Release Notes : BIG-IP 14.0.1 New and Installation

Applies To:

Show Versions Show Versions

BIG-IP AAM

  • 14.0.1

BIG-IP APM

  • 14.0.1

BIG-IP Analytics

  • 14.0.1

BIG-IP Link Controller

  • 14.0.1

BIG-IP LTM

  • 14.0.1

BIG-IP PEM

  • 14.0.1

BIG-IP AFM

  • 14.0.1

BIG-IP FPS

  • 14.0.1

BIG-IP DNS

  • 14.0.1

BIG-IP ASM

  • 14.0.1
Release Notes
Software Release Date: 08/08/2019
Updated Date: 04/15/2020

Summary:

These release notes document the BIG-IP version 14.1.0.x releases. You can apply the software upgrade to systems running software version 12.0.0 or later (except as detailed in the upgrading sections).

BIG-IP Virtual Edition (VE) is a version of the BIG-IP system that runs as a virtual machine. Supported modules include Local Traffic Manager, BIG-IP DNS, Application Security Manager, Access Policy Manager, Policy Enforcement Manager, Application Firewall Manager, Application Acceleration Manager, and Analytics. BIG-IP VE includes all features of device-based BIG-IP modules running on standard BIG-IP TMOS, except as noted in release notes and product documentation.

Note: The BIG-IP VE product license determines the maximum allowed throughput rate. To view this rate limit, you can display the licensing page within the BIG-IP Configuration utility.

Contents:

Platform support

For comprehensive information about supported platforms, see:

Module combination and memory considerations

BIG-IP platform considerations

These platforms support various licensable combinations of product modules. This section provides general guidelines for module support.

Most of the support guidelines relate to memory. The following list applies for all memory levels:

  • vCMP supported platforms
    • VIPRION B2100, B2150, B2250
    • VIPRION B4300 blade in the C4480(J102) and C4800(S100)
    • VIPRION B4450 blade in the C4480(J102) and C4800(S100)
    • BIG-IP 5200v, 5250v, 7200v, 7250v, 10200v, 10250v, 10350v, 12250v
    • BIG-IP i5800, i7800, i10800, i11800, i15800
  • PEM and CGNAT supported platforms
    • VIPRION B2100, B2150, B2250, B4300, B4340N, B4450N
    • BIG-IP 5x00v(s), 7x00v(s), 10x00v(s)
    • PEM for BIG-IP iSeries: i5800, i7800, i10800, i11800, i15800
    • CGNAT for BIG-IP iSeries: i2x00, i4x00, i5x00,i7x00,i10x00,i11x00,i15x00
    • BIG-IP Virtual Edition (VE) (Not including Amazon Web Service Virtual Edition) (3 GB, 10 GB production and combination lab models)
    • PEM may be provisioned on the VIPRION B2100, but it is not recommended for production, only for evaluation. Use the B4300/B4340N or another blade instead.
    • PEM is not supported on vCMP guests.
    • PEM is not supported on 8 GB platforms.
  • BIG-IP 800 and i850 platform support
    • The BIG-IP 800 and i850 platforms support Local Traffic Manager (LTM) only, and no other modules.

Memory: 12 GB or more

All licensable module-combinations may be run on platforms with 12 GB or more of memory, and on VE and vCMP guests provisioned with 12 GB or more of memory. Note that this does not mean that all modules may be simultaneously provisioned on all platforms with 12 GB or more of memory. The BIG-IP license for the platform determines which combination of modules are available for provisioning.

Memory: 8 GB

The following guidelines apply to the BIG-IP 2000s, 2200s, 6900 platforms and to VE guests configured with 8 GB of memory. (A vCMP guest provisioned with 8 GB of memory has less than 8 GB of memory actually available and thus does not fit in this category.)

  • No more than three modules should be provisioned together.
  • On the 2000s and 2200s, Application Acceleration Manager (AAM) and Application Visibility and Reporting (AVR) can be provisioned with only one other module.
  • To use Access Policy Manager (APM) and Secure Web Gateway (SWG) modules together on platforms with exactly 8 GB of memory, Local Traffic Manager (LTM) provisioning must be set to None.

Memory: Less than 8 GB and more than 4 GB

The following guidelines apply to platforms, and to VE and vCMP guests provisioned with less than 8 GB and more than 4 GB of memory. (A vCMP guest provisioned with 8 GB of memory has less than 8 GB of memory actually available and thus fits in this category.) Beginning in v14.x, 8 GB of memory is the very bare minimum to get three modules provisioned, suitable for a lab environment or very light production traffic, especially with a memory intensive module such as AVR.

  • No more than three modules (not including AAM or AVR) should be provisioned together. 
  • Application Acceleration Manager (AAM) cannot be provisioned with any other module; AAM can only be provisioned standalone.
  • Analytics (AVR) counts towards the two module-combination limit (for platforms with less than 6.25 GB of memory).

Memory: 4 GB or less (VE and vCMP only)

The following guidelines apply to VE and vCMP guests provisioned with 4 GB or less of memory.

  • No more than two modules may be configured together.
  • AAM should not be provisioned, except as Dedicated.
  • ASM should not be provisioned, except as Dedicated

VIPRION and vCMP caching and deduplication requirements

Application Acceleration Manager (AAM) supports the following functionality when configuring vCMP and VIPRION platforms.

  • AAM does not support disk-based caching functionality on vCMP platforms. AAM requires memory-based caching when configuring it to run on vCMP platforms.
  • AAM supports disk-based caching functionality on VIPRION chassis or blades.
  • AAM does not support deduplication functionality on vCMP platforms, or VIPRION chassis or blades.

vCMP memory provisioning calculations

The amount of memory provisioned to a vCMP guest is calculated using the following formula: (platform_memory- 3 GB) x (cpus_assigned_to_guest / total_cpus).

As an example, for the B2100 with two guests, provisioned memory calculates as: (16-3) x (2/4) ~= 6.5 GB.

For certain platforms, the vCMP host can allocate a single core to a vCMP guest. However, because a single-core guest has relatively small amounts of CPU resources and allocated memory, F5 supports only the following products or product combinations for a single-core guest:
  • BIG-IP LTM standalone only
  • BIG-IP GTM standalone only
  • BIG-IP LTM and GTM combination only

 

VE considerations

This version of the software is supported in the following configurations. For a list of VE hypervisor support, see the Virtual Edition and Supported Hypervisors Matrix.

Memory: 12 GB or more

All licensable module-combinations may be run on BIG-IP Virtual Edition (VE) guests provisioned with 12 GB or more of memory.

Memory: 8 GB

The following guidelines apply to VE guests configured with 8 GB of memory.

  • No more than three modules should be provisioned together.

Memory: Less than 8 GB and more than 4 GB

The following guidelines apply to VE guests provisioned with less than 8 GB and more than 4 GB of memory.

