Manual Chapter : Creating an Active-Standby Configuration using the Configuration Utility

Applies To:

Show Versions Show Versions

BIG-IP AAM

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1

BIG-IP APM

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1

BIG-IP GTM

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1

BIG-IP Analytics

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1

BIG-IP Link Controller

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1

BIG-IP LTM

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1

BIG-IP PEM

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1

BIG-IP AFM

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1

BIG-IP ASM

  • 11.6.5, 11.6.4, 11.6.3, 11.6.2, 11.6.1
Manual Chapter

Creating an Active-Standby Configuration using the Configuration Utility

Overview: Creating an active-standby DSC configuration

The most common TMOS® device service clustering (DSC®) implementation is an active-standby configuration, where a single traffic group is active on one of the devices in the device group and is in a standby state on a peer device. If failover occurs, the standby traffic group on the peer device becomes active and begins processing the application traffic.

To implement this DSC implementation, you can create a Sync-Failover device group. A Sync-Failover device group with two or more members and one traffic group provides configuration synchronization and device failover, and optionally, connection mirroring.

If the device with the active traffic group goes offline, the traffic group becomes active on a peer device, and application processing is handled by that device.

A Sync-Failover device group with one traffic group

A two-member Sync-Failover device group for an active-standby configuration

About DSC configuration on a VIPRION system

The way you configure device service clustering (DSC®) (also known as redundancy) on a VIPRION® system varies depending on whether the system is provisioned to run the vCMP® feature.

For non-vCMP systems

For a device group that consists of VIPRION systems that are not licensed and provisioned for vCMP, each VIPRION cluster constitutes an individual device group member. The following table describes the IP addresses that you must specify when configuring redundancy.

Table 1. Required IP addresses for DSC configuration on a non-vCMP system
Feature IP addresses required
Device trust The primary floating management IP address for the VIPRION cluster.
ConfigSync The unicast non-floating self IP address assigned to VLAN internal.
Failover
  • Recommended: The unicast non-floating self IP address that you assigned to an internal VLAN (preferably VLAN HA), as well as a multicast address.
  • Alternative: All unicast management IP addresses that correspond to the slots in the VIPRION cluster.
Connection mirroring For the primary address, the non-floating self IP address that you assigned to VLAN HA. The secondary address is not required, but you can specify any non-floating self IP address for an internal VLAN..

For vCMP systems

On a vCMP system, the devices in a device group are virtual devices, known as vCMP guests. You configure device trust, config sync, failover, and mirroring to occur between equivalent vCMP guests in separate chassis.

For example, if you have a pair of VIPRION systems running vCMP, and each system has three vCMP guests, you can create a separate device group for each pair of equivalent guests. Table 4.2 shows an example.

Table 2. Sample device groups for two VIPRION systems with vCMP
Device groups for vCMP Device group members
Device-Group-A
  • Guest1 on chassis1
  • Guest1 on chassis2
Device-Group-B
  • Guest2 on chassis1
  • Guest2 on chassis2
Device-Group-C
  • Guest3 on chassis1
  • Guest3 on chassis2

By isolating guests into separate device groups, you ensure that each guest synchronizes and fails over to its equivalent guest. The following table describes the IP addresses that you must specify when configuring redundancy:

Table 3. Required IP addresses for DSC configuration on a VIPRION system with vCMP
Feature IP addresses required
Device trust The cluster management IP address of the guest.
ConfigSync The non-floating self IP address on the guest that is associated with VLAN internal on the host.
Failover
  • Recommended: The unicast non-floating self IP address on the guest that is associated with an internal VLAN on the host (preferably VLAN HA), as well as a multicast address.
  • Alternative: The unicast management IP addresses for all slots configured for the guest.
Connection mirroring For the primary address, the non-floating self IP address on the guest that is associated with VLAN internal on the host. The secondary address is not required, but you can specify any non-floating self IP address on the guest that is associated with an internal VLAN on the host.

DSC prerequisite worksheet

Before you set up device service clustering (DSC®), you must configure these BIG-IP® components on each device that you intend to include in the device group.

Table 4. DSC deployment worksheet
Configuration component Considerations
Hardware, licensing, and provisioning Devices in a device group must match with respect to product licensing and module provisioning. Heterogeneous hardware platforms within a device group are supported.
BIG-IP software version Each device must be running BIG-IP version 11.x. This ensures successful configuration synchronization.
Management IP addresses Each device must have a management IP address, a network mask, and a management route defined.
FQDN Each device must have a fully-qualified domain name (FQDN) as its host name.
User name and password Each device must have a user name and password defined on it that you will use when logging in to the BIG-IP Configuration utility.
root folder properties The platform properties for the root folder must be set correctly (Sync-Failover and traffic-group-1).
VLANs You must create these VLANs on each device, if you have not already done so:
  • A VLAN for the internal network, named internal
  • A VLAN for the external network, named external
  • A VLAN for failover communications, named HA
Self IP addresses You must create these self IP addresses on each device, if you have not already done so:
  • Two self IP addresses (floating and non-floating) on the same subnet for VLAN internal.
  • Two self IP addresses (floating and non-floating) on the same subnet for VLAN external.
  • A non-floating self IP address on the internal subnet for VLAN HA.
Note: When you create floating self IP addresses, the BIG-IP system automatically adds them to the default floating traffic group, traffic-group-1. To add a self IP address to a different traffic group, you must modify the value of the self IP address Traffic Group property.
Important: If the BIG-IP device you are configuring is accessed using Amazon Web Services, then the IP address you specify must be the floating IP address for high availability fast failover that you configured for the EC2 instance.
Port lockdown For self IP addresses that you create on each device, you should verify that the Port Lockdown setting is set to Allow All, All Default, or Allow Custom. Do not specify None.
Application-related objects You must create any virtual IP addresses and optionally, SNAT translation addresses, as part of the local traffic configuration. You must also configure any iApp™ application services if they are required for your application. When you create these addresses or services, the objects automatically become members of the default