Manual Chapter :
Network Settings
Applies To:
Show VersionsF5OS-A
- 1.0.1, 1.0.0
Network Settings
Network settings overview
An administrator can configure L2 network settings for the
rSeries
system, such as port
groups, LAGs, interfaces, VLANs, LACP, LLDP, and STP. You can configure these
network settings from the webUI, the CLI, or REST APIs.Port groups overview
The front-panel ports on
rSeries platforms
support port group functionality. Port groups enable you to configure the mode of the physical port, which controls the port speed and whether the port is bundled or unbundled. Until configured, the rSeries
system uses port speeds of 100G or 25G, depending on the port
. You can change them based on what optical transceiver module type you are using.Before configuring any interfaces, VLANs, or LAGs, you can set up port groups so that physical interfaces on the The system creates the port group components.
platform
are configured for the proper speed and bundling. Depending on the port group mode, a different FPGA version is loaded, and the speed of the port is adjusted accordingly. Changing the mode causes a
system
reboot.Configure port groups from the webUI
You can configure port groups to
use a specific mode depending on how you are connecting your system.
Changing the port group mode
impacts the view of physical interfaces published by the system. The
previous interfaces that corresponded to the previous port group mode are
deleted, and new ones are created. All configuration associated with the
deleted interfaces is also lost.
- Log in to the webUI using an account with admin access.
- On the left, click.
- For a specific port group, select aModefrom the list.You can choose one of these modes:OptionDescription100GbECreate one interface at 100G speed.40GbECreate one interface at 40G speed.10GbECreate one interface at 10G speed.
- ClickSave.
When you change the port group mode
on ports for a specific group, the system resets. The previous interfaces that
corresponded to the previous port group mode are deleted, and the associated
(underlying) configuration is also lost.
Port mappings overview
Port mappings show how the front-panel interfaces on
rSeries
systems are configured for capacity bandwidth and
allocated bandwidth using pipelines
and pipeline
groups
.- pipeline
- Corresponds to a traffic processing pipeline. There are eight virtual ports per pipeline. Each pipeline has 100Gb of throughput.
- pipeline group
- Contains two pipelines and corresponds to FPGA sockets. The system FPGAs are configured in the bitstream to support the different ports. No bitstream supports all ports simultaneously.
Display port mappings from the webUI
You can view how port mappings are
configured from the webUI.
- Log in to the webUI using an account with admin access.
- On the left, click.The current configuration for port mappings displays.
Interfaces overview
rSeries
systems include a set number of
front-panel interfaces (or ports). The number of available interfaces varies
depending on hardware model.Configure interfaces from the webUI
Before you begin, you must already have created the VLANs that you want to associate with the interface.
If you intend to create LAGs, you should wait to associate VLANs with interfaces, because an interface cannot be used as a LAG member if it is associated with an interface.
You can configure interfaces from the webUI.
- Log in to the webUI using an account with admin access.
- On the left, click.A table showing all interfaces displays.
- Click an interface name.
- ForState, select whether the interface isEnabledorDisabled.
- These settings are informational, set values and cannot be changed: Operational Status, Speed, MAC Address, and Interface Type.
- ForMTU, the maximum transmissions unit is set to the default value of 9600 (read only).This is the largest size that the system allows for an IP datagram passing through a physical interface.
- Forward Error Correctionis set to the default value ofAuto(read only) and detects and corrects a limited number of errors in transmitted data.Since this setting is enabled automatically, your upstream switch must also support Forward Error Correction (FEC).
- RX Flow Controlis set toOff, and it is not supported on any of the interfaces.
- ForNative VLAN, select the VLAN ID to use for untagged frames received on an interface: either a single interface or LAG.An interface or LAG can have only one Native VLAN assigned to it. You can use a Native VLAN with multiple LAGs or interfaces. You cannot use a VLAN, however, as both a Native and Trunk VLAN for the same interface.
- ForTrunk VLAN, select one or more VLAN IDs, if available, and not a member of another LAG; this is used for tagged traffic.You can use the same VLAN ID as the Trunk VLAN across all interfaces or LAGs. You cannot use a VLAN, however, as both a Native and Trunk VLAN for the same interface.A trunk VLAN or a Native VLAN is required to pass traffic. If you do not select either a Native VLAN or a Trunk VLAN, the port will not carry any traffic.