  • No more than three modules (not including AAM) should be provisioned together.
  • Application Acceleration Manager (AAM) cannot be provisioned with any other module; AAM can only be provisioned standalone.

Memory: 4 GB or less

The following guidelines apply to VE guests provisioned with 4 GB or less of memory.

  • No more than two modules may be configured together.
  • AAM should not be provisioned, except as Dedicated.
  • ASM should not be provisioned, except as Dedicated

User documentation for this release

For a list of Virtual Edition (VE) hypervisor support, see the Virtual Edition and Supported Hypervisors Matrix.

Compatibility of BIG-IQ products with BIG-IP releases

K34133507: BIG-IQ Centralized Management compatibility matrix provides a summary of version compatibility between the BIG-IQ Centralized Management and BIG-IP releases.

Configuration utility browser support

The BIG-IP Configuration Utility supports these browsers and versions:

  • Microsoft Internet Explorer 11.x, or later
  • Mozilla Firefox v62.0, or later
  • Google Chrome v69.0.3497, or later
  • Microsoft Edge browser 44.18362.1.0, or later

New in 14.0.1

No new features

There are no new features in this release.

Supported high availability configuration for Policy Enforcement Manager

Policy Enforcement Manager is supported in an active-standby and active-active configuration with two BIG-IP systems only.

Installation overview

This document covers very basic steps for installing the software. You can find complete, step-by-step installation and upgrade instructions in BIG-IP Systems: Upgrading Software, and we strongly recommend that you reference this information to ensure successful completion of the installation process.

Installation checklist

Before you begin:

  • Use BIG-IP iHealth to verify your configuration file. For more information, see K12878: Generating diagnostic data using the qkview utility.
  • Update/reactivate your system or vCMP host license, if needed, to ensure that you have a valid service check date. For more information, see K7727: License activation may be required before a software upgrade for the BIG-IP or Enterprise Manager system.
  • Ensure that your system is running version 13.x or later.
  • Download the .iso file from F5 Downloads to /shared/images on the source for the operation. (If you need to create this directory, use the exact name /shared/images.)
  • Configure a management port.
  • Set the console and system baud rate to 19200, if it is not already.
  • Log on as an administrator using the management port of the system you want to upgrade.
  • Check all DNSSEC Key generation's 'expiration' and 'rollover' date:time fields before performing a GTM sync group upgrade. If any of the DNSSEC Key generations are set to rollover or expire during the planned upgrade window, modify the date:time of the 'expiration' and/or 'rollover' fields to extend past the anticipated upgrade window, to a date:time when all units in the sync group will again have GTM config sync enabled.
  • Boot into an installation location other than the target for the installation.
  • Save the user configuration set (UCS) in the /var/local/ucs directory on the source installation location, and copy the UCS file to a safe place on another device.
  • Log on to the standby unit, and only upgrade the active unit after the standby upgrade is satisfactory.
  • Turn off mirroring.
  • If you are running Policy Enforcement Manager, set provisioning to Nominal.
  • If you are running Advanced Firewall Manager, set provisioning to Nominal.

Installing the software

You can install the software at the command line using the Traffic Management shell, tmsh, or in the browser-based Configuration utility using the Software Management screens, available in the System menu. Choose the installation method that best suits your environment.
Installation method Command
Install to existing volume, migrate source configuration to destination tmsh install sys software image [image name] volume [volume name]
Install from the browser-based Configuration utility Use the Software Management screens in a web browser.

Sample installation command

The following command installs version 13.0.0 to volume 3 of the main hard drive.

tmsh install sys software image BIGIP-13.0.0.0.0.1645.iso volume HD1.3

Post-installation tasks

This document covers very basic steps for installing the software. You can find complete, step-by-step installation and upgrade instructions in BIG-IP Systems: Upgrading Software, and we strongly recommend that you reference this information to ensure successful completion of the installation process.

After the installation finishes, you must complete the following steps before the system can pass traffic.
  1. Ensure the system rebooted to the new installation location.
  2. Use BIG-IP iHealth to verify your configuration file. For more information, see K12878: Generating diagnostic data using the qkview utility.
  3. Log on to the browser-based Configuration utility.
  4. Run the Setup utility.
  5. Provision the modules.
Note: You can find information about running the Setup utility and provisioning the modules in BIG-IP TMOS implementations Creating an Active-Standby Configuration Using the Setup Utility and Creating an Active-Active Configuration Using the Setup Utility.

Installation tips

  • The upgrade process installs the software on the inactive installation location that you specify. This process usually takes between three minutes and seven minutes. During the upgrade process, you see messages posted on the screen. For example, you might see a prompt asking whether to upgrade the End User Diagnostics (EUD), depending on the version you have installed. To upgrade the EUD, type yes, otherwise, type no.
  • You can check the status of an active installation operation by running the command watch tmsh show sys software, which runs the show sys software command every two seconds. Pressing Ctrl + C stops the watch feature.
  • If installation fails, you can view the log file. The system stores the installation log file as /var/log/liveinstall.log.

Upgrading from earlier versions

Your upgrade process differs depending on the version of software you are currently running.

Upgrading from version 11.x or later

When you upgrade from version 12.x or later, you use the Software Management screens in the Configuration utility to complete these steps. To open the Software Management screens, in the navigation pane of the Configuration utility, expand System, and click Software Management. For information about using the Software Management screens, see the online help.

Upgrading from versions earlier than 12.x

You cannot roll forward a configuration directly to this version from BIG-IP version 11.x or earlier. You must be running version 12.x (or later) software. For details about upgrading from earlier versions, see the release notes for the associated release.

Automatic firmware upgrades

If this version includes new firmware for your specific hardware platform, after you install and activate this version, the system might reboot additional times to perform all necessary firmware upgrades.

Upgrading earlier configurations

When you upgrade from an earlier versions of the software, you might need to know about or take care of these configuration-specific issues.

