-config connection will not
match any routes which are filtered by a virtual server.

Request Routing Debugging

iRules can be used for route debugging. Remember that the iRule needs to be on each transport in the
system (virtual servers and transport-configs). MR_INGRESS event runs on the connection that received
the request message. MR_EGRESS event runs on the connection that the message is being sent out.
MR_FAILED event runs on the connection that received the request message when a message failed to
be routed.

SIP iRule commands can be run in the MR iRule events. MRF communicates with the SIP parser to
instruct it as to which message is currently used during the MR event.

To know if a message is a request or a response, the following conditional can be used:

If {[SIP::response code] eq “”} { # this is a request message

During MR_INGRESS, the message’s route can be examined as follows:

Log local0. “route [MR::message route]”

The transport type and name can be inspected (in v12.0 and later) via an iRule command as follows:

Log local0. “transport [MR::transport]”

An example script for MR_INGRESS is as follows:

when MR_INGRESS {
 log local0. “transport: [MR::transport] flow_id: [MR::flow_id]”
 if {[SIP::reponse code] eq “”} {
 log local0. “request [SIP::method] persist key [SIP::persist] route [MR::message route]”
 } else {
 log local0. “response [SIP::response code] nexthop [MR::message nexthop] route
[MR::message route]"
 }
}

After routing has occurred, the messages route field will be populated with the value of the selected route
and either MR_EGRESS will be executed or MR_FAILED. If routing succeeded, the route status will be
set to “route found” and MR_EGRESS event will be raised on the outgoing connection. If routing failed,
the route status will be set and MR_FAILED event will be raised on the incoming connection.

when MR_EGRESS {
 log local0. “transport: [MR::transport] flow_id: [MR::flow_id]”

Troubleshooting

66

 if {[SIP::reponse code] eq “”} {
 log local0. “request [SIP::method] persist key [SIP::persist] route [MR::message route]”
 } else {
 log local0. “response [SIP::response code] nexthop [MR::message nexthop] route
[MR::message route]"
 }
}

when MR_FAILED {
 log local0. “transport: [MR::transport] flow_id: [MR::flow_id] route status [MR::message
status]”
 if {[SIP::reponse code] eq “”} {
 log local0. “request [SIP::method] persist key [SIP::persist] route [MR::message route]”
 } else {
 log local0. “response [SIP::response code] nexthop [MR::message nexthop] route
[MR::message route]"
 }
}

BIG-IP Service Provider: SIP Administration

67

Troubleshooting

68

FAQ

FAQ

Advanced-Protocols License

In versions 11.6 and 12.0, MRF SIP virtual servers will not start without an Advanced Protocols license
in addition to the LTM license. The license check happens when configuration is loaded, /var/log/ltm file
will contain a “MESSAGE ROUTING SIP feature not licensed” line. Since the check only happens when
config is loaded, no additional message will be displayed when trying to connect to the virtual server.

Starting with version 12.1, the Advanced Protocol License requirement is no longer required. Only an
LTM license is necessary to use SIP.

Bi-Directional Persistence

Some persistence types, like Call-ID, write bidirectional persistence records. The entry records both SIP
devices involved in the call and the transport used to connect to that device. Messages received using the
call-id will be matched against the persistence entry to determine which SIP device the message should
be forwarded to.

Transport Translation

Transport translation is not supported. In other words, a UDP client connection cannot be sent to a TCP
peer and vice versa.

Connection Recreation

One interesting thing to consider is the snat setting for the virtual server. Lets say that you have two
virtual servers inbound_vs and outbound_vs. Each virtual server has a route which uses a corresponding
transport config, inbound_tc and outbound_tc. Calls received by the inbound_vs would be routed to
connection created using the settings of inbound_tc. The persistence entry for these calls would contain
the inbound_vs as the source transport and the inbound_tc as the destination transport.

Likewise calls received by the outbound_vs would be routed to connections created using the setting of
outgound_tc. The persistence entry for these calls would contain the outbound_vs as the source transport
and outboind_tc as the destination transport. If a call arrives on a connection created via outbound_tc and
a valid persistence entry still exists, it would route to a connection using the outbound_vs transport. If no
connection is found, it would create a new outbound connection using the outbound_vs’s parameters.