- ClickSave & Close.
Display and reset interface statistics from the webUI
You can view statistics for physical
interfaces configured on the system from the webUI. The table shows, for each interface,
the amount of data that was input and output in multiple forms. You can also see in/out
errors and frame check sequence (FCS) errors that occurred on each of the interfaces,
and you can reset to clear the data.
- Log in to the webUI using an account with admin access.
- On the left, click.A table showing all the statistics displays.
- Change the way the statistics are displayed in theData Formatby selectingNormalizedorUnformatted.SelectingNormalizedconverts the byte representation to kilobytes, megabytes, or terabytes depending on the size. This provides better data readability especially when there is massive amounts of traffic passing through the interfaces.
- Set theAuto Refreshinterval for refreshing the data displayed or click the refresh icon to update the data immediately.
- Select one or more interfaces, then clickResetto clear the data.
Link aggregation group (LAG) overview
A link aggregation group (LAG) is a logical group of
interfaces that function as a single interface. The LAG (like a trunk on
BIG-IP systems) distributes traffic across multiple links, which increases the
bandwidth by adding the bandwidth of multiple links together. For example,
four fast Ethernet (100 Mbps) links, if aggregated, create a single 400 Mbps
link. LAGs also enhance connection reliability by providing link failover if a
member link becomes unavailable.
There are two types of LAGs:
- Static
- Ports in the LAG are manually configured, and the group of ports assigned to a static LAG are always active members. This is the default type of LAG.
- Link Aggregation Control Protocol (LACP)
- When LACP is enabled on a LAG, the port configure automatically into groups without manual configuration. The LACP protocol detects error conditions on member links and redistributes traffic to other member links, thus preventing any loss of traffic on a failed link.
Create LAGs from the webUI
You can create a link aggregation group (LAG) or edit the properties of an existing LAG from the webUI.
- Log in to the webUI using an account with admin access.
- On the left, click.The screen shows LAGs that are configured.
- ClickAdd.
- ForName, type a name for the LAG.
- ForLAG Type, select one of these options:OptionDescriptionSTATICManually configure the links. The link state of LAG members is not dynamically updated. This is the default value for LAGs.LACPAutomatically bundle links.
- If you selectLACP, configure these additional settings:OptionDescriptionLACP IntervalSpecify an interval at which interfaces send LACP packets. SelectFAST(transmit packets every second) orSLOW(transmit packets every 30 seconds).LACP ModeSpecify the negotiation state for LACP. SelectACTIVE(in an active negotiating state) orPASSIVE(do not initiate negotiation until peer contacts first).
- ForConfigured Members, select one or more interfaces (not members of another LAG) to assign to the LAG.You can add up to 20 members to a LAG.Only interfaces that are configured with the same speeds can be members of the LAG. The interfaces cannot be associated with VLANs.
- ForNative VLAN, select the VLAN ID to use for untagged frames received on a trunk interface.
- ForTrunk VLAN, select one or more VLAN IDs, if available and not a member of another LAG.A trunk VLAN or a native VLAN is required to pass traffic. If you do not select either a native VLAN or a trunk VLAN, the port will not carry any traffic.
- ClickSave & Close.
The LAG is created and shown in the list. You can edit LAG properties by clicking the LAG name. You can add up to 256 LAGs.
Display LACP details from the webUI
You can view the LACP details on the webUI to troubleshoot. For example, you can determine why an interface member of an LACP LAG on the system is not working as expected.
- Log in to the webUI using an account with admin access.
- On the left, click.The screen shows state information about whether LACP is Up, Down, or Defaulted for LACP interfaces. The lower portion of the screen shows details that can be used for troubleshooting LACP issues.
- Set theAuto Refreshinterval for refreshing the data displayed or click the refresh icon to update the data immediately.