ID Number Description
660833 merged repeatedly cores due to unused istats-trigger object The merged process continuously cores. merged restarts. If any of the elements of the istats-trigger configuration are not defined, this issue occurs. For example, all the elements defined in the key of the istats-trigger definition must be defined before the trigger is created. Workaround: None.
666884 Message: Not enough free disk space to install! cpcfg cannot copy a configuration on a chassis platform Only on a chassis platform running 12.1.x or 13.0.x. You cannot use cpcfg on a chassis platform. "cpcfg fails with errors similar to the following: info: Getting configuration from HD1.3 info: Copying configuration to HD1.1 info: Applying configuration to HD1.1 error: status 256 returned by command: F5_INSTALL_MODE=install F5_INSTALL_SESSION_TYPE=hotfix chroot /mnt/tm_install/23102.e3MAZU /usr/local/bin/im -force /var/local/ucs/config.ucs info: >++++ result: info: Extracting manifest: /var/local/ucs/config.ucs info: /shared: Not enough free space info: 6144 bytes required info: 0 bytes available info: /var/local/ucs/config.ucs: Not enough free disk space to install! info: Operation aborted. Workaround: Save a UCS from the source volume, reboot to the destination volume, then load that UCS file. Fix: cpcfg could incorrectly calculate the amount of free space available, refusing to do the copy unless the /shared filesystem had sufficient space to do the copy. This has been resolved and this free space calculation is done correctly.
667148 Config load or upgrade can fail when loading GTM objects from a non-/Common partition GTM config referencing non-/Common partition objects from /Common. GTM configuration fails to load, which may keep a system from becoming active GTM configuration fails to load. Workaround: No workaround. Fix: Fixed issue preventing GTM configurations from loading when non-Common partitioned items present.
673664 TMM crashes when sys db Crypto.HwAcceleration is disabled. This occurs when sys db Crypto.HwAcceleration is disabled. TMM crash. Traffic disrupted while tmm restarts. TMM crashes when sys db Crypto.HwAcceleration is disabled. Workaround: "Enable crypto hardware acceleration using the following command: tmsh modify sys db crypto.hwacceleration value enable"
673832 Performance impact for certain platforms after upgrading to 13.1.0. "The following platforms, with Fast HTTP/OneConnect/Full Proxy configured. -- i2800 -- i4800 -- i5800 -- i7800 -- i10800 -- i11800 -- B2250 -- B4450

The performance impacts occur on the following platforms under the associated conditions:

-- i2800 2%-3% Full Proxy traffic. -- i4800 2%-3% Full Proxy traffic. -- i5800 3%-8% Fast HTTP/Full Proxy traffic. -- i7800 3%-7% Fast HTTP/Full Proxy traffic. -- i10800 3%-7% Fast HTTP/Full Proxy traffic. -- i11800 2%-3% Fast HTTP traffic. -- B2250 3%-6% OneConnect/Full Proxy traffic. -- B4450 4%-10% Fast HTTP/OneConnect/Full Proxy traffic.

Performance impact for certain platforms after upgrading to 13.1.0. Workaround: None. Fix: Performance impact for certain platforms has been eliminated.

681377 The BIG-IP system sends out SYN/ACK with MSS 0 in VLAN syncookie protection mode on some platforms Hardware syncookie is enabled on a VLAN that is under SYN flood attack and the syncookie protection is triggered. This occurs on the following platforms: BIG-IP series 5000, 7000, and 10000 platforms, and VIPRION B2100, B2150, B2250, and B43x0 blades. Most TCP clients can handle these SYN/ACK packets gracefully, but some clients (such as Ixia traffic-test appliances) may not be able to handle them properly, thus impacting traffic. A firmware issue exists on certain platforms that will result in SYN/ACK packets with an MSS filed with a value of 0, even though TMOS sets it to a different value. Workaround: Turn off hardware VLAN syncookie protection if regular TCP traffic is impacted. Fix: In 13.1.0, the per-VLAN-based syncookie protection will be disabled in the data plane BIG-IP series 5000, 7000, and 10000 platforms, and VIPRION B2100, B2150, B2250, and B43x0 blades.
684068 FIX with PVA offload and late binding without flow release may not execute iRules on subsequent messages. -- Configure a virtual server with a FastL4 profile and a FIX profile. -- Configure the FastL4 profile to have late binding and explicit flow migration. -- Place iRules on the virtual server that trigger on FIX_MESSAGE or FIX_HEADER. -- Restart the BIG-IP, connect to the virtual server and begin sending FIX messages."

The iRules may not trigger on the second and further messages sent to the FIX virtual server on the first connection after the restart. With a virtual server configured with a FastL4 profile and a FIX profile where the FastL4 profile is configured with late binding and explicit flow migration, the first connection after a setup or restart may not correctly execute FIX iRules if the flow is not handed off to ePVA after the first FIX message. Workaround: None.

686190 LRO performance impact with BWC and FastL4 virtual server -- BWC is configured. -- Virtual server has a FastL4 profile assigned. -- LRO is enabled (enabled by default in 13.1.0).

Very large performance impact to the BWC policy (up to 75%). For example, if the BWC policy rate limit is set to 100Mb, the actual rate limit could be 25Mb. Using Bandwidth controller (BWC) might result in a very large drop in performance of up to 75%. In this release, Large receive offload (LRO) is enabled by default. Workaround: "Disabling LRO recaptures most of the performance degradation related to using FastL4. To disable LRO (this is a system-wide setting), run the following command: tmsh modify sys db tm.largereceiveoffload value disable Important note: Although you can disable LRO to recapture much of the 13.0.0-level performance, you will likely still experience some impact: 2-5% for small files, 17-22% degradation for the '10 requests per connection' benchmark. The only guaranteed way to avoid performance degradation is to remain on version 13.0.0."

686307 Monitor Escaping is not changed when upgrading from 11.6.x to 12.x and later -- Upgrading and rolling forward monitor configuration data. -- LTM policy data present.

Monitors may not work after upgrade. "When upgrading, monitor attributes such as receive string and send string might contain escape sequences that must be processed after the upgrade. However, due to a problem introduced by the LTM policy upgrade script, this processing is not performed, resulting in monitors not functioning correctly after the upgrade. Note: Without LTM policies in the configuration, monitors upgrade without problem." Workaround: No workaround at this time. Fix: This release addresses the underlying problem so the issue no longer occurs.