Therefore, the virtual server SNAT setting should be that of the VLAN it is on. This is opposite from
traditional BIG-IP virtual servers.

Lets say that the inbound_vs listens on the external VLAN and the outbound_tc is for creating
connections on the external vlan. The inbound_vs’s SNAT settings are what would be used for creating
outgoing connections also on the external VLAN. Inbound_vs’s snat setting would never be used for
creating connection on the internal VLAN.

In this case, the SNAT settings of the inbound_vs should match the SNAT settings of the outbound_tc.
Likewise the SNAT settings of the outbound_vs should match the SNAT settings of the inbound_tc.

Message Retry

When a message fails to route, it will be returned to the originating connflow and MR_FAILED event
will be raised. A iRule script will be able to examine the message and resubmit it for routing via the
MR::retry command.

There are multiple steps to routing, to understand how MR::retry will work, you will need to understand
the steps. To avoid some of these steps or force a different path you may need to modify some of the
metadata contained with the message.

Steps of routing:

1. If the message’s nexthop attribute is set, the message will be forwarded to the TMM and flowid
specified in the nexthop. To avoid this, the message’s nexthop should be cleared via ‘MR::message
nexthop none’.

2. If the message’s route attribute is set, the message will skip persistence lookup and route selection and
proceed to peer selection (step 5) and lb_pick. Every time route lookup occurs, the message’s route
attribute is set. To ensure persistence lookup occurs the route attribute should be cleared via
‘MR::message route none’.

3. If persistence is enabled on the originating transport, the generated persistence key (via config or
iRule) will be used to look for a persistence record. If a persistence record is found, the message will
be forwarded to the host specified in the persistence record (step 7). To remove any previous
persistence record stored under the message’s key use ‘SIP::persist reset’ or ‘DIAMETER::persist
reset’ iRule command. NOTE: The DIAMETER command is not yet implemented.

4. The protocol specific route table implementation will lookup the best route for the message based on
a protocol specific attributes contained in the message. For SIP, it uses the request-uri, to-uri and
from-uri of the message. It is also able to match against the virtual server of the originator of the
connection. Once a route is found, the message’s route attribute is populated with the route.

5. The route found contains a peer list. A peer is selected from the peer list using the peer selection
mode.

6. The selected peer may contain a pool and a transport. If a pool exists, it will select the first active pool
member that has not already be attempted for this message. If no pool exists, it will forward the
message to the local IP and port of the incoming connection.

7. Once a host has been selected, MRF will look to see if an available connection already exists to the
host. If an available connection exists, the message will be egressed to the host via that connection. If
an available connection does not exist, a new connection will be created and the message will be
forwarded through the new connection

Examples

Retry the message to a known existing connection:

when MR_FAILED {
 MR::message nexthop 0:010000010111
 MR::retry
}

Retry the message to a pool of alternate servers

When MR_FAILED {
 MR::message nexthop none
 SIP::persist reset
 MR::message route config /Common/BackupTc pool /Common/BackupPool
 MR::retry
 }

Retry the message via the same persistence key

When MR_FAILED {
 MR::message nexthop none

FAQ

70

 MR::message route none
 MR::retry
}

To reroute

When MR_FAILED {
 MR::message nexthop none
 MR::message route none
 SIP::persist reset
 MR::retry
 }

To forward to a host

When MR_FAILED {
 MR::message nexthop none
 SIP::persist reset
 MR::message route config /Common/BackupTc host 10.10.10.10:5060
 MR::retry
}

Connection Auto-Initialization

If a peer object has auto-initialization enabled, the BIG-IP® system will automatically create outbound
connections to the active pool members in the specified pool using the configuration of the specified
transport-config. For auto-initialization to attempt to create a connection, the peer must be included in a
route that is attached to a router instance. For each router instance that the peer is contained in, a
connection will be initiated. The auto-initialization logic will verify at a configurable interval if the a
connection exists between the BIG-IP and the pool members of the pool. If a connection does not exist, it
will attempt to reestablish one.

The first auto-intialization attempt will occur at least one auto-initialization-interval delay from when the
object is loaded or changed in the TMM.

If the router instance is not included in any virtual servers, connection auto-initialization will not start.
Once the router instance has been included in an enabled virtual server, auto-initialization will begin and
will remain running for those peers used by routes attached to the router instance even if the router
instance is removed from the virtual server.