VLAN overview
A VLAN is a logical subset of hosts on a local area network
(LAN) that operates in the same IP address space. Grouping hosts together in a
VLAN has distinct advantages. For example, with VLANs, you can:
- Reduce the size of broadcast domains, thereby enhancing overall network performance.
- Reduce system and network maintenance tasks substantially. Functionally related hosts do not need to physically reside together to achieve optimal network performance.
- Enhance security on your network by segmenting hosts that must transmit sensitive data.
For the most basic
rSeries
system
configurations, you might create multiple VLANs. That is, you create a VLAN
for each of the internal and external networks, as well as a VLAN for high
availability communications. You then associate each VLAN with the relevant
interfaces or LAGs.Create VLANs from the webUI
You can create a VLAN and associate physical interfaces or LAGs with that VLAN. In this way, any host that sends traffic to an interface is logically a member of the VLAN or VLANs to which that interface or LAG belongs.
- Log in to the webUI using an account with admin access.
- On the left, click.The screen shows VLANs that are configured for that chassis partition.
- ClickAdd.
- ForName, type a name for the VLAN.VLAN names must follow these rules:
- Start with an alphabetic character (Aa-Zz).
- Can be up to 56 characters in length.
- After the first character, can contain alphanumeric characters, periods (.), hyphens (-) and underscores (_).
- VLAN names must be unique.
- ForVLAN ID, type a number between 1-4094 for the VLAN.The VLAN ID identifies the traffic from hosts in the associated VLAN for an associated interface or LAG.
- ClickAdd VLANto create the VLAN.
The VLAN is created and displayed in the VLAN list. You can use the VLANs when configuring interfaces, creating LAGs, and deploying tenants (one VLAN can be shared by more than one tenant).
VLAN listeners overview
VLAN listeners are created and deleted by the system at runtime. They are used to program the destination for broadcast packets and L2 destination lookup failures (DLFs).
The system creates one of these listeners when you configure a VLAN for a tenant.
- VLAN Listener (listener)
- Created when a VLAN is used by a single tenant or when a VLAN is not shared among tenants. VLAN listeners that are created for tenant VLANs that do not include any members are indicated with the value0.hostfor interface.
Display VLAN listeners from the webUI
You can view VLAN listeners when
you need to troubleshoot data path issues and check whether the correct VLANs
are assigned to the tenants from the webUI.
- Log in to the webUI using an account with admin access.
- On the left, click.The screen shows VLAN listeners that are active on the system.
- Set theAuto Refreshinterval for refreshing the data displayed or click the refresh icon to update the data immediately.
You can see the VLAN listeners that
are associated with specific interfaces, VLANs, and other related information.
If something does not look correct, review the configuration for that
object.
Link Layer Discovery Protocol (LLDP) overview
The
rSeries
system supports Link Layer
Discovery Protocol (LLDP), which is a Layer 2 industry-standard protocol (IEEE
802.1AB) that enables a network device to advertise its identity and
capabilities to multi-vendor neighbor devices on a network. The protocol also
enables a network device to receive information from neighbor devices. LLDP
transmits device information in LLDP frames using the TLV (Type-Length-Value)
format. In general, this protocol:
- Advertises connectivity and management information about the localrSeriesdevice to neighbor devices on the same IEEE 802 LAN.
- Receives network management information from neighbor devices on the same IEEE 802 LAN.
- Operates with all IEEE 802 access protocols and network media.
Configure LLDP from the webUI
Before you can configure LLDP, make sure that the interfaces you will use are up and running with VLANs configured.
You can configure LLDP from the chassis partition webUI.
- Log in to the webUI using an account with admin access.
- On the left, click.
- SetEnable LLDPtoEnabled.
- Type aSystem Nameand optionally, aSystem Description.
- ForTX Interval, type a number (0-65535) for the interval (in seconds) at which LLDP packets are sent to neighbors. The default value is 30 seconds.
- ForTX Hold, type a number (0-65535).The default value is 4 seconds.
- ForReinitiate Delay, type a number (0-65535) to specify the minimum time interval, in seconds, an LLDP port waits before re-initializing an LLDP transmission.The default value is 2 seconds.