696525 B2250 blades experience degraded performance. This occurs when the FastL4 profile is configured to offload to hardware and the service provider DAG is configured and in use on B2250 blades. Performance will be degraded due to more connections being handled in software. B2250 blades have degraded performance by up to 17%. This is caused by connections not being offloaded to hardware as often as expected. Workaround: None. Fix: The performance issue for the B2250 blades has been fixed.
698182 Upgrading from 13.1.1 to newer release might cause config to not be copied over Upgrade or loading a UCS from 13.1.1 to newer release. Config cannot be loaded or fails. Upgrading from 13.1.1 to newer release might cause config to not be copied over. This is due to the UUID being available on the older release but not on the newer one. Workaround: Copy config and remove UUID-specific schema before loading the config. Fix: When upgrading to a version in which UUID is not supported, the system now automatically copies the config and removes UUID-specific schema before loading it.
699249 The config may not load after upgrade if syslog-ng syntax is not valid "In v13.0.0, the syslog-ng version changed from 2.1.4 to 3.8.1. Syslog-ng include options may contain syntax which is correct in 2.1.4 syslog but is not correct in 3.8.1. TMOS does not parse the 'include' option, or translate it from older versions to newer, or any other modification. It blindly copies it into the configuration file." The config will not load after upgrade if the syntax is not valid in a new syslog-ng version. The config is not loaded after upgrade Workaround: "Manually modify the 'include' option in BIG-IP_base.conf file after upgrade. The config cannot be loaded so tmsh will not work."
699624 Config with custom 'SIP' or 'Firepass' monitor fails to load after upgrade Custom 'SIP' or 'FirePass' monitor is configured, and the config is upgraded from a version earlier than v13.1.0 to version v13.1.0. "After upgrade, the configuration fails to load with an error such as: 01070726:3: monitor /Common/sip-monitor in partition /Common cannot reference SSL profile monitor parameter /Common/sip-monitor 1 SSL_PROFILE_NAME= in partition name-of-other-partition. Alternatively, the configuration loads after upgrade, but the config file is corrupted, and will fail to load (such as after a system restart, or upon explicit 'tmsh load sys config'), with an error such as: Syntax Error:(/config/bigip.conf at line: 63) ""user-defined"" unknown property" "A configuration that contains custom 'SIP' or 'FirePass' monitors that is upgraded from a version earlier than v13.1.0 may either fail to load, or may result in a configuration that loads the first time after the upgrade, but cannot be re-loaded from the text config files. If the BIG-IP system has partitions other than 'Common', the initial configuration load may fail with an error such as: 01070726:3: monitor /Common/sip-monitor in partition Common cannot reference SSL profile monitor parameter /Common/sip-monitor 1 SSL_PROFILE_NAME= in partition name-of-other-partition If the BIG-IP system only has a 'Common' partition, the initial configuration load will succeed, but subsequent attempts to load the configuration (e.g., 'tmsh load sys config') may fail with this error: Syntax Error:(/config/bigip.conf at line: 63) ""user-defined"" unknown property Which corresponds to a SIP or FirePass monitor in the configuration such as: ltm monitor sip /Common/test_sip_monitor { cipherlist DEFAULT:+SHA:+3DES:+kEDH compatibility enabled debug no defaults-from /Common/sip destination *:* filter 488 interval 5 mode tcp time-until-up 0 timeout 16 user-defined SSL_PROFILE_NAME /Common/test_sip_monitor_ssl_profile }"

Workaround: Remove custom 'SIP' and 'FirePass' monitors from the configuration, and re-create them manually after upgrade is complete. Fix: In this release, a configuration that contains a custom 'SIP' or 'FirePass ' monitor from a version earlier than v13.1.0 now loads correctly and continues to load as expected.

701898 Certain virtual address route-advertisement settings break upgrades from 13.0.0 hotfix rollups - Upgrading from a version of 13.0.0 other than the base (i.e. HF1 or later). - Upgrading to 13.1.0 or later. - At least one virtual address with its route-advertisement value set to 'selective', 'any', or 'all'.

Configuration will not load. If the unit being upgraded is a stand-alone unit, this will result in a traffic outage. "Upgrading from a version of 13.0.0 other than the base build may result in failure depending on the values of the virtual address route-advertisement setting. If set to 'selective', 'any', or 'all', the configuration will fail to load after the upgrade with an error similar to the following example in the /var/log/ltm file:

load_config_files: ""/usr/bin/tmsh -n -g load sys config partitions all "" - failed. -- Loading schema version: 13.0.0 Syntax Error:(/config/bigip.conf at line: 1790) invalid property value ""route-advertisement"":""selective"""

If you become aware of this issue prior to upgrading:

  1. Note any virtual address route-advertisement settings that are 'selective', 'any', or 'all'.
  2. Change all of these values to either 'enabled' or 'disabled' (note that this will change their route advertisement behavior temporarily).
  3. Perform the upgrade. The goal of this step is to have the BIG-IP system perform an installation while carrying forward the new, modified configuration.
  4. Once the upgrade completes, change the route advertisement settings back to their original values.

Note that if your chosen destination (i.e. HD1.3) already exists and contains the very software you want to install (e.g., 13.1.1.2), then you must first delete the destination before you can re-use it. This is because, by design, the BIG-IP system will not perform an installation if the desired software is already present in the destination boot location. Attempting such an installation would just result in the BIG-IP system immediately rebooting to activate that boot location, without performing any installation and thus defeating the point of this workaround.

If you become aware of this issue after the upgrade has already failed:

  1. 1. Boot back into the old/working boot location.
  2. 2. Delete the boot location containing the failed installation.
  3. 3. Follow the procedure detailed under 'If you become aware of this issue prior to upgrading'.

Fix: Upgrades from 13.0.0 hotfix rollups involving certain virtual address route-advertisement settings no longer fail.

702792 Upgrade creates Server SSL profiles with invalid cipher strings "Custom HTTPS monitors configured prior to an upgrade result in these profiles being created during the upgrade.

The default HTTPS cipherlist is 'DEFAULT:+SHA:+3DES:+kEDH', which is a valid OpenSSL cipher list, but is not a valid Client SSL / Server SSL cipher list." Upgrade creates configurations that are challenging to manage as a result of MCPD validation. "Upgrade of BIG-IP creates Server SSL profiles for custom HTTPS monitors that may have an invalid Ciphers attribute. This does not prevent the configuration from loading, but attempting to modify the existing SSL profile or create a new one with matching configuration fails with the following message

: 01070312:3: Invalid keyword 'kedh' in ciphers list for profile /Common/name-of-server-ssl-profile" Workaround: "Reconfigure the cipher list to be valid according to both the OpenSSL cipher list and the Client SSL / Server SSL cipher list expectations.

For instance, use ""DEFAULT:+SHA:+3DES:+EDH"" instead of ""DEFAULT:+SHA:+3DES:+kEDH""." Fix: Upgrade no longer creates Server SSL profiles with invalid cipher strings.

