Manual Chapter : Overview of routing administration in TMOS

Applies To:

Show Versions Show Versions

BIG-IP AAM

  • 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0

BIG-IP APM

  • 17.0.0, 16.1.3, 16.1.2, 16.1.1, 16.1.0, 16.0.1, 16.0.0, 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0

BIG-IP Analytics

  • 17.0.0, 16.1.3, 16.1.2, 16.1.1, 16.1.0, 16.0.1, 16.0.0, 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0

BIG-IP Link Controller

  • 17.0.0, 16.1.3, 16.1.2, 16.1.1, 16.1.0, 16.0.1, 16.0.0, 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0

BIG-IP LTM

  • 17.0.0, 16.1.3, 16.1.2, 16.1.1, 16.1.0, 16.0.1, 16.0.0, 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0

BIG-IP PEM

  • 17.0.0, 16.1.3, 16.1.2, 16.1.1, 16.1.0, 16.0.1, 16.0.0, 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0

BIG-IP AFM

  • 17.0.0, 16.1.3, 16.1.2, 16.1.1, 16.1.0, 16.0.1, 16.0.0, 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0

BIG-IP DNS

  • 17.0.0, 16.1.3, 16.1.2, 16.1.1, 16.1.0, 16.0.1, 16.0.0, 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0

BIG-IP ASM

  • 17.0.0, 16.1.3, 16.1.2, 16.1.1, 16.1.0, 16.0.1, 16.0.0, 15.1.7, 15.1.6, 15.1.5, 15.1.4, 15.1.3, 15.1.2, 15.1.1, 15.1.0, 15.0.1, 15.0.0, 14.1.5, 14.1.4, 14.1.3, 14.1.2, 14.1.0
Manual Chapter

Overview of routing administration in TMOS

As a BIG-IP ®system administrator, you typically manage routing on the system by configuring these BIG-IP system features.
BIG-IP system features for route configuration
BIG-IP system feature
Benefit
Interfaces
For the physical interfaces on the BIG-IP system, you can configure properties such as flow control and sFlow polling intervals. You can also configure the Link Layer Discovery Protocol (LLDP), globally for all interfaces and on a per-interface basis.
Trunks
A
trunk
is a logical grouping of interfaces on the BIG-IP system. When you create a trunk, this logical group of interfaces functions as a single interface. The BIG-IP system uses a trunk to distribute traffic across multiple links, in a process known as link aggregation.
VLANs
You create VLANs for the external and internal BIG-IP networks, as well as for high-availability communications in a BIG-IP device clustering configuration. The BIG-IP system supports VLANs associated with both tagged and untagged interfaces.
Virtual and self IP addresses
You can create two kinds of IP addresses locally on the BIG-IP system. A
virtual IP address
is the address associated with a virtual server. A
self IP address
is an IP address on the BIG-IP system that you associate with a VLAN or VLAN group, to access hosts in that VLAN or VLAN group. Whenever you create virtual IP addresses and self IP addresses on the BIG-IP system, the system automatically adds routes to the system that pertain to those addresses, as directly-connected routes.
DHCP support
You can configure the BIG-IP system to function as a DHCP relay or renewal agent. You can also force the renewal of the DHCP lease for the BIG-IP system management port.
Packet filtering
Using packet filters, you can specify whether a BIG-IP system interface should accept or reject certain packets based on criteria such as source or destination IP address. Packet filters enforce an access policy on incoming traffic.
IP address translation
You can configure network address translation (NATs) and source network address translation (SNATs) on the BIG-IP system. Creating a SNAT for a virtual server is a common way to ensure that pool members return responses to the client through the BIG-IP system.
Route domains
You create route domains to segment traffic associated with different applications and to allow devices to have duplicate IP addresses within the same network.
Static routes
For destination IP addresses that are not on the directly-connected network, you can explicitly add static routes. You can add both management (administrative) and TMM static routes to the BIG-IP system.
Dynamic routing
You can configure the advanced routing modules (a set of dynamic routing protocols and core daemons) to ensure that the BIG-IP system can learn about routes from other routers and advertise BIG-IP system routes. These advertised routes can include BIG-IP virtual addresses.
Spanning Tree Protocol (STP)
You can configure any of the Spanning Tree protocols to block redundant paths on a network, thus preventing bridging loops.
The ARP cache
You can manage static and dynamic entries in the ARP cache to resolve IP addresses into MAC addresses.
WCCPv2 support
WCCPv2
is a content-routing protocol developed by Cisco® Systems. It provides a mechanism to redirect traffic flows in real time. The primary purpose of the interaction between WCCPv2-enabled routers and a BIG-IP® system is to establish and maintain the transparent redirection of selected types of traffic flowing through those routers.