- ForTX Delay, type a number (0-65535) to specify the minimum time delay, in seconds, between successive LLDP frame transmissions.The default value is 2 seconds.
- ForMax Neighbors Per Port, type a number to specify the maximum number of LLDP neighbors for which LLDP data is retained.The default value is 10.
- In theInterfacestable, select the interfaces and LAGs (if any) for which you want to enable LLDP. For each one selected:
- SelectEnabled.
- ForTLV Advertisement State, selectTX(Transmit only),RX(Receive only), orTXRX(Transmit and Receive).
- ForTLV Map, select the TLV device information that you want to transmit and/or receive, such as chassis ID (f using link aggregation), MAC Phy configuration, management address, MFS (maximum frame size), port description, port ID, and power MDI.
- ClickSave.
LLDP is configured on the system for the specified interfaces and LAGs.
Display LLDP details from the webUI
LLDP enables a network device to advertise information about itself to other devices on the network and enables network devices to receive information from neighboring devices. If using LLDP, you can display state information for the LLDP-enabled interfaces and LAGs on the system. When LLDP is enabled to receive data in a working network, any device information received from neighbors is included in a table.
- Log in to the webUI using an account with admin access.
- On the left, click.The screen shows LLDP state information for interfaces in the system (similar to info shown at the CLI usingshow lldp).
- In the Neighbors table, examine the identification, configuration, and capabilities of neighboring devices.This information provides details useful for troubleshooting many configuration problems.
- Set theAuto Refreshinterval for refreshing the data displayed or click the refresh icon to update the data immediately.
Spanning tree protocol (STP) overview
The
rSeries
system supports a set of
industry-standard, Layer 2 protocols known as spanning tree protocols
. A spanning tree is a logical tree-like
depiction of the bridges on a network and the paths that connect them.
Spanning tree protocols block redundant paths on a network, preventing
bridging loops. If a blocked, redundant path is needed later because another
path has failed, the spanning tree protocols clear the path again for
traffic.The spanning tree protocols that the
rSeries
system supports are:- Spanning Tree Protocol (STP) - 802.1d
- Rapid Spanning Tree Protocol (RSTP) - 802.1w
- Multiple Spanning Tree Protocol (MSTP) - 802.1s
You can configure spanning tree protocols on
the
system
from the webUI, CLI, or REST API. Only one spanning tree
protocol can be configured at a time.Central to the way that spanning tree protocols work is the
use of bridge protocol data units (BPDUs). When you enable spanning tree
protocols on Layer 2 devices on a network, the devices send BPDUs to each
other, for the purpose of learning the redundant paths and updating their L2
forwarding tables accordingly, electing a root bridge, building a spanning
tree, and notifying each other about changes in interface status.
The term
bridge
refers to a Layer 2 device such as a switch, bridge, or
hub.When you configure spanning tree on a
rSeries
system, you must first decide which protocol, or mode, you
want to enable. Because MSTP recognizes VLANs, using MSTP is preferable. All bridges in
a network environment that you want to use spanning tree must run the same spanning tree
protocol. If a legacy bridge running RSTP or STP is added to the network, the rSeries
system must switch and also use that same
protocol.Configure STP from the webUI
You can configure Spanning Tree Protocol (STP) from the webUI.
- Log in to the webUI using an account with admin access.
- On the left, click.
- ForSTP Mode, select:STP(single instance, best on networks with legacy systems).A message warns you that changing modes deletes any existing STP configuration settings. When you clickOK, the selected mode is enabled, and additional options for that mode display (with default values set).
- ForHello Time, specify the time interval, in seconds, that therSeriessystem transmits spanning tree information (through BPDUs) to adjacent bridges in the network.The default value is 2.
- ForMax Age, specify the length of time, in seconds, that spanning tree information received from other bridges is considered valid.The default value is 20, and the valid range is from 6 to 40.
- ForForwarding Delay, specify the amount of time, in seconds, that the system blocks an interface from forwarding network traffic when the spanning tree algorithm reconfigures a spanning tree.The default value is 15, and the valid range is from 4 to 30. This has no effect when running in RSTP or MSTP unless using an added legacy STP bridge.