703045 If using TMSH commands with deprecated attributes in iApp, the upgrade will fail. TMSH commands with deprecated attributes will fail if used in iApp. This is so whether the iApp is activated during the upgrade process or simply run under iApp service at the user display. TMSH commands will not execute like create command will result in no objects (e.g., monitor, virtual server, etc.) being created. TMSH commands with deprecated attributes will fail if used in iApp. Workaround: Try to avoid deprecated attributes of the object in the iApp. Fix: "All TMSH commands should handle deprecated attributes of objects consistently across TMSH command line, CLI Script and iApp and like so:
  • - run TMSH commands to full execution with only warning message.
  • - full execution means objects action should be executed without error and no something amiss silently either."
704540 Monitor configuration with invalid 'key' and 'cert' not detected upon upgrade post v13.1.x "-- A pre-v13.1.0 configuration containing monitors with invalid 'key' or 'cert' attributes (i.e., 'https', 'SIP', 'Firepass' monitors). -- In some cases the 'key' and 'cert' may be valid and match, with the 'key' in the encrypted form. -- Upgrading that configuration to v13.1.0 or later." After upgrade, the configuration does not load. "A monitor configuration with invalid SSL-attributes for 'key' or 'cert' is not detected as invalid, and upon upgrade to on-or-after v13.1.0 may result in an invalid configuration; or may result in a config that loads with the pool 'up', but the monitor 'key' and 'cert' attributes must be added manually. The invalid configuration includes: 'key' and 'cert' attributes do not match, or are not supported. This affects the following monitors, which contain SSL attributes: 'https', 'SIP', 'Firepass'. In some cases this issue may present with valid and matching 'key' and 'cert', with the 'key' in the encrypted form." Workaround: "You can use the following workarounds:
  • -- Repair configuration attributes so that 'key' and 'cert' attributes match, so upgrade may complete successfully.
  • -- Remove the monitors before the upgrade, and re-add them after the upgrade is completed.
  • -- In the case where the 'key' and 'cert' are valid and match, replace the encrypted key with the decrypted form.
Note: Clearing the 'key' and 'cert' values properly resets the attributes to 'DEFAULT', which is a recommended practice." Fix: Monitors with invalid 'key' and 'cert' attributes ('https', 'SIP', 'Firepass') are detected-and-repaired upon upgrade to a version on-or-after v13.1.0, with a warning message issued noting the configuration repair.
705730 Config fails to load due to invalid SSL cipher after upgrade from v13.1.0 "-- Config uses 'https' monitors. -- Upgrade occurs from v13.1.0 to a later version." The configuration fails to load, an error message is issued, and the device remains offline until a manual config load is performed. "Config with apparently invalid SSL cipher entry fails to load after upgrade from v13.1.0, and requires a manual config load after upgrade: 'tmsh load sys config'

This occurs because starting in v13.1.0, 'https' monitors rely upon SSL-attributes configured through a 'serverssl' profile, which does not support the 'kEDH' cipher; but the 'kEDH' cipher was a default cipher for previous releases (where 'https' relied upon 'OpenSSL')." Workaround: "You can use either of the following workarounds:

-- After upgrade from v13.1.0, perform manual config load by running the following command: tmsh load sys config

(This works because upon a manual config load command ('tmsh load sys config'), the system replaces the existing 'https' ciphers with defaults appropriate for a 'serverssl' profile in the new version of the software. Even though the system posts an error referencing the invalid 'kEDH' cipher, the device will become 'Active' seconds later, and new default ciphers will be established for 'https' monitors.)

-- Remove 'https' monitors prior to upgrade, and add again after upgrade." Fix: Config loads without error after upgrade from v13.1.0.
721261 v12.x Policy rule names containing slashes are not migrated properly
  • "-- BIG-IP systems running v12.x.
  • -- Configuration contains LTM Policy rules whose names include the slash (/) character.
  • -- Upgrading to v13.0.x, 13.1.x, or 14.0.x."
Roll-forward migration fails with the error: illegal characters in rule name. When migrating from v12.x to v13.0.x, 13.1.x, or 14.0.x, LTM polices that have rules containing the slash character will not migrate properly, and roll-forward migration will fail. Workaround: "Edit the rule names within LTM Policies, replacing the now-illegal slash (/) character with a legal alternative, such as the underscore (_). Alternately, prior to migration, rename the rules on the v12.x system, and then perform the upgrade." Fix: BIG-IP software v12.x Policy rule names containing slashes are properly migrated.
721571 State Mirroring between BIG-IP 12.1.3.* and 13.* or 14.* systems may cause TMM core on standby system during upgrade
  • "-- State mirroring configured on two or more BIG-IP systems (state mirroring is enabled by default).
  • -- The active system is running v12.1.3.x, and the standby system is running v13.x or v14.x, as a result of an in-progress upgrade.
  • -- For VIPRION clusters or VIPRION-based vCMP guests, the systems are configured to mirror 'Between Clusters'."
"TMM may crash on a standby system during upgrade. This issue should not disrupt traffic, because the TMM is coring only on the standby unit." BIG-IP devices running 12.1.3.x (12.1.3 or a 12.1.3 point release) and 13.x or 14.x software versions in a high-availability (HA) configuration with state mirroring enabled may cause a standby system to produce a TMM core file. Workaround: "To workaround this issue, disable State Mirroring prior to upgrading, and re-enable it once both devices are running v13.x or v14.x, or complete the upgrade of both devices to v13.x or v14.x.

1. You can disable mirroring using either the GUI or the command line.

1a. In the GUI: -- Set the Primary and Secondary Local Mirror Address configurations to 'None' under Device Management :: Devices :: [Self] device :: Mirroring Configuration. 1b. From the command-line: -- Run the following command: tmsh modify cm device <name-of-self-device> mirror-ip any6 mirror-secondary-ip any6 && tmsh save sys config

Important: This action results in connection state loss on failover.

2. Once all devices are running the same software version, re-enable state mirroring by re-adding the device mirror IP addresses removed previously.

Note: F5 recommends that BIG-IP systems in HA configurations run with the same software version on all devices."
743970 Ensure 8 GB RAM vCMP guests have no more than three modules provisioned before upgrading
  • "-- vCMP guests with 8 GB RAM or less.
  • -- Four or more modules provisioned.
  • -- Upgrade the system."
Possible out-of-memory errors on BIG-IP systems once traffic gets passed. "On earlier builds of BIG-IP software (specifically, version 14.0.0 and earlier), TMSH might allow vCMP Guests with 8 GB or less to provision more than three modules, even though the recommended practice counsels against doing so. Upgrading a system with a vCMP guest configured with more than three modules results in a 'failed load,' as returned in 'tmsh show sys mcp' command results. This configuration might potentially cause out-of-memory problems once traffic is passed." Workaround: "Provision no more than three modules on 8 GB RAM vCMP guests before upgrading. If more than three modules are already provisioned, before upgrading vCMP guests with 8 GB or less of RAM, remove provisioning on some modules to ensure that there are no more than three modules provisioned before upgrading." Fix: The process halts with an error when attempting to provision more than three modules on vCMP guests with 8 GB or less of RAM.

Issues when upgrading from earlier ASM versions

If you upgrade from an earlier version of ASM, note the following issues.

Upgrade warnings and notes

The Application Security Manager supports .ucs files from versions 10.1.0 and later of the Application Security Manager. Additionally, you may import policies exported from versions 10.1.0 and later of the Application Security Manager.

Warning: With the introduction of the Local Traffic Policies feature in BIG-IP version 11.4.0, HTTP Class iRule events and commands are no longer available. If you plan to upgrade to 11.4.0 or later, and your configuration contains an iRule that uses an HTTP class iRule event or command, please read K14381: HTTP Class iRule events and commands are no longer available in BIG-IP 11.4.0 and later.