If a peer with auto-initialization enabled, is used in multiple router instances, a separate connection will
be established for each router instance.

The auto-initialization logic will only attempt to create connections to enabled pool members. If the pool
member is marked down by an external monitor it will be ignored unless an inband monitor is also
attached.

If mirroring is enabled on the router instance, the active device will initialize outgoing connections. The
new outgoing connections will be mirrored to the standby device.

iRules on all transports

With MRF the outgoing connection may not use the same transport as the incoming connection.
Incoming connections are defined via virtual servers. Outgoing connections are often defined with
transport-configs. If the same iRule script is desired to run on all connections, the script should be
defined for all transports.

For example tests assume a simple load balancing configuration with a virtual server (VS_IN) that is part
of a router instance with a single default route. This default route contains a single peer that uses a
transport-config (TC_OUT) to define the parameters of the outgoing connection. In this setup, a request
message would be received on VS_IN. The request message would ingress on a hudchain configured via
the settings of the virtual server. As the message was processed, the SIP_REQUEST and MR_INGRESS

BIG-IP Service Provider: SIP Administration

71

events would be raised on the iRule scripts attached to the virtual server. The request message would be
forwarded to an outgoing connection configured via the setting of the transport-config. As the message
egressed through the outgoing connection, the MR_EGRESS and SIP_REQUEST_SEND events would
be raised on the iRule scripts attached to the transport-config. When the response message is received by
the outgoing connection, the SIP_RESPONSE and MR_INGRESS events would be raised on the iRule
script attached to the transport-config. The response will be forwarded to the connection that originated
the request and the MR_EGRESS and SIP_RESPONSE_SEND events would be raised on the iRule
script attached to the virtual server.

Figure 13: iRules on all transports

Sharing iRule variables between connections

MRF does not join the client side connection with the server side connection (except for SIP ALG). The
traditional method of using the CLIENTSIDE or SERVERSIDE keywords to access variables will not
work. Instead MRF provides a command to deliver tcl variables along side of the message to the
outgoing connection. The MR::store command allows the script author to specify which tcl variables
should be delivered to the outgoing connection. The MR::restore command unpacks the delivered
variables on the outgoing connection and adds them to the connections context.

For example on the incoming connection:

when MR_INGRESS {
 set originator_ip [IP::remote_add]
 set ingress_message_count [expr $message_count + 1]
 MR::store originator_ip ingress_message_count
}

On the outgoing connection:

when MR_EGRESS {
 MR::restore
 log local0. "originator_ip $originator_ip ingress_message_count $ingress_message_count"
}

The effect of message pipelining on iRule variables

SIP can pipeline messages by allowing messages that require less processing to be forwarded without
waiting for earlier messages that require more processing. For this reason, it is not recommended to store
state in tcl variables to be used by subsequent iRule events. There is no guarantee that the next event
raised after the protocol's message event will be the MR_INGRESS for the same message. For example,
saving the SIP uri in a tcl variable during a SIP_REQUEST event to use for making a routing decision
during MR_INGRESS is not recommended. The next MR_INGRESS event may not be for the same
message as the last SIP_REQUEST event.

MRF SIP implementation allows accessing the SIP iRule commands during the MR events. This is the
recommended method to make routing and delivery decisions based on attributes of a message.

For example:

when MR_INGRESS {
 if {[URI::host [SIP::uri]] equal "othersp.com"} {
 MR::message route config "/Common/othersp_tc" pool "/Common/othersp_pool"

FAQ

72

 }
}

SNAT settings of the outgoing transport used

MRF uses the SNAT setting of the outgoing connection to determine how the source address is translated.
Most outgoing connections are configured via a transport-config and the SNAT setting of the transport
config will be used to select the source address. The only time the SNAT settings defined in the virtual
server are used is if the setting of the virtual is used to create the outgoing connection (this occurs if no
transport-config is set in the peer object).

Connection Reuse

MRF maintains a table of all existing connections on each TMM of a router instance. When a message is
routed to a host, MRF will scan this table for an existing connection to the host that is available for use. If
an available existing connection is not found, a new connection will be created.

There are many reasons that an existing connection may not be available for delivery of the current
message (see the sub-sections below for details).