- ForHold Count, specify the maximum number of spanning tree frames (BPDUs) that the system can transmit on a port within the Hello Time interval.This ensures that spanning tree frames do not overload the network. The default value is 6, and the valid range is from 1 to 10.
- ForBridge Priority, specify the bridge in the spanning tree with the lowest relative priority becomes the root bridge, which is responsible for managing loop resolution on the network.Configure this setting so that therSeriessystem never becomes the root bridge. The default value is 32768. The valid range is from 0 to 61440 in multiples of 4096.
- ForInterfaces, select the interfaces (and/or LAGs) for which you want to configure STP and specify these fields:OptionDescriptionCostUsed to calculate the cost of sending spanning tree traffic through the interface to an adjacent bridge or spanning tree region, based on the speed of the interface. The default value is 0, and the valid range is from 0 (lowest) to 200,000,000 (highest).Port PriorityUsed as the port identifier together with the slot/port numbers. The default value is 128 (when an interface is selected), and the valid range is from 0 (highest) to 240 (lowest) in multiples of 16.Edge PortNeeded only for RSTP or MSTP. When enabled, indicates the interface or LAG is an edge port that does not receive any BPDU frames. Set to EDGE-AUTO, EDGE-ENABLE, or EDGE-DISABLE.If you enable EDGE-ENABLE, and the interface later receives BPDUs, the system disables the setting automatically, because only non-edge interfaces can receive BPDUs.Link TypeSpecifies the type of optimization:
- P2P: Optimizes for point-to-point spanning tree links (connects two spanning tree bridges only). Note that P2P is the only valid STP link type for a LAG.
- Shared: Optimizes for shared spanning tree links (connecting two or more spanning tree bridges).
For more information on the available interfaces and LAGs, see theorLAGsscreens. - ClickSave.The system displays a confirmation dialog confirming whether to change the STP mode.
STP is now set up for use on the system.
Configure RSTP from the webUI
You can configure Rapid Spanning Tree Protocol (RSTP) from the webUI.
- Log in to the webUI using an account with admin access.
- On the left, click.
- ForSTP Mode, selectRSTP(single instance, fast convergence).A message warns you that changing modes deletes any existing STP configuration settings. When you clickOK, the selected mode is enabled, and additional options for that mode are displayed (with default values set).
- ForHello Time, specify the time interval, in seconds, that therSeriessystem transmits spanning tree information (through BPDUs) to adjacent bridges in the network.The default value is 2. For RSTP, maintain this relationship between the Maximum Age and Hello Time options:Max Age >= 2 * (Hello Time + 1)
- ForMax Age, specify the length of time, in seconds, that spanning tree information received from other bridges is considered valid.The default value is 20, and the valid range is from 6 to 40. For RSTP, maintain these relationships between the Maximum Age and the Hello Time and Forward Delay options:Max Age >= 2 * (Hello Time + 1)Max Age <= 2 * (Forward Delay - 1)
- ForForwarding Delay, specify the amount of time, in seconds, that the system blocks an interface from forwarding network traffic when the spanning tree algorithm reconfigures a spanning tree.The default value is 15, and the valid range is from 4 to 30. This has no effect when running in RSTP or MSTP unless using an added legacy STP bridge. For RSTP, maintain these relationships between the Maximum Age and Forward Delay options:Max Age <= 2 * (Forward Delay - 1)
- ForInterfaces, select the interfaces (and/or LAGs) for which you want to configure RSTP and specify these fields:OptionDescriptionCostUsed to calculate the cost of sending spanning tree traffic through the interface to an adjacent bridge or spanning tree region, based on the speed of the interface. The default value is 0, and the valid range is from 0 (lowest) to 200,000,000 (highest).Port PriorityUsed as the port identifier together with the slot/port numbers. The default value is 128 (when an interface is selected), and the valid range is from 0 (highest) to 240 (lowest) in multiples of 16.Edge PortNeeded only for RSTP or MSTP. When enabled, indicates the interface or LAG is an edge port that does not receive any BPDU frames. Set to EDGE-AUTO, EDGE-ENABLE, or EDGE-DISABLE.If you enable EDGE-ENABLE, and the interface later receives BPDUs, the system disables the setting automatically, because only non-edge interfaces can receive BPDUs.Link TypeSpecifies the type of optimization:
- P2P: Optimizes for point-to-point spanning tree links (connects two spanning tree bridges only). Note that P2P is the only valid STP link type for a LAG.