Warning: Local Traffic Policies do not support regular expressions for matching. While the upgrade process is able to migrate simple glob expressions, manual administrator intervention is required in order to ensure that the policies are properly configured. If you plan to upgrade to 11.4.0 or later, and your configuration contains regular expressions or glob expressions, please read K14409: The HTTP Class profile is no longer available in BIG-IP 11.4.0 and later.

Important: The system creates its internal cookie in versions 10.2.4 and later (including all versions of 11.x) differently than in versions prior to 10.2.4. As a result, while upgrading your system from a version prior to 10.2.4 to version 10.2.4 or later, the system will produce the Modified ASM Cookie violation for existing browser sessions. If the security policy has the Modified ASM Cookie violation enabled and set to block traffic when this violation occurs, after upgrading to version 10.2.4 or later, the system will block traffic to the web application. However, since the TS cookie is a session cookie, the system will block traffic only until the browser session ends (the end-user restarts the browser). To prevent the security policy from blocking traffic until the end-user’s browser is restarted, before upgrading to version 10.2.4 or later, we recommend you disable the security policy from blocking the Modified ASM Cookie violation, upgrade, and wait long enough to allow all users to restart their browsers (two weeks are expected to be enough). After enabling the violation, we recommend you monitor the logs. If the Modified ASM Cookie violation appears, consider disabling the violation again for a longer period of time, or communicate to the users to restart their browsers.

Exporting Logs

In version 13.0.0 the ability to export request logs in binary(.csv) and PDF file formats was removed. Log files are exported in HTML format only. The resultant HTML log file can be converted to a PDF by:
  • Printing the HTML page to PDF from the browser window.
  • Scripting the HTML to PDF conversion using CLI found here: https://wkhtmltopdf.org/

Layer 7

In version 11.4.0, local traffic policies replace HTTP Classes. When you create an ASM security policy, the system automatically creates a default Layer 7 local traffic policy. Note the following changes that occur to your system after upgrading from a version prior to 11.4.0:

  • A Layer 7 local traffic policy is created and the HTTP class is removed. If the HTTP Class name is different than the name of the security policy, upon upgrade, the system changes the name of the security policy to the name of the HTTP Class.
  • Security policies are now in folders (partitioned) like pools and virtual servers. Upon upgrade, the system places security policies in the folder to which the HTTP Class belonged. The system places security policies that were inactive in the /Common folder.
  • iRules that use HTTP Class do not work here. Users must manually change the HTTP Class part of the iRule to Policy after the upgrade.

ASM cookie security

As a result of changes made to the signing of ASM cookies, performing a clean upgrade may result in cookie violations and blocked traffic. To prevent these, F5 recommends that you perform the following actions before upgrading:

  • Disable the modified domain cookie violation, and re-enable it only after at least 24 hours have passed.
  • If you do not have a wildcard cookie, before the upgrade add an ASM allowed cookie to the security policy, with the name TS*.
  • Have all clients restart their browsers.

After upgrading, users must synchronize their Cookie Protection settings in the following cases:

  • Systems that share traffic but are NOT in the same device group
  • Systems from different versions that share traffic, even if they are in the same device group

Cookie signature validation

After upgrading, the system performs the following:

  • Turns on staging for all Allowed cookies
  • Applies signature checks on existing Allowed cookies
  • Adds a * wildcard Allowed cookie even if the user did not have on previously Upgrading to version 11.3.0 or later

Web scraping

There was a check box for enabling web scraping that was removed in version 11.3.0.

  • When you upgrade from versions 11.0.0 through 11.2.x, if the check box is enabled, the new Bot Detection setting has the option Alarm and Block enabled. If the check box is not enabled, the value is Off.
  • When you upgrade from versions prior to 11.0.0 (where there was no enable flag), the Bot Detection setting is based on the blocking check boxes for web scraping:
    • If the global Block check box is enabled, the value is Alarm and Block.
    • If the global Block check box is disabled, and the global Alarm check box is enabled, the value is Alarm.
    • If both Alarm and Block check boxes are disabled, the value is Off.

Brute Force

In versions prior to 11.3.0, if the Dynamic Brute Force Protection Operation Mode was Blocking, and the security policy’s Enforcement Mode was Transparent, the system blocked brute force attacks. In order to keep functionality after upgrading, the system continues to block brute force attacks if you upgrade to versions 11.3.0 or later, under these circumstances. However, in versions 11.3.0 and later, the functionality changed so that if the security policy’s Enforcement Mode is Transparent, so the system does not block brute force attacks even if the Dynamic Brute Force Protection Operation Mode setting is Alarm and Block (previously Blocking).

In version 13.1 the session-based and dynamic brute force protections are discontinued and replaced with source-based brute force protection. When upgrading:

  • Source-based mitigation will be set to Alarm and CAPTCHA for Username, Device IP and Source ID.
  • Dynamic mitigation will be set to Alarm and CAPTCHA.
  • Client Side Integrity Bypass Mitigation will be set to Alarm and CAPTCHA.
  • CAPTCHA Bypass Mitigation will be set to Alarm and CAPTCHA.
  • Detection and prevention duration will be derived from previous values.
  • Enforcement of both the source-based and distributed brute force protections depends on the Blocking settings of the Brute Force: Maximum login attempts are exceeded violation.
  • The Learning flag for Brute Force: Maximum login attempts are exceeded violation is discontinued.
  • The Unlimited value for Prevention Duration is discontinued.

DoS profiles

In versions 11.3.0 and later, DoS profiles are assigned to virtual servers. Previously, they were assigned to security policies.

  • Upon upgrading DoS Profiles from versions prior to 11.3.0, all active security policies have their DoS settings migrated and assigned to the virtual server associated with the HTTP Class. If a virtual server had more than one HTTP Class assigned to it, it inherits the settings of the last in the list.
  • If you have a disabled DoS profile in a version prior to 11.3.0, and upgrade, after the upgrade the system automatically assigns the DoS profile to a virtual server. As a result, even though the system does not perform DoS protection, it still collects statistics, which impacts the system’s performance. To work around this issue, if you have a disabled DoS profile assigned to a virtual server, to improve system performance you should remove its association from the virtual server. (ID 405211)
  • We do not support exporting and importing DoS profiles.

Logging Profiles

In versions 11.3.0 and later, logging profiles are assigned to virtual servers. Previously, they were assigned to security policies. Upon upgrading logging profiles from versions prior to 11.3.0, all active security policies have their logging profile settings migrated and assigned to the virtual server associated with the HTTP Class. If a virtual server had more than one HTTP Class assigned to it, it inherits the settings of the last in the list.