Transport

Each connection is created using the parameters of a transport object (either a virtual server or a
transport-config). The transport specifies the profiles, SNAT and iRule scripts of the connection. When a
message is routed, MRF will scan the list of connections for a connection created with the same transport
specified. Even if the two transports contain the same parameters, a connection created with a different
transport will not be used.

A pool object only allows specification of a transport-config as the outgoing connection transport. If the
peer object does not specify the transport config, the transport of the message's originating connection
will be used. If the system wishes to potentially deliver a message through an existing connection created
with by different virtual server on the same router, the MR::message route iRule command must be used.
For example:

MR::message route virtual "/Common/internal_vs" host [IP::local_addr]:5060

Remote Port and ignore-clientside-port (or ignore-peer-port)

Many clients when creating connections use an ephemeral port for the local port. If a message is routed to
that host, the port specified in the host's address will be different than the remote port of any existing
connection with the host. Many MRF protocol implementation have an 'ignore_clientside_port' attribute
in their router profile. Setting attribute to 'true' instructs MRF that any connection created by the host
(client side) that matches the transport, remote IP and rtdom_id may be used.

Number-connections and instance number

The number-connections attribute of the peer object specifies which connection of a set of connections to
a host will be used for delivering a message. It is used alongside the connection-mode instance to set the
maximum number of connections between a router instance not the BIG-IP® and a host.

Connection-mode

Each peer object specifies a connection mode which is used to determine if a connection can be reused or
if a new connection should be created. Possible connection modes are:

• per-peer: When a message is routed to a peer with per-peer connection mode, any connection on any
TMM with the correct instance number may be used for delivering the message.

BIG-IP Service Provider: SIP Administration

73

• per-blade: When a message is routed to a peer with per-blade connection mode, only connections on
the current blade with the correct instance number may be used for delivering the message.

• per-tmm: When a message is routed to a peer with per-tmm connection mode, only connections on the
current tmm with the correct instance number may be used for delivering the message.

• per-client: When a message is route to a peer with per-client connection mode, an outgoing
connection will be created for exclusive use by the originating connection. The outgoing connection
will not be usable for delivering messages from other connections. Any message received (request or
response) on the created outgoing connection will be automatically delivered to the originating
connection that owns the outgoing connection.

use-local-connection

Many MRF protocol router profiles contain a 'use-local-connection' attribute. If this attribute is set, if a
outgoing connection exists on the current TMM, it will be used even if the instance number does not
match. Using this optimization will effectively limit the number of outgoing connections to one per
TMM.

Source port

MRF allows setting the source port used on outgoing connections through the source-port attribute of a
transport-config object. Setting this attribute to a non-zero value causes the source port of the outgoing
connection to be set to the provided value. If set to zero an ephemeral port value will be used.

Pinning the source port to a fixed value will limit the number of connections available to the host. There
can only be one connection using the local and remote tuples (IP/port/rtdom_id) and IP protocol
(TCP/UDP/SCTP). Attempts to create another connection using the same addresses and IP protocol will
fail.

For this reason it is not recommended to use set the source port for outgoing connections except when
using a connection-mode of 'per-peer' and a number-connections of '1'.

Likewise trying to use the same host from peers with different transport settings (transport-config and/or
virtual) and setting the source port will produce failures (unless different SNAT pools are used).

LB Operating Mode

Response messages being processed by different router instance

SIP routes response messages by inserting a VIA header into the request message. This VIA header
contains a branch parameter that is used to contain the internal identifier of the connection that originated
the request. The contents of the branch header are encrypted.

When the response message is received, it will contain the inserted VIA header. This inserted header is
removed from the message and the branch parameter is decrypted to get the connection identifier of the
request's originator. The message will be forwarded to the originating connection. If the originating
connection has since been closed, the address in the next top-most header will be used for routing the
response message.

This method frees MRF SIP from having to store any data internally while waiting for a response
message. All information needed to route the response is added to the message and will be returned with
the response. This method works whether the message is returned to the same connection that it was sent
from or a new connection.

But if the response message is returned to a different router instance, the branch parameter of the VIA
header cannot be decrypted. "MR SIP: Decrypt branch parameter failed with error : Buffer error" will be
recorded in /var/log/tmm.

FAQ

74

Response message routing (insert-via and honor-via settings)

SIP can be configured to route responses twice using two different methods.