- Shared: Optimizes for shared spanning tree links (connecting two or more spanning tree bridges).
For more information on the available interfaces and LAGs, see theorLAGsscreens. - ClickSave.The system displays a confirmation dialog confirming whether to change the STP mode.
RSTP is now set up for use on the system.
Configure MSTP from the webUI
If you want to use Multiple
Spanning Tree Protocol (MSTP) to define a region, you can configure it from
the webUI.
- Log in to the webUI using an account with admin access.
- On the left, click.
- ForSTP Mode, selectMSTP(multiple instances, fast convergence).
- ForRegion Name, type a name (string with 1 to 32 characters) that you assign to all bridges in a spanning tree region.A spanning tree region is a group of bridges with identical region names and MSTP revision numbers, as well as identical assignment of VLANs to spanning tree instances. The default value is the bridge MAC address. A region can have multiple members with the same MSTP configuration.
- ForRevision, specify a global revision number that you assign to all bridges in a spanning tree region.The default value is 0, and the valid range is 0 to 65535. All bridges in the same region must have this same configuration revision number.
- ForMax Hop, specify The maximum number of hops that a spanning tree frame (BPDU) can traverse before it is discarded.The default value is 20, and the valid range is from 1 to 255.
- ForHello Time, specify the time interval, in seconds, that therSeriessystem transmits spanning tree information (through BPDUs) to adjacent bridges in the network.The default value is 2.
- ForForwarding Delay, specify the amount of time, in seconds, that the system blocks an interface from forwarding network traffic when the spanning tree algorithm reconfigures a spanning tree.The default value is 15, and the valid range is from 4 to 30. This has no effect when running in RSTP or MSTP unless using an added legacy STP bridge.
- ForHold Count, specify the maximum number of spanning tree frames (BPDUs) that the system can transmit on a port within the Hello Time interval.This ensures that spanning tree frames do not overload the network. The default value is 6, and the valid range is from 1 to 10.
- To configure multiple instances for a region, adjust these settings forMSTP Instances:
- UnderInstances, click+.
- In the Add MSTP Instance popup, forInstance ID, type a positive integer and clickAdd.
- UnderInstances, select one of the instances.Available interfaces are listed below.
- UnderVLANs, select the VLANs to map to this instance.
- ForBridge Priority, configure this setting so that therSeriessystem never becomes the root bridge.The default value is 32768, and the valid range is from 0 to 61440 in multiples of 4096. Each MSTP instance can have its own bridge priority.
- ForInterfaces, select the interfaces that traffic for this instance can use and specify these fields:
OptionDescriptionCostUsed to calculate the cost of sending spanning tree traffic through the interface to an adjacent bridge or spanning tree region, based on the speed of the interface. The default value is 0, and the valid range is from 0 (lowest) to 200,000,000 (highest).Port PriorityUsed as the port identifier together with the slot/port numbers. The default value is 128 (when an interface is selected), and the valid range is from 0 (highest) to 240 (lowest) in multiples of 16.Edge PortNeeded only for RSTP or MSTP. When enabled, indicates the interface or LAG is an edge port that does not receive any BPDU frames. Set to EDGE-AUTO, EDGE-ENABLE, or EDGE-DISABLE.If you enable EDGE-ENABLE, and the interface later receives BPDUs, the system disables the setting automatically, because only non-edge interfaces can receive BPDUs.Link TypeSpecifies the type of optimization:- P2P: Optimizes for point-to-point spanning tree links (connects two spanning tree bridges only). Note that P2P is the only valid STP link type for a LAG.
- Shared: Optimizes for shared spanning tree links (connecting two or more spanning tree bridges).
- Continue to configure any other instances that you might need.
- ClickSave.The system displays a confirmation dialog confirming whether to change the STP mode.
MSTP is set up for use on the system.