XFF configuration (ID 405312)

In versions prior to 11.3.0, DoS profiles used the Trust XFF setting that was a security policy setting. The Trust XFF setting was renamed Accept XFF, and moved from a security policy property to a property of the HTTP profile. If you upgrade a DoS profile and a security policy with the Trust XFF setting enabled, after the upgrade, the new XFF configuration setting is disabled. If you want the DoS profile to continue trusting XFF, navigate to Local Traffic > Profiles > Services > HTTP > Properties screen, and enable the Accept XFF setting.

IP address whitelist

In version 11.2 we unified various whitelists for Policy Builder trusted IP addresses, and anomaly whitelists (DoS Attack Prevention, Brute Force Attack Prevention, and Web Scraping Detection) into a single list. When you upgrade, these separate lists are unified to a single whitelist (called the IP Address Exceptions List).

Security policy status after UCS installation

After you install a .ucs (user configuration set) file that was exported from version 10.1.0 or later, the system does not automatically apply changes that you made, but did not apply, to the security policies. The system enforces the web application according to the settings of the last set active security policy. However, the system preserves any changes to the current edited security policy, and marks the security policy as modified [M] if the changes have not been applied.

Running Application Security Manager on a vCMP system

If you are running Application Security Manager on a vCMP system: For best performance, F5 recommends configuring remote logging to store ASM logs remotely on Syslog servers rather than locally.

About changing the resource provisioning level of the Application Security Manager

After upgrading or installing a new version, before you can use the Application Security Manager, you must set the Application Security Manager resource provisioning level to Nominal. You can do this from the command line, or using the Configuration utility.

Important: Wait 5 minutes after you set the resource provisioning level before making any configuration changes to the Application Security Manager. The system overrides all configuration changes that were made before this process is completed. When the process is not complete, the system informs you by displaying, in the Configuration utility, the following message: ASM is not ready. The system informs you when the process is completed by indicating in the log (/var/log/asm) the following message: ASM started successfully.

Setting the Application Security Manager resource provisioning level to Nominal from the command line

You can set the Application Security Manager resource provisioning level to Nominal from the command line.
  1. Open the command-line interface utility.
  2. Type the command: tmsh modify sys provision asm level nominal
  3. Type the command: tmsh save sys config.
The screen refreshes, and the resource provisioning level of the Application Security Manager is set to Nominal.

Setting the Application Security Manager resource provisioning level to Nominal using the Configuration utility

You can set the Application Security Manager resource provisioning level to Nominal using the Configuration utility.
  1. On the Main tab, click System > Resource Provisioning . The Resource Provisioning screen opens.
  2. Set the Application Security (ASM) option to Nominal.
  3. Click Submit.
The screen refreshes, and the resource provisioning level of the Application Security Manager is set to Nominal.

To prevent traffic from bypassing the Application Security Manager

For important information needed to prevent traffic from bypassing the Application Security Manager, please see the AskF5 Knowledge Center articles K8018: Overview of the BIG-IP HTTP class traffic flow and K12268: Successive HTTP requests that do not match HTTP class may bypass the BIG-IP ASM.

About working with device groups

Note: This section is relevant only if you are working with device groups.

When Application Security Manager (ASM) is provisioned, the datasync-global-dg device-group is automatically created (even if there are no device-groups on the unit) in any of the following scenarios:

  • First provisioning of ASM on a device that has version 11.6.0, or later, installed.
  • Adding a device (with version 11.6.0 or later) to a trust-domain that has another device which already has the datasync-global-dg device-group.
  • Upgrading to version 11.6.0, or later, when ASM is already provisioned.
  • Upgrading to version 11.6.0, or later, when the device is joined in a trust-domain that has another device which already has the datasync-global-dg device-group.

This device group is used to synchronize client-side scripts and cryptographic keys across all of the devices in the trust-domain.

Note the following:

  • The synchronization is performed across the entire trust-domain, regardless of the configured device groups.
  • The datasync-global-dg device group must not be removed; it is essential for consistency of client-side scripts and keys across the devices.
  • This device group is created upon provisioning, even if the BIG-IP system is working as a standalone.
  • All of the devices in the trust-domain are automatically added to this device group.
  • This device group is manually synchronized. Therefore, when working with device groups (multiple devices in a trust-domain), customers must choose which device will hold the master scripts and keys. The rest of the devices receive these scripts and keys from the chosen device.
  • This device group is also created on units that do not have ASM provisioned, but are in a trust-domain with other units which do have ASM provisioned.

Synchronizing the device group

When adding a device to the trust-domain, or upgrading from a release prior to version 11.6.0, you must manually synchronize this device group.
  1. In the Configuration utility, navigate to Device Management > Overview .
  2. In the Device Groups area, click datasync-global-dg.
  3. In the Devices area, click the device which is chosen to have the master scripts and keys. These scripts and keys will be sent to the rest of the devices.
  4. Under Sync Options, select Sync Device to Group.
  5. Check Overwrite Configuration.
  6. Click Sync.
  7. When the warning message appears, click OK.
The device that you selected continues to work seamlessly. The rest of the devices go OFFLINE, and will not receive traffic for approximately 3 minutes. During this time, the new client-side scripts and keys are synchronized and prepared. After about 3 minutes, all units should return to the ONLINE (Active) state, and the units should be in sync.

Supported ICAP servers

For BIG-IP version 11.6.0, F5 Networks tested the anti-virus feature on the following ICAP servers: McAfee®, Trend Micro™, Symantec™, and Kaspersky. The following table displays which version of each anti-virus vendor was tested, and the value of the virus_header_name variable that needs to be adjusted in ASM for each tool. (You can set the virus_header_name variable: Security > Options > Application Security > Advanced Configuration > System Variables .)

Anti-Virus Vendor Anti-Virus Version Value of virus_header_name
McAfee® VirusScan Enterprise 7.0 X-Infection-Found, X-Virus-Name
Trend Micro™ InterScan™ Web Security 5.0.1013 X-Virus-ID
Symantec™ Protection Engine 7.0.2.4 X-Violations-Found
Kaspersky Anti-Virus 5.5 X-Virus-ID

AVR :: Merged metrics to HTTP statistics tables

Metrics used in select HTTP tables in versions 12.X and lower, were merged into additional HTTP tables in this version, resulting in default values immediately following the upgrade.