The first method attempts to route the message to the connection that originated the request message.
This is enabled via the 'insert-via' attribute of the sipsession profile. If set, the request message will have
a new via header inserted into the message. This via header will identify the IP and port that the next SIP
device should route the response to. The response message should contain all the via headers included in
the request message. Each SIP device will remove the via header it inserted as the response passes
through. An example inserted via is as follows:

Via: SIP/2.0/UDP 10.10.10.5:5060;rport;branch=z9hG4bKPjlL6pbh49PLliE2ZNBsASKyO7EBckaoQt

When a response is received and insert-via is enabled, the top most via will be removed, and the message
will be forwarded to the connection identified by setting the nexthop meta-data field of the message. This
can be observed by logging the message's nexthop field during MR_INGRESS event as follows:

when MR_INGRESS {
 if {[SIP::response code] ne ""} {
 log local0. "Response: nexthop [MR::message nexthop]"
 }
}

If the request's originating connection no longer exists, the MRF proxy will return the message to the
connection that received the response. The MR_FAILED event will be raised. Upon completion of the
MR_FAILED logic, the message will be returned the the SIP filter. The SIP filter will use the fallback
response routing mechanism if the 'honor-via' attribute is enabled. The fallback response routing used the
IP and port of the second topmost VIA header of the received response (now the topmost after deleting
the inserted one). This is the via header that was topmost when the request message was received. This
header should contain the IP and port that the device which sent the request to the BIG-IP.

The MRF SIP filter will clear the message's nexthop field and instead set the message's route meta-data
field to route the message to the IP and port of the device which sent the request to the BIG-IP. Once the
route field has been set, the message will again be forwarded to the MRF proxy for routing and
MR_INGRESS event will be raised.

Note: The route command will specify the transport of the connection that received the response as the
transport to use when creating the connection to the source of the request. If this is not desired, the route
field can be modified during the subsequent MR_INGRESS event.

ALG without SNAT (No Address Translation)

The Secure Real-time Transport Protocol (SRTP)- RFC3711 is not supported in this mode.

Routing using a virtual with SNAT none may select a source port of zero

MRF allows routing to a peer without a transport-config selected. If a peer does not have a transport-
config, the transport of the message originating connection will be used to create the outgoing
connection. If originating connection used a virtual server as its transport, the serverside of the virtual
server will be used to create the outgoing connection.

If the virtual server had a SNAT setting of none and the 'source-port' attribute set to 'preserve' or
'preserve-strict', the outgoing connection will be created with a source port of zero instead of the remote
port of the originating connection.

BIG-IP Service Provider: SIP Administration

75

SIP ENUM Resolution Capability using iRule

DNS team has developed an iRule called RESOLV::lookup to perform a DNS query . From release
11.5.0, its capability was improved to support resolving NAPTR and SRV addresses as well. SIP ENUM
resolution mainly involves resolving Telephone number to an IP address. This process normally involves
4 steps namely

• Normalizing the telephone number to an ENUM address format.
• Perform NAPTR resolution on ENUM to retrieve SRV records.
• Perform SRV resolution to retrieve Domain Name records.
• Perform DNS query to retrieve the IP Address.

RESOLV::lookup with its new capabilities could potentially be used to resolve ENUM to IP Address.

Eg: NAPTR resolution to retrieve SRV records.

RESOLV::lookup @$static::dns_vs inet -naptr "4.4.2.2.3.3.5.6.8.1.4.4.e164.arpa"

FAQ

76

Legal Notices

Legal notices

Publication Date

This document was published on June 15, 2018.

Publication Number

MAN-0670-01

Copyright

Copyright © 2018, F5 Networks, Inc. All rights reserved.

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5
assumes no responsibility for the use of this information, nor any infringement of patents or other rights
of third parties which may result from its use. No license is granted by implication or otherwise under
any patent, copyright, or other intellectual property right of F5 except as specifically described by
applicable user licenses. F5 reserves the right to change specifications at any time without notice.

Trademarks

For a current list of F5 trademarks and service marks, see http://www.f5.com/about/guidelines-policies/
trademarks.

All other product and company names herein may be trademarks of their respective owners.

Patents

This product may be protected by one or more patents indicated at: https://f5.com/about-us/policies/
patents.