The following table lists the metrics, the tables they were merged into, and the initial values displayed in the GUI following an upgrade from a previous version. Once new data is collected, the displayed value will appear as expected in the merged metric field in the additional HTTP tables.
Metric Title Applying Metric(s) in GUI Tables with Added Metric Initial Value After Upgrade Version Before Upgrade
sessions Average Sessions URLs, Pool Members, Response Codes, Client IP Addresses, User Agents, HTTP Method 0 12.X or lower
max_tps Max TPS User Agents, HTTP Method 0 12.X or lower
client_latency_hits Avg Page Load time, Sampled Transactions User Agents, HTTP Method 0 12.X or lower
max_client_latency Max Page Load Time User Agents, HTTP Method 0 12.X or lower
client_latency Avg Page Load time User Agents, HTTP Method 0 12.X or lower
max_server_latency Max Server Latency User Agents, HTTP Method 0 12.X or lower
min_server_latency Min Server Latency User Agents, HTTP Method MAX_INT 12.X or lower
server_latency Avg Server Latency User Agents, HTTP Method 0 12.X or lower
max_request_throughput Max Request Throughput User Agents, HTTP Method 0 12.X or lower
total_request_size Avg Request Throughput User Agents, HTTP Method 0 12.X or lower
max_response_throughput Max Response Throughput User Agents, HTTP Method 0 12.X or lower
total_response_size Avg Transaction Response size User Agents, HTTP Method 0 12.X or lower

AVR :: New and updated dimensions

Dimensions were added since previous versions, resulting in default values immediately following the upgrade.

The following table lists the new dimension titles and the initial values displayed in the GUI following an upgrade from a previous version. Once new data is collected, the displayed values for each dimension will appear as expected.

Dimension Title Dimension Module Location in GUI Initial Value After Upgrade Version Before Upgrade
Behavioral Signatures HTTP Security > Reporting > DoS Aggregated 12.X or lower
Bot Defense Reasons HTTP Security > Reporting > DoS Aggregated 12.X or lower
Browser Names HTTP Statistics > Analytics > HTTP Aggregated 12.X or lower
OS Names HTTP Security > Reporting > DoS Statistics > Analytics > HTTP Aggregated 12.X or lower
Vectors Common Security > Reporting > DoS Aggregated 12.X or lower
Triggers Common Security > Reporting > DoS Aggregated 12.X or lower
Mitigations Common Security > Reporting > DoS Aggregated 12.X or lower
Activity Types Common Security > Reporting > DoS Regular Activity 12.X or lower
Destination Countries Network Security > Reporting > DoS Aggregated 13.X or lower
Destination IP Address Network Security > Reporting > DoS Aggregated 13.X or lower
Client Types HTTP Security > Reporting > DoS Aggregated 13.X or lower
Human Behavior Indications HTTP Security > Reporting > DoS Aggregated 13.X or lower
Application Versions HTTP Security > Reporting > DoS Aggregated 13.X or lower
Application Display Names HTTP Security > Reporting > DoS Aggregated 13.X or lower
Jail Break HTTP Security > Reporting > DoS Aggregated 13.X or lower
Emulation Modes HTTP Security > Reporting > DoS Aggregated 13.X or lower

AVR :: New and updated metrics

Metrics were added since previous versions, resulting in default values immediately following the upgrade.

The following table lists the new metrics and the initial value displayed in the GUI following an upgrade from a previous version. Once new data is collected, the displayed value will appear as expected in the metric field.

Metric Title Applying Metric(s) in GUI Initial Value After Upgrade Version Before Upgrade
min_server_latency Min Server Latency MAX_INT 12.X or lower
server_hitcount Avg Server Latency, Avg Application Response Time, Avg Server Network Latency 0 12.X or lower
application_response_time Avg Application Response Time 0 12.X or lower
max_application_response_time Max Application Response Time 0 12.X or lower
min_application_response_time Min Application Response Time MAX_INT 12.X or lower
client_ttfb_hitcount Avg Client TTFB 0 12.X or lower
max_client_ttfb Max Client TTFB 0 12.X or lower
min_client_ttfb Min Client TTFB MAX_INT 12.X or lower
clientside_network_latency Avg Client Network Latency 0 12.X or lower
max_clientside_network_latency Max Client Network Latency 0 12.X or lower
min_clientside_network_latency Min Client Network Latency MAX_INT 12.X or lower
serverside_network_latency Avg Server Network Latency 0 12.X or lower
max_serverside_network_latency Max Server Network Latency 0 12.X or lower
min_serverside_network_latency Min Server Network Latency MAX_INT 12.X or lower
request_duration_hitcount Avg Request Duration 0 12.X or lower
max_request_duration Max Request Duration 0 12.X or lower
min_request_duration Min Request Duration MAX_INT 12.X or lower
response_duration_hitcount Avg Response Duration 0 12.X or lower
max_response_duration Max Response Duration 0 12.X or lower
min_response_duration Min Response Duration MAX_INT 12.X or lower

AVR :: Updated HTTP statistic tables

The HTTP statistics tables were updated in this version. When upgrading from version 12.X or lower, non-cumulative metrics of the affected dimensions may display slightly different values after the upgrade.

The following table lists the affected HTTP dimensions and the initial values displayed in the GUI following an upgrade from a previous version. Once new data is collected, the displayed value will appear as expected for the dimension.

Dimension Title Initial Value After Upgrade Version before Upgrade
DoS Profiles Aggregated 12.X or lower
Bot Signatures Aggregated 12.X or lower
Bot Signature categories Aggregated 12.X or lower
Countries N/A 12.X or lower

Contacting F5

North America 1-888-882-7535 or (206) 272-6500
Outside North America, Universal Toll-Free +800 11 ASK 4 F5 or (800 11275 435)
Additional phone numbers Regional Offices
Web http://www.f5.com
Email support@f5.com

Additional resources

You can find additional support resources and technical documentation through a variety of sources.

F5 Support

https://f5.com/support :: Self-solve Options

Free self-service tools give you 24x7 access to a wealth of knowledge and technical support. Whether it is providing quick answers to questions, training your staff, or handling entire implementations from design to deployment, F5 services teams are ready to ensure that you get the most from your F5 technology.

AskF5 Knowledge Base

https://support.f5.com/csp/home

The storehouse for thousands of knowledgebase articles that help you manage your F5 products more effectively. Whether you want to browse periodically to research a solution, or you need the most recent news about your F5 products, AskF5 is your source.

BIG-IP iHealth Diagnostics and BIG-IP iHealth Viewer

https://f5.com/support/tools/ihealth

BIG-IP iHealth Diagnostics identifies issues, including common configuration problems and known software issues. It also provides solutions and links to more information. With BIG-IP iHealth Viewer, you can see the status of your system at-a-glance, drill down for details, and view your network configuration.

F5 DevCentral

https://devcentral.f5.com/

Collaborate and share innovations including code samples, new techniques, and other tips, with more than 300,000 F5 users worldwide. DevCentral is the place to ask questions, find solutions, learn to harness the power of F5’s powerful scripting language, iRules, and much more.

Communications Preference Center

https://interact.f5.com/F5-Preference-Center.html

Here, you can subscribe to a number of communications from F5. For information about the types of notifications F5 provides, see K9970: Subscribing to email notifications regarding F5 products.