Link Controller Availability

This product is not currently available in the U.S.

Export Regulation Notice

This product may include cryptographic software. Under the Export Administration Act, the United
States government may consider it a criminal offense to export this product from the United States.

RF Interference Warning

This is a Class A product. In a domestic environment this product may cause radio interference, in which
case the user may be required to take adequate measures.

FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device pursuant
to Part 15 of FCC rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This unit generates, uses, and
can radiate radio frequency energy and, if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. Operation of this equipment in a

http://www.f5.com/about/guidelines-policies/trademarks/
http://www.f5.com/about/guidelines-policies/trademarks/
https://f5.com/about-us/policies/patents
https://f5.com/about-us/policies/patents

residential area is likely to cause harmful interference, in which case the user, at his own expense, will be
required to take whatever measures may be required to correct the interference.

Any modifications to this device, unless expressly approved by the manufacturer, can void the user's
authority to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance

This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance

This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to
Information Technology products at the time of manufacture.

Legal Notices

78

Index

A

advanced protocols license 69
ALG without SNAT 75

B

basic load balancing
configuration 36
example 35

bi-directional persistence
connection recreation 69
examples 70
forward to a host 71
message retry 70
reroute 71
retry the message to a known existing connection 70
retry the message to a pool of alternate servers 70
retry the message via the same persistence key 70
transport translation 69

C

capabilities
load balancing 7
SRTP Compliance (RFC 3711) 8

configuration object
peer object 20
route 14
router profile 10
session profile 17, 27
transport config 23
virtual server 9

connection auto-initialization 71
connection modes

per blade 22
per peer 21
per TMM 22

connection reuse
connection-mode 73
number-connections and instance number 73
remote port and ignore-clientside-port (or ignore-peer-
port) 73
source port 74
transport 73

D

debugging request routing
overview 65

deployment use cases
basic load balancing 35
load balancing with persistence 36
SIP ALG without address translation 38

disaggregation modes
configuring DAG modes 31
default DAG 31

disaggregation modes (continued)
round robin DAG 32
source and destination DAG 32

E

effect of message pipelining on iRule variables 72

H

high availability failover
configuration guidelines 43
overview 43
primary BIG-IP device 44
support 43
traffic group guidelines 43

I

iRule support
overview 47

iRules on all transports 71

L

load balancing operating mode
response message routing 75
response messages being processed by different router
instance 74

load balancing with persistence
session persistence 36
session persistence example 37

load balancingALG without SNAT
configuration objects 9, 24

log messages
configuration termination 57
configuration validation errors 57
troubleshooting logs 57, 59

M

MRF commands
route status 51

MRF debugging
message routing failure 64
messages received on per-client connections 65
MR: route_status: queue full 65
verifying message reaches message router 63

MRF events 47

O

operation mode
load balancing 9

operation modes
ALG without SNAT 7, 24

Index

79

P

peer object
connection modes 21
peer attributes 20

persist iRule example
get persist key 54
set persist key 54

S

security advisory 8
sharing iRule variables between connections 72
SIP ALG without address translation

ALG without source-address-translation example 39
firewall ALG mode 39
firewall ALG mode requirements 39
load balancing configuration 40
request routing 39
response routing 39
sequence diagram 41

SIP ENUM resolution capability using iRule 76
SIP iRule events and commands

persist iRule example 54
SIP::header subcommands 54

SIP message routing framework
attributes matching 13
capabilities 7
deployment use cases 35
disaggregation modes 31
FAQ 69
high availability failover 43
introduction 5
iRule support 47
load balancing configuration 37
MRF iRule events and commands 47
operaiton modes 9
overview 7
peer selection 16
SIP iRule events and commands 52
SIP router profile 25
specific route matching example 13
troubleshooting 57
virtual server 24

SIP route
route key 15
route value 16

SIP router profile
operation mode 13, 27
route table 13

sipdb tool
config changes not loading 63
default display of persistence entries 62
delete record 62
dropped UDP datagrams 63
examples 62
filter record 62
iRule changes do not load 63
moving router to different traffic group 63
moving virtual server to different traffic group 63
options 60
stats do not appear on router instance 63

sipdb tool (continued)
to filter the record for a persistence key 62
usage 60
verbose display of persistence entries 62

SNAT settings of the outgoing transport used 73

T

tramsport config
source address translation 23
source address translation types 23
transport config attributes 23

troubleshooting
log messages 57
MRF debugging 63
request routing 65
siddb tool 60

U

using a virtual with SNAT none 75

Index

80

	Table of Contents
	Introduction to SIP Message Routing Framework
	Introduction to SIP Message Routing Framework

	SIP Overview
	SIP Overview
	Capabilities
	Load Balancing
	ALG without SNAT (No Address Translation)
	SRTP Compliance (RFC 3711)
	Security Advisory

	Operation Modes
	Operation Modes
	Load Balancing
	Configuration Objects
	Virtual Server
	SIP Router Profile
	Operation Mode
	SIP Route Table
	Attributes Matching
	Specific Route Match Example

	SIP Route
	Route Key
	Route Value
	Peer Selection
	Host Selection

	SIP Session Profile
	Peer Object
	Peer Attributes
	Connection Modes
	Per Peer
	Per TMM
	Per Blade

	Transport Config
	Transport Config Attributes
	Source Address Translation
	Source Address Translation Types

	ALG without SNAT (No Address Translation)
	Configuration Objects
	Virtual Server
	SIP Router Profile
	Operation Mode
	SIP Session Profile

	Disaggregation (DAG) Modes
	Disaggregation (DAG) Modes
	How to configure DAG Modes
	Default DAG
	Source/Destination DAG (SP-DAG)
	Round Robin DAG (RR-DAG)

	Deployment Use Cases
	Deployment Use Cases
	Basic Load Balancing (LB)
	Basic LB Example
	Configuration

	Load Balancing with Persistence
	Session Persistence
	Basic LB with Session Persistence Example
	Configuration

	SIP ALG without Address Translation
	FW ALG mode
	FW ALG Mode Requirements
	Request Routing
	Response Routing
	ALG without Source-address-translation Example
	Configuration
	ALG without Source-address-translation Sequence Diagram

	High Availability (HA) Failover
	High Availability (HA) Failover
	Overview
	SIP HA Support

	Configuration Guideline
	For each BIG-IP in Traffic Group
	Primary BIG-IP

	iRule Support
	iRule Support
	Overview
	MRF iRule Events and Commands
	MRF Events
	MRF Commands
	Route Status

	SIP iRule Events and Commands
	Persist iRule Example
	Get Persist Key
	Set Persist Key

	SIP::header subcommands

	Troubleshooting
	Troubleshooting
	Log Messages
	Configuration Validation Errors
	Connection Termination Reasons
	MRF SIP Troubleshooting Logs
	SIP Troubleshooting Logs

	sipdb Tool
	Usage
	Options
	Examples
	Default Display of Persistence Entries
	Verbose Display of Persistence Entries
	To filter the above record for a particular SIP router profile name
	To filter the record for a persistence key
	To delete the above record

	Moving router and/or virtual to different traffic group
	Config changes not loading, or stats don't show up on new router instance
	iRule changes not loading
	Dropped UDP datagrams

	MRF Debugging
	Did the message reach the message router?
	Why did the message fail routing
	MR:route_status: "queue full"

	Messages received on per-client created connections

	Debugging Request Routing
	Overview
	Request Routing Debugging

	FAQ
	FAQ
	Advanced-Protocols License
	Bi-Directional Persistence
	Transport Translation
	Connection Recreation
	Message Retry
	Examples
	Retry the message to a known existing connection:
	Retry the message to a pool of alternate servers
	Retry the message via the same persistence key
	To reroute
	To forward to a host

	Connection Auto-Initialization
	iRules on all transports
	Sharing iRule variables between connections
	The effect of message pipelining on iRule variables
	SNAT settings of the outgoing transport used
	Connection Reuse
	Transport
	Remote Port and ignore-clientside-port (or ignore-peer-port)
	Number-connections and instance number
	Connection-mode
	use-local-connection
	Source port

	LB Operating Mode
	Response messages being processed by different router instance
	Response message routing (insert-via and honor-via settings)

	ALG without SNAT (No Address Translation)
	Routing using a virtual with SNAT none may select a source port of zero
	SIP ENUM Resolution Capability using iRule

	Legal Notices
	Legal notices

	